圆轴扭转时的变形与刚度计算

合集下载

第4章圆轴扭转时的强度与刚度计算

第4章圆轴扭转时的强度与刚度计算

圆轴扭转后横截面保持平面
第一个结论
圆轴扭转时,横截 面保持平面,平面上 各点只能在平面内转 动
圆轴扭转后横截面保持平面
假设平面不是刚性转动, 直径将变成曲线,A端观察 者看到的情形。
圆轴扭转后横截面保持平面
假设平面不是刚性转动, 直径将变成曲线,B端观察 者看到的情形。
圆轴扭转后横截面保持平面
最终结论
圆轴扭转时,横 截面 保持平面,并且 只能发生刚性转动。
圆轴扭转后横截面保持平面
变形协调方程
圆轴扭转时的变形协调方程
若将圆轴用同轴柱面分割成许多半径不等的圆柱,根据上述结论,在dx长度 上,虽然所有圆柱的两端面均转过相同的角度d,但半径不等的圆柱上产生的剪 应变各不相同,半径越小者剪应变越小。
其中P为功率,单位为千瓦(kW); n为轴的转速,单位为转/分(r/min)。
4.1外加扭力矩、扭矩与 扭矩图
P[马力]
Me
7024 n[r / min]
[N m]
若P为功率,单位为马力 (1马力=735.5 N•m/s )
n为轴的转速,单位为转/分(r/min)
4.1外加扭力矩、扭矩与 扭矩图
max
M x,max Wp
[ ]
[ ]为许用剪应力;是指圆轴所有横截面
上最大剪应力中的最大者,
钢 [ ] (0.5 ~ 0.6)[ ] 铸铁 [ ] (0.8 ~ 1)[ ]
例题1
已知:P=7.5kW, n=100r/min,最大剪应力不得超过40MPa,空心圆轴的内外直 径之比 = 0.5。二轴长度相同。
圆轴扭转时横截面上的剪应力表达式
圆轴扭转时横截面上的剪应力表达式
圆轴扭转时横截面上的最大剪应力

杆在扭转时的变形 · 刚度条件

杆在扭转时的变形 · 刚度条件
2
πd A实 1749 mm 2 4 2 2 π(76 71 ) A空 577mm 2 4
两轴材料、长度均相同, 故两轴重量比等于两轴的横截面积比,
A2 577 0.329 A1 1749
在最大切应力相等的情况下空心圆轴比实心圆轴轻, 即节省材料.
例题7 两端固定的圆截面杆AB, 在截面C 处受一个扭转力偶矩
Me 的作用, 如图所示.已知杆的抗扭刚度 GIp, 试求杆两端的支反 力偶矩. Me
A a
C
B b
l
解:去掉约束,代之以约束反力偶矩
Mx 0
M eA M eB M e 0
这是一次超静定问题,
Me
A
a
须建立一个补充方程
杆的变形相容条件是 C 截面相对于两固定端 A和B的相对扭转角相等.
'

Mt Ip
M tl GI p
max

• The strengh condition • The rigidity condition
Mt Wp
180
Mp GI p


o
例题5 图示等直杆, 已知直径d = 40mm, a = 400mm, 材料的剪切
弹性模量G = 80GPa,DB =1°. 试求:
(1) AD杆的最大切应力; (2)扭转角 CA 解:画扭矩图 Me D a C a 2Me B 2a 3Me Me +
3Me
A
Tmax= 3Me 计算外力偶矩Me
材料的许用切应力 [ ] = 100MPa, 切变模量为 G = 80GPa, 轴的许可扭角[′ ] = 2/m . 试校核轴的强度和刚度.

18圆轴扭转的强度和刚度计算

18圆轴扭转的强度和刚度计算

T
max
WP
[ ]
此时 T max 作用截面即为轴的危险截面;而对于变 截面圆轴,则要求:
max
T W P
[ ] max
此时,由于圆轴各段的抗扭截面系数不同,最大扭 矩作用截面不一定是危险截面。需要综合考虑扭矩和抗 扭截面系数的大小,判断可产生最大切应力的各横截面。 上面两式称为圆轴扭转强度条件。 11
17
巩固练习
18
巩固练习
【练习1】在例1中,若将该传动轴设计为空心轴,已
= 知:
di 0.9 ,试设计圆轴直径,并比较重量。 D
19
巩固练习
20
归纳总结 在在工程实际中,空心轴得到了广泛的应用,这主要是由 扭转切应力的分布规律决定的。 实心圆轴横截面上的扭转切应力分布如图(a)所示,当截面 周边处的切应力达到许用切应力时,圆心附近各点处的切应力 仍很小,这部分材料就没有充分发挥作用。所以,为了合理利 用材料,宜将材料放置在离圆心较远的部位,作成空心轴,此 时切应力分布规律如图(b)所示,其切应力和内力的力臂都将增 大,轴的抗扭能力将大大增强。
WP
D 3
16
d/D
IP 单位:mm4, WP单位:mm3
实例分析
扭转实验结果
4
任务十八 圆轴扭转时的强度和 刚度计算
教学目标
教学目标: (1)掌握基本概念; ( 2)掌握扭转变形时强度和刚度计算方法。 重点: (1)扭转变形时强度条件和刚度条件理解。 难点: (1)强度和刚度的计算方法应用。
扭转极限应力
由此可见,对于受扭 轴,塑性材料失效的标志 是屈服,试件屈服时横截 面上的最大切应力,即为 材料的扭转屈服应力,可 用 s 表示;脆性材料失效 的标志是断裂,试件断裂 时横截面上的最大切应力 即为材料的扭转强度极限, 用来 b 表示。

杆件的刚度计算汇总.

杆件的刚度计算汇总.
5
第一节
圆轴扭转时的变形及刚度计算
刚度计算的三方面:
① 校核刚度: ② 设计截面尺寸: ③ 计算许可载荷:
max
T max Ip G[ ]
T
max
GI p[ ]
有时,还可依据此条件进行选材。
6
第一节
[例]
圆轴扭转时的变形及刚度计算
图示阶梯圆轴,受力如图。已知该轴大端直径为
有足够的刚度。如果变形过大,将造成梁不能正常工作,进而
引起梁的破坏。如:高精度车床轴;桥梁;变速箱传动轴等。 绕曲线——梁在载荷作用下发生弯曲变形,梁轴线由直线 弯曲成一条光滑连续曲线。 梁曲线上任一点在垂直于梁变形前轴线方向的线位移 称为该点的挠度 。 梁任一横截面绕其中性轴转动的角度称为该截面的转角。
③ 轴上的绝对值最大的扭矩越小越合理,所以,1轮和
2轮应该换位。换位后,轴的扭矩如图所示,此时,轴的最 大直径才为 75mm。 T (kNm) 2.814 x – 4.21
13
第一节
圆轴扭转时的变形及刚度计算
课堂练习
14
第二节
梁的变形及刚度计算
一、弯曲变形的概念
为了确保梁的正常工作,梁除了满足强度条件外,还要求
D=60mm,小端直径为
d=30mm,已知G=80GPa,
1
0
/m 。试求:
1).校核该轴刚度; 2).A截面相对于C 截 面的扭转角。
解:1.内力分析:
画扭矩图如图所。
7
第一节
圆轴扭转时的变形及刚度计算
2.变形分析及刚度条件:
3.14 604 1012 I P1 1.27 106 (m 4 ) 32 32 d 4 3.14 304 1012 I P2 0.08 106 (m 4 ) 32 32 180 T1 180 2.5 103 0 1 1 . 4 ( /m) 9 6 GI P1 3.14 80 10 1.27 10 180 T2 180 1.5 103 0 2 1 . 35 ( /m) 9 6 GI P 2 3.14 80 10 0.08 10 故 max 1.4( 0 /m)

11圆轴扭转变形与刚度计算

11圆轴扭转变形与刚度计算
§7.5
圆轴扭转变形与刚度计算
m m

d T dx GI p
1
一、圆轴扭转变形公式

m
m

T ( x )dx 满足平面假设的圆轴: GI p ( x ) l Tl T=Const,等截面圆轴: GI p
GIp-抗扭刚度
d T dx GI p
Ti l i Ti,Ipi在各段内为常数的轴: i 1 GI pi
6
2. 用截面法求 各段内的扭矩
mB+T1=0
T1 350N m
mB+ mC+ T2=0 T2 700N m
-mD+ T3=0 T3 446N m 3. 作扭矩图
7
4. 确定最大扭矩
T max T2 700N m
5. 强度设计
max
d0
T
max
m d2 x l
10
d1
解:设距左端为 x 的任 意横截面的直径为 d(x) , 按比例关系可得 d2
d1 d 2 x d d2 1 d2 l
x
l
m
d1
此横截面的极惯性矩为
d1 d 2 x Ip 1 32 32 d2 l
d
4
d2
or
T 180 [ ] GI p max
/ m
等截面圆轴扭转的刚度条件为:
Tmax [ ] (rad/m) GI p
or
Tmax 180 [ ] GI p
/ m
4
【例题1】
传动轴图所示。主动轮A输入功率 PA=36kw , 从 动 轮 B 、 C 、 D 输 出 功 率 分 别 为 PB=PC=11kW , PD=14kW ,轴的转速为 n=300r/min , 许用切应力为[]=50MPa,切变模量为G=80GPa,单 位长度许用扭转角为[]=0.5()/m。试确定: 实心圆截面轴的直径d0;

材料力学-第4章圆轴扭转时的强度与刚度计算

材料力学-第4章圆轴扭转时的强度与刚度计算
B
I
C
A
II
D
III
I
II
III
M
x
0
确定各段圆轴内的扭 矩。
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
3 . 建立 Mx - x 坐 标系,画出扭矩图 建 立 Mx - x 坐 标 系,其中x轴平行于 圆轴的轴线,Mx轴垂 直于圆轴的轴线。将 所求得的各段的扭矩 值,标在 Mx - x 坐标 系中,得到相应的点 ,过这些点作x轴的 平行线,即得到所需 要的扭矩图。
P M e 9549 [N m] n
其中P为功率,单位为千瓦(kW);n为轴的转速,单位为转/ 分(r/min)。 如果功率P的单位用马力(1马力=735.5 N•m/s),则
P[马力] M e 7024 [N m] n[r / min]
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴 外加扭力矩、扭矩与扭矩图 剪应力互等定理 剪切胡克定律
圆轴扭转时横截面上的剪应力分析 与强度设计 圆杆扭转时的变形及刚度条件 结论与讨论
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴
第4章 圆轴扭转时的强度与刚度计算
绘出扭矩图:
第4章 圆轴扭转时的强度与刚度计算
B C
I
外加扭力矩、扭矩与扭矩图 A III D II
I 扭矩Mn-图
II
III
159.2
(+)
(-)
63.7 159.2
M n,max 159.2( N m)
(在CA段和AD段)

《工程力学:第七章+圆轴扭转时的应力变形分析与强度和刚度设计》

《工程力学:第七章+圆轴扭转时的应力变形分析与强度和刚度设计》

工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
背 景


工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
背 景


工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 一、扭转的概念 复习 Me
mA
阻抗力 偶
主动力 偶
me
受力特点:杆两端作用着大小相等、方向相反的力偶,且力 偶作用面垂直于杆的轴线。 变形特点:杆任意两截面绕轴线发生相对转动。 主要发生扭转变形的杆——轴。
Mx 16M x 16 1.5kN m 103 max= = 3 = =50.9MPa 3 4 -3 4 WP πD 1 π 90mm 10 1 0.9传动轴的强度是安全的。
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 2.确定实心轴的直径 根据实心轴与空心轴具有同样数值的最大剪应力的要求, 实心轴横截面上的最大剪应力也必须等于 50.9MPa 。若设实 心轴直径为d1,则有
b b
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 T 一、 扭转强度计算 变截面圆轴: max W [ ] 1、强度条件: p
max
max
对脆性材料 [ ] 对韧性材料 [ ]
b
nb

工程力学第8章 变形及刚度计算

工程力学第8章 变形及刚度计算
第8章 变形及刚度计算
结构构件在满足强度要求条件下,若其变形过大, 会影响正常使用。本章将学习杆件的变 形及刚度计算。
1
8.1 轴向拉压杆的变形
杆件在发生轴向拉伸或轴向压缩变形时,其纵向尺 寸和横向尺寸一般都会发生改变,现分别予以讨论。 8.1.1 轴向变形 图8.1所示一等直圆杆,变形前原长为l,横向直径 为d;变形后长度为l′,横向直径为d′,则称
8.8 题8.8图所示一直径为d的圆轴,长度为l,A端 固定,B端自由,在长度方向受分布力偶m 作用发生扭 转变形。已知材料的切变模量为G,试求B端的转角。
56
8.9 某传动轴,转速 n=150 r/min,传递的功率 P =60 kW,材料的切变模量为 G =80GPa,轴的单位长度 许用扭转角[θ]=0.5(°)/m,试设计轴的直径。
30
例 8.9 简支梁受力如图 8.11所示
31
8.4 简单超静定问题
8.4.1 超静定问题的概念 前面几章所研究的杆或杆系结构,其支座反力和内 力仅仅用静力平衡条件即可全部求解出来,这类问题称 为静定问题(staticallydeterminateproblem)。例如,图 8.12所示各结构皆为静定问题。在工程实际中,有时为 了提高强度或控制位移,常常采取增加约束的方式,使 静定问题变成了超静定问题或静不定问题 (staticallyindeterminateproblem)。超静定问题的特点 是,独立未知力的数目大于有效静力平衡方程式的数目, 仅仅利用静力平衡条件不能求出全部的支座反力和内力。
52
8.5 高为l的圆截面锥形杆直立于地面上,如题8.5图 所示。已知材料的重度γ和弹性模量E,试求杆在自重作 用下的轴向变形Δl。
53
54
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§6-1 圆轴扭转时的应力和强度计算
目的要求:掌握扭转横截面上的应力分 布规律和强度条件的应用。
教学重点:强度条件及其应用。 教学难点:切应力互等定理和剪切胡克
定律。
延安大学西安创新学院建筑工程系
一、 切应力互等定理和剪切胡克定律 1、 切应力互等定理 相互垂直两个平面上的切应力必然成 对存 在,且大小相等、方向都垂直指向 或背离两平面的交线。
本章结束
延安大学西安创新学院建筑工程系
为研究对象, 受力图如图(c) 由(c)图可得:T1- MB =0 所以 T1=636.6N.m 2、用一截面从2-2处将轴切开,取右部分为研
究对象,受力图如图(d) 由(d)图可得:T2+MC=0 所以 T2= -954.9N.m 3、作扭矩图 如图(b)
延安大学西安创新学院建筑工程系
延安大学西安创新学院建筑工程系
解:1、求外力偶矩
2、求各段的扭矩 T1=M1=1591.7N.m T2=M1-M2=3183.3N.m
延安大学西安创新学院建筑工程系
4、设计直径 由
延安大学西安创新学院建筑工程系
5、按刚度条件设计D
由强度计算和刚度计算可知 D≥69.4mm
延安大学西安创新学院建筑工程系
第6章 圆轴的扭转
延安大学西安创新学院建筑工程系
圆轴的扭转 扭矩与扭矩图 圆轴扭转时的应力和强度计算 圆轴扭转时的变形与刚度计算
延安大学西安创新学院建筑工程系
圆轴的扭转 扭矩与扭矩图 目的要求:掌握圆轴扭转内力图的绘制。 教学重点:扭矩图的绘制。 教学难点:指定截面扭矩的计算。
延安大学西安创新学院建筑工程系
2、 横截面上任一点的切应力计算公式
其中:T---截面上的扭矩 ρ---要求应力的点到圆心O点的距离
延安大学西安创新学院建筑工程系
3、 横截面上最大切应力发生在周边上, 计算公式为
延安大学西安创新学院建筑工程系
4、实心和空心圆截的惯性矩Ip和抗扭截 面系数Wp
转变形。

3、圆轴扭转的变形特点:各横截面绕杆
轴线发生相对错动。

轴:以扭转变形为主的杆件称为轴
延安大学西安创新学院建筑工程系
4、实例
延安大学西安创新学院建筑工程系
发生扭转变形的水轮机轴
延安大学西安创新学院建筑工程系
二、 扭矩与扭矩图
1、 外力偶矩的计算 已知轴传递的功率,轴的转速,力
偶矩的计算公式为:
其中: Nk---功率(kW)

Me---外力偶矩(N.m)

n---轴的转速r/min)
延安大学西安创新学院建筑工程系
2、 扭矩:
(1)截面法分析扭转的内力——扭矩 (T)
当杆件受到外力偶矩作用发生扭转变形 时其横截面上的内力偶矩。
(用T表示;单位:N.m或kN.m)
教学重点:圆轴扭转的刚度Байду номын сангаас件。
教学难点:对圆轴扭转的刚度条件的理解和应 用。
延安大学西安创新学院建筑工程系
一、 圆轴扭转时的变形计算 1、扭转角(φ):圆轴扭转时两横截面相对转过的角
度。
2、单位扭转角(θ):单位长度上的扭转角。 (rad/m)
其中:T---截面上的扭矩 Iρ---截面对圆心O点的极惯性矩 L---两截面之间的距离 G---剪切弹性模量
延安大学西安创新学院建筑工程系
(2) 扭矩的正负号规定右手螺旋法则。
延安大学西安创新学院建筑工程系
(3) 指定截面扭矩的计算方法。
延安大学西安创新学院建筑工程系
用一假想的截从要求内力处将 杆件切开 分成两段,取其中的任意一段为研究对 象,画出其受力图,利用平衡方程,求 出 内力(扭矩)
注意:在受力图中,扭矩最好假设成正 方向,如上图。
由力偶平衡得: Me-T=0 即:T=Me
延安大学西安创新学院建筑工程系
3、 扭矩图: 用一个图形来表示截面上的扭矩随其截
面位置变化关系。
延安大学西安创新学院建筑工程系
例 M扭A1矩=:1图5图9。1示.5圆N轴.m的,外M力C=偶95矩4.M9NB=.m6。36试.6N作.m出,其 解:1、用一截面从1-1处将轴切开,取左部分
(1) 实心圆截面
(2)空心圆截面
延安大学西安创新学院建筑工程系
三、 圆轴扭转时的强度计算 1、 强度条件
延安大学西安创新学院建筑工程系
2、 例题 例1:如图所示,一钢制圆轴两端受外
力偶m作用,已知m=2.5KN,直径d=6cm, 许用应力[τ]=60MPa,试校核该轴的强度。
延安大学西安创新学院建筑工程系
二、 圆轴扭转时的刚度计算 1、 刚度条件
其中:[θ]---许用单位扭转角 (rad/m或°/m)
延安大学西安创新学院建筑工程系
三、刚度计算举例
例2:如图所示的实心传动轴,Nk1=50KW, Nk2=150KW,Nk3=100KW, n=300r/min,许 用应力[τ]=100MPa,[θ]=1°/m,G=80GPa, 试设计此轴的直径D。
延安大学西安创新学院建筑工程系
§6-1 圆轴扭转 扭矩与扭矩图
一、 圆轴扭转的概念与实例

1、扭转的概念

杆件的两端受到大小相等、转向相反且作
用平面直垂于杆轴线的力偶的作用,致使杆件
各横截面都绕杆轴线发生相对转动,杆件表面
的纵向线将变成螺旋线。

2、扭转的受力特点:受一对等值、反向、
作用面在横截面内的力偶作用时,圆轴产生扭
延安大学西安创新学院建筑工程系
2、 剪切胡克定律
τ=τ’ (1)、 切应变:切应力只产生角应变,
单元体的直角的改变量称为切应变。
(2)、 剪切胡克定律
在剪切比例极限的范围内,切应力和切
应变成正比。比例常数为材料的切变模 量(G)。

τ=Gγ
延安大学西安创新学院建筑工程系
二、 圆轴扭转时横截面上的应力 1、 切应力及其分布规律
延安大学西安创新学院建筑工程系
解: 1、计算轴的扭矩T
将轴在离左端任一距离处用截面切开, 取左段为脱离体,画出其受 力图如下图, 由平衡条件可得:T=M
2、校核强度
此轴满足强度要求
延安大学西安创新学院建筑工程系
§6-3 圆轴扭转时的变形与刚度计算
目的要求:掌握圆轴扭转的变形计算和刚度条 件。
相关文档
最新文档