车辆路径问题

车辆路径问题
车辆路径问题

第14章车辆路径问题

14.1 物流配送车辆优化调度概述

14.1.1 概述

车辆路径问题:对一系列装货点和(或)卸货点,组织适当的行车路线,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量、交发货时间、车辆容量限制、行驶里程限制、时间限制等)下,达到一定的目标(如路程最短、费用最少、时间尽量少,使用车辆数尽量少等)。

又称运输调度问题,包括两部分:一是行车路线的设计;二是出行时间表的安排。

最基本的车辆路径问题,是客户需求位置已知的情况下,确定车辆在各个客户之间的行程路线,使得运输路线最短或运输成本最低,通过研究车辆路径问题,可以合理使用运输工具,优化运输路线,降低企业物流成本。

14.1.2 路径特性

(1)地址特性:车场数目、需求类型、作业要求

(2)车辆特性:车辆数量、载重量约束、可运载品种约束、运行路线约束、工作时间约束

(3)问题的其他特性:道路网络可能是有向的,或者是无向的;单项作业是否可以分割完成;每一辆车是否可以承担多条线路,是否完成作业后必须回到出发点。

(4)目标函数可能是总成本极小化,或者极小化最大作业成本,或者最大化准时作业。

14.1.3 常见的基本问题

(1)旅行商问题

在一个配送中心p有一辆容量为q的货车,现有m个需求点的货运任务需要完成,已知需求点i的货运量为gi(i=1,2,…,m),且Σgi≤q,求在满足各收点需求的约束条件下,总发送距离最短的货车送货路线。

在运筹学中,旅行商问题是这样解释的:有一个推销员,要到n个城市去推销商品,当各个城市间的距离已知,并规定每个城市只访问一次,问按什么样的顺序访问,其距离最短。

(2)带容量约束的车辆路线问题

在一个配送中心p,有一个车队Qj(j=1,2,…,n),这个车队每辆车容量均为q,且有足够的运力保证任务的完成,需求点i的货运量gi满足:nq≥Σgi≥q。这样一来,配送中心需要派出若干的车辆来完成配送任务,每个车可能要为多个需求点服务然后返回配送中心。

该问题包括两个要解决的小问题:一是哪些用户要被分配到一条路线上;二是每条路线上的用户的绕行次序。可以将这个问题看作是一个广义分配问题和多个旅行商问题的结合。

(3)带时间窗的车辆路线问题

由于客户会提出配送的时间要求,因此在上述的问题基础上,要增加时间约束。假设一组有n个需求点要求送货,并表示为1,…,i,…,n,需求点i有一个固定的完成时间Ti,一个服务时间Si,在任何两个需求点i和j之间的运输时间为DH(i,j),距离用dij表示。这个问题首先在无圈有向网络中寻找i到j,并经过所有节点的路径的最小条数(用最大流或最小费用最大流算法来解),它的解为完成所有需求点运输任务所必需的最小车辆数,然后固定车辆数或求解有关的最小费用流问题,这个解保证最小车队规模的同时,使路线运行费用最小。

(4)收集和分发问题

这是对以上问题的推广,假设有多个配送中心,或是允许车辆从需求点发车,问题就升级为有几个封闭循环线路的旅行商问题的组合,这是一个组合优化问题。车辆调度的目标是以最少的车辆通过最经济的线路完成所有的运输任务。

(5)多车型车辆路线问题

(6)优先约束车辆路线问题

(7)相容性约束车辆路线问题

(8)随机需求车辆路线问题

14.1.4 车辆路径问题的求解方法

(1)数学解析法

如动态规划法、整数规划法、树状搜寻法等。对于配送点的问题,可以求得一个最优的解,但若求解的节点数增加,其结果相对变差,与实际配送的情况相差较大。

(2)人机互动法

提供使用者人机互动的方式,结合使用者过去的经验,调整该模型的参数,以作为配送路线规划决策的依据。

(3)先分组再排路线法

先将所有的配送点分成若干的群组,再分别对各个群组进行路线规划,如扫描法。

(4)先排路线再分组法

先进行路线的规划,再进行分割,如巨集分割法。又可以分为单巨集分割法和多巨集分割法。

单巨集分割法:取所有配送点进行旅行商问题的求解,建立一个自原点出发,经过所有结点,最后回到原点的巡回路线,然后以最短路径解法对此路线进行分割,求得所需结果。

多巨集分割法:与单巨集分割法相似,最大的差异在于建立巡回路线时并不包含原点,因此在切割路线时,可以有较多的切割方式。

(5)节省或插入法

节省法:以三角不等式为基础,一部车只以一个配送点为起始点,如此若有N个配送点就有N条路线,计算节省量,可将较短的路线与原始路线交换,缩短配送距离。

插入法:将节省法中的节省值观念应用于循序路线构建上,并以距离物流中心最远的配送点作为起始点,再以最临近的一点作为下一个插入点的配送点,求其节省值,根据取值最大者决定插入的位置并进行插入,重复选取与插入的步骤,直到所有配送点均被服务到为止。

(6)改善或交换法

以其它方法产生的解为初始解,再利用节点或节线交换的方式,对求出的路线解进行改善,达到更好的目标函数值。

(7)数学规划近似法

此法针对放松后的数据模式进行最优化处理。如可以将车辆路径问题,转换成两个相关的子问题组成的数学规划,其中一个为一般化配送点的指派问题,另一个则为旅行商问题,并提出一些准则用来产生路径种子点,再利用节省值产生一个指派问题的目标函数,然后先解指派问题,再针对每辆车的旅行商问题求解。

14.2 旅行商问题

旅行商问题属于数学NP难题,所谓NP难题,是完全多项式非确定问题。有些计算问题是确定性的,比如加减乘除之类,你只要按照公式推导,按部就班一步步来,就可以得到结果。但是,有些问题是无法按部就班直接地计算出来。比如,找大质数的问题。有没有一个公式,你一套公式,就可以一步步推算出来,下一个质数应该是多少呢?这样的公式是没有的。再比如,大的合数分解质因数的问题,也没有一个公式,把合数代进去,就直接可以算出,它的因子各自是多少。

这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。这也就是非确定性问题。而这些问题的通常有个算法,它不能直接告诉你答案是什么,但可以告诉你,某个可能的结果是正确的答案还是错误的。这个可以告诉你“猜算”的答案正确与否的算法,假如可以在多项式时间内算出来,就叫做多项式非确定性问题。而如果这个问题的所有可能答案,都是可以在多项式时间内进行正确与否的验算的话,就叫完全多项式非确定问题。

完全多项式非确定性问题可以用穷举法得到答案,一个个检验下去,最终便能得到结果。但是这样算法的复杂程度,是指数关系,因此计算的时间随问题的复杂程度成指数的增长,很快便变得不可计算了。

旅行商问题有很多种解法,有分枝定界解法、整数规划的解法、动态规划的解法、遗传算法的解法等,随着城市数量的增加,其精确解越难找出,只能找出近似解。这里介绍一种简单的算法,称为最小增量法。设有N个城市,每个城市之间的距离已知,要从某一个城市出发,再回到该城市,其余每个城市都仅到一次,选择经过城市的顺序,使总路程最短。最小增量法计算的步骤:

(1)选择离出发点最近的点作为初始回路,设这两个点为(i,j)

(2)在已知回路上(i,j)中插入一个城市点k,计算增加的路程数,即:δ

(3)比较所有的点的δk值,取最小的δk值所对应的点作为新插入点。

(4)重复前两步,直到所有的点都被插入为止,所得的回路即为要求的最优解。

8出发,再回到城市8,找一个最短的回路

(2)将剩余的点1、2、3、4、5、6六个点分别插入到7→8和8→7之间,算出每个δk值,计算结果见表1。

(4)将剩余的点2、3、4、5、6分别插入到7→1,1→8,8→7,1→7,7→8,8→1之间;点1、2、4、5、

δk 值,见表3。

4。

总路程为:31

8 8 5

1出发回到城市1的最优旅行方案

14.3 扫描法

当配送点较多,需要多个运输车辆进行配送时,可以用比较简单的扫描法找出最优解的近似解。

扫描法由两个阶段组成:第一个阶段是将停留点的货运量分配给送货车,第二阶段是安排停留点在路线上的顺序。其具体步骤为:

(1)将配送中心和配送点的位置及需要量,按实际的位置画在图上。

(2)从规定的位置或习惯上从正北方向开始,用直尺按顺时针或逆时针方向转动直尺,直到直尺交到一个配送点,此时判断累积的装货量是不是超过配送车辆的载重,如果是,则将最后停留的点排除后将路线定下来。再从这个被排除的点开始继续扫描,从而开始一条新的路线。一直到所有的点都被扫描到为止。

(3)对每条运行路线安排停留顺序,以求运行距离最小化。

例3:某公司从其所属的配送中心用货车给各个客户点送货,全天的送货量如图所示,送货数量按件计算,货车每次可运载10000件,完成一次运行路线一般需要一天时间。该公司需要确定:需要多少辆货车才能完成所有的配送工作?每条路线上有哪些客户点?货车途径有关客户点的顺序。

14.4 单中心非满载送货车辆路径问题的启发式算法

一、禁忌搜寻法简介

主要内容是使用移步的方式,运用具有弹性的记忆结构,以迭代的方式从目前的解出发开展对邻近解的搜寻,而其记忆结构可分为长期记忆结构和短期记忆结构两种。记忆的目的在于使寻求解的过程能越过局部最优解而找到更好的解。

(1)初始解

(2)移步:在所有合法的邻近解里,选最优解,作为下一步找邻近解的基础。

(3)禁忌名单:为了避免重复前面已选取过的解,将最近几次移步的解记录在禁忌名单中。

(4)免禁准则:如果被禁忌的解可以使目标函数得以改善,则可以被释放。

(5)停止准则:整个计算过程结束的条件。

二、问题特点

(1)物流配送中心的位置为已知并且唯一

(2)需求点的位置及需求量为已知

(3)需求点与需求点之间的路线及距离为已知且确定

(4)货车经过需求点只有卸货而无装货,配送完毕后空车返回配送中心 (5)物流中心只有一种货车

(6)目标函数为:使货车配送路线的总成本最小,或距离最短。 V —需求点集合 O —配送中心 W —货车的容量 K —货车集合 qi —需求点i 的需求量 cij —需求点i 到j 点的距离 yik=1如果配送点i 由货车k 服务,0其它情形

yik=1如果配送点i 由货车k 服务,0其它情形

数学模型

目标函数:

约束条件:

三、求解过程

1、构造初始解

可以用扫描法作为基础,先进行分组,分组后求最优顺序。由于扫描的起点为不同,因此可以得到很多不同的路线构造结果。因此,当一组初始解完成最优化求解之后,要继续建立另一组新的初始解,并进行另一次最优化求解,直到完成所有可能的初始解为止。

2、搜索移步

(1)建立配送点数据表

(2)设定参数:禁忌名单长度,最大重复搜寻次数

(3)目标函数与移步

例4:下表为各个配送点的距离,求旅行商问题。 解:(1)交换相邻两个配送点,计算回路的距离增量,距离增量为:δ=d13+d24-d12-d34

距离增量可写为:δ=dik+dhj-dij-dhk

5→6→1。此时回路总长为

40。

再进行交换,列出交换结果见表所示:

∑∑∑

∈∈∈K k V i V

j ij ijk c x min K k W y q V

i ik i ∈?≤∑

∈,K k V i y x K k V j y x V i y i k y ik V j ijk jk V

i ijk K

k ik K k ik ∈∈?=∈∈?=∈===∑

∑∑

∑∈∈∈∈,,,,,10

, 3

4 5 6 7 5

8 3 11 2 6 3 4

6 6

7 5

4 3 12

1 2

5

用扫描法求出的分组结果,由于不同的线路之间不可以交换节点,所以所得的解可能并不是最优的解,为了得到更优的解,应当允许不同的线路之间交换节点。

(1)将两条不同路线中,相同顺序的连续的两个配送点进行交换。

(2)将两条路线中同一顺序的配送点互换后,其后的配送点全部一起交换。

例6:已知车辆的容量10,每个配送点需求量相同,都是2,所处的位置如图所示,图中每格为1km ,只可按格线方向行走。对下图用扫描法进行分组,并偿试进行解的改善。

3 4 6

8

5

4

3 6

2 1 5

34 34

车辆路径问题及遗传算法

车辆路径问题优化算法 美国物流管理学会(Council of Logistics Management,CLM)对物流所作的定义为:“为符合顾客的需要,对原料、制造过程中的存货与制成品以及相关信息,从其起运点至最终消费点之间,做出的追求效率与成本效果的计划、执行与控制过程。” 而有关资料显示,物流配送过程(包含仓储、分拣、运输等)的成本构成中,运输成本占到52%之多。因此,如何在满足客户适当满意度的前提下,将配送的运输成本合理地降低,成为一个紧迫而重要的研究课题,车辆路径问题正是基于这一需求而产生的。 2.1车辆路径问题的定义 车辆路径问题可以描述为:给定一组有容量限制的车辆的集合、一个物流中心(或供货地)、若干有供货需求的客户,组织适当的行车路线,使车辆有序地通过所有的客户,在满足一定的约束条件(如需求量、服务时间限制、车辆容量限制、行驶里程限制等)下,达到一定的目标(如路程最短、费用极小、时间尽量少、使用车辆数尽量少等)。[4] 因此研究车辆的路径问题,就是要研究如何安排运输车辆的行驶路线,使运输车辆依照最短的行驶路径或最短的时间费用,依次服务于每个客户后返回起点,总的运输成本实现最小。车辆路径问题已被证明是NP-Hard问题,因此求解比较困难。然而,由于其在现实生活中应用非常广泛,使得它无论在理论上还是在实践上都有极大的研究价值。 Penousal Machado等人[5]指出车辆路径问题(vehicle routing problem,简称VRP)是一个复杂的组合优化问题,是古老的旅行商问题和背包问题的综合。实际上,车辆路径问题通常可被分解或转化成一个或几个已经研究过的基本问题,再采用相应比较成熟的基本理论和方法,以得到最优解或满意解。 这些与车辆路径问题相关的常用基本问题有;旅行商问题、运输问题、背包问题、最短路问题、最小费用最大流问题、中国邮路问题、指派问题等。 旅行商问题可被描述为:一个推销员欲到n个城市推销商品,每2个城市之间的距离是已知的。如何选择一条路径使推销员依次又不重复地走遍每个城市后,回到起点且所走的路径最短。 运输问题关心的是(确实的或是比喻的)以最低的总配送成本把供应中心(称为出发地,sources)的任何产品运送到每一个接受中心(称为目的地,destinations)。运输问题需要的数据仅仅是供应量、需求量和单位成本。 背包问题是指有一只固定容量的背包和若干体积、重量不等的物品,背包的容量不允许装下这所有的物品,那么如何选择适当的物品装入背包,使得背包的装载量(所装物品的重量之和)最大。 最短路径问题解决的是在一个网络中,如何寻找两点之间的最短路径。这两点之间通常没有直接的通路可达,但可经由若干中间结点相通。 最小费用流问题主要解决如何以最小成本在一个配送网络中运输货物。最小费用流问题又称为网络配送问题。 最大流问题和最小费用流问题一样,也与网络中的流有关。但是它们的目标不同,最大流问题不是使得流的成本最小化,而是寻找一个流的方案,使得通过网络的流量最大。 中国邮路问题是由我国管梅谷同志在1962年首先提出的,它可描述为:一个邮递员负责某一个地区的信件投递。每天要从邮局出发,走遍该地区所有的街道再返回邮局,问应该怎样安排送信路线可以使所走的路程最短。 指派问题解决将n件工作安排给m个人完成的问题。已知不同人完成不同工作的效率(或成本)不同,指派问题要求以最高的效率(或最小的人工成本)完成工作的安排。 2.2车辆路径问题的分类

车辆路径问题

第14章车辆路径问题 14.1 物流配送车辆优化调度概述 14.1.1 概述 车辆路径问题:对一系列装货点和(或)卸货点,组织适当的行车路线,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量、交发货时间、车辆容量限制、行驶里程限制、时间限制等)下,达到一定的目标(如路程最短、费用最少、时间尽量少,使用车辆数尽量少等)。 又称运输调度问题,包括两部分:一是行车路线的设计;二是出行时间表的安排。 最基本的车辆路径问题,是客户需求位置已知的情况下,确定车辆在各个客户之间的行程路线,使得运输路线最短或运输成本最低,通过研究车辆路径问题,可以合理使用运输工具,优化运输路线,降低企业物流成本。 14.1.2 路径特性 (1)地址特性:车场数目、需求类型、作业要求 (2)车辆特性:车辆数量、载重量约束、可运载品种约束、运行路线约束、工作时间约束 (3)问题的其他特性:道路网络可能是有向的,或者是无向的;单项作业是否可以分割完成;每一辆车是否可以承担多条线路,是否完成作业后必须回到出发点。 (4)目标函数可能是总成本极小化,或者极小化最大作业成本,或者最大化准时作业。 14.1.3 常见的基本问题 (1)旅行商问题 在一个配送中心p有一辆容量为q的货车,现有m个需求点的货运任务需要完成,已知需求点i的货运量为gi(i=1,2,…,m),且Σgi≤q,求在满足各收点需求的约束条件下,总发送距离最短的货车送货路线。 在运筹学中,旅行商问题是这样解释的:有一个推销员,要到n个城市去推销商品,当各个城市间的距离已知,并规定每个城市只访问一次,问按什么样的顺序访问,其距离最短。 (2)带容量约束的车辆路线问题 在一个配送中心p,有一个车队Qj(j=1,2,…,n),这个车队每辆车容量均为q,且有足够的运力保证任务的完成,需求点i的货运量gi满足:nq≥Σgi≥q。这样一来,配送中心需要派出若干的车辆来完成配送任务,每个车可能要为多个需求点服务然后返回配送中心。 该问题包括两个要解决的小问题:一是哪些用户要被分配到一条路线上;二是每条路线上的用户的绕行次序。可以将这个问题看作是一个广义分配问题和多个旅行商问题的结合。 (3)带时间窗的车辆路线问题 由于客户会提出配送的时间要求,因此在上述的问题基础上,要增加时间约束。假设一组有n个需求点要求送货,并表示为1,…,i,…,n,需求点i有一个固定的完成时间Ti,一个服务时间Si,在任何两个需求点i和j之间的运输时间为DH(i,j),距离用dij表示。这个问题首先在无圈有向网络中寻找i到j,并经过所有节点的路径的最小条数(用最大流或最小费用最大流算法来解),它的解为完成所有需求点运输任务所必需的最小车辆数,然后固定车辆数或求解有关的最小费用流问题,这个解保证最小车队规模的同时,使路线运行费用最小。 (4)收集和分发问题 这是对以上问题的推广,假设有多个配送中心,或是允许车辆从需求点发车,问题就升级为有几个封闭循环线路的旅行商问题的组合,这是一个组合优化问题。车辆调度的目标是以最少的车辆通过最经济的线路完成所有的运输任务。 (5)多车型车辆路线问题 (6)优先约束车辆路线问题 (7)相容性约束车辆路线问题 (8)随机需求车辆路线问题 14.1.4 车辆路径问题的求解方法 (1)数学解析法 如动态规划法、整数规划法、树状搜寻法等。对于配送点的问题,可以求得一个最优的解,但若求解的节点数增加,其结果相对变差,与实际配送的情况相差较大。 (2)人机互动法 提供使用者人机互动的方式,结合使用者过去的经验,调整该模型的参数,以作为配送路线规划决策的依据。 (3)先分组再排路线法 先将所有的配送点分成若干的群组,再分别对各个群组进行路线规划,如扫描法。 (4)先排路线再分组法

车辆路径优化问题的均衡性

!""#$%%%&%%’( )#$$&***+,#清华大学学报-自然科学版. /012345678329-":2;0<:5.= *%%>年第(>卷第$$期 *%%>=?@A B(>=#@B$$ +C,+C $C(’&$C(D 车辆路径优化问题的均衡性 但正刚=蔡临宁=杜丽丽=郑力 -清华大学工业工程系=北京$%%%D(. 收稿日期E*%%’&%>&%F 基金项目E国家自然科学基金资助项目-F%*%$%%D. 作者简介E但正刚-$C F D&.=男-汉.=重庆=博士研究生G 通讯联系人E蔡临宁=副教授=H&I72A E:72A3J K1234567B.$$&$C(’&%( P Q R ST R U R V W X V YQ Z[\]^]\X W U] _Q‘[X V Ya_Q T U]b c d ef g h i j j k i j=l d m n o i i o i j=c pn o q o=f r s e t n o -u]a R_[b]V[Q Z v V S‘w[_X R U x V Y X V]]_X V Y=y w X V Y\‘R z V X^]_w X[{= |]X}X V Y~!!!"#=$\X V R. %T w[_R W[EO37A4@&2K5I’71L<9:G 本文利用文9F:的)A7&*<&-&245K-)&-.算法=并结合打包原则和装配线线均衡算法的思想=设计出一种新的启发式算法;;/01算法来解决?78配送均衡问题G ~模型建立 对于带有容积限制的?78问题=在图<=->= ?.上=>=@A%=A$=B=A C D代表节点集合=A%代表停车场=A E -E=$=B=C.代表第E个客户=每个客户的 需求为F E G对客户进行服务的车辆数为G=每辆车的 容积为H G G对于图<的每条弧-A E=A I.J?=都有一 个费用或距离值K E I G若两点间没有弧-A E=A I.相连= 则相应K E I 值为无穷大G该问题的可行解是=所有点 被服务且仅被服务$次=每条路径都开始和终止于A%=每辆车的负载不超过车辆的容积H G G具体数学模型如下E I23L=M E M I M G K E I N E I G B-$. M E F E O G E P H G=QG B-*. M G O G E=$=E=$=B=C B-+. O G E=%或$=E=%=$=B=C M QG= 点E任务由车辆G完成为$=否则为%B-(. N E I G=%或$=E=I=%=$=B=C M QG= 车辆G从E到I为$=否则为%B-’. 式-*.表示某单一路线的总运输量不超过车辆 的承载量=式-+.表示一个需求点仅被一辆车服务G 本文假设E$.车辆行驶时间与行驶路线长度成线 性关系=可简单按一定比例折算M*.车辆到达每个 需求点仅执行卸载操作M+.在工作时间约束范围 内=每辆车仅完成一个回路M(.某单一路线的总运  万方数据

动态车辆路径问题的优化方法

第29卷第4期2008年4月 东北大学学报(自然科学版) JournalofNortheasternUniversity(NaturalScience) V01.29.No.4 Apr.2008动态车辆路径问题的优化方法 刘士新,冯海兰 (东北大学流程工业综合自动化教育部重点实验室,辽宁沈阳110004) 摘要:设计了在动态环境下进行车辆路径优化的导向局域搜索算法.算法在产生初始解以后的动态求解过程中,不再做车辆之间的顾客调整,而只应用2-opt局域搜索算子更新车辆服务顾客的顺序,即针对每辆车辆的旅行路线求解一个旅行商问题.建立了在动态环境下车辆执行运输任务过程的仿真模型.仿真过程中,应用算法根据交通路网实际情况实时优化车辆路径。并采用4种接受准则判别是否接受新的车辆路径.仿真结果表明:算法具有实时、高效的特点,满足动态车辆路径问题的求解要求. 关键词:智能交通系统;动态车辆路径问题;交通模拟;导向局部搜索 中图分类号:C934文献标识码:A文章编号:1005—3026(2008)04—0484—04 OptimizationApproachtoSolvingDynamicVehicleRoutingProblems L儿,Shi.xin,FENGH.口i—lan (KeyLaboratoryofIntegratedAutomationDfProcessIndustry,MinistryofEducation,NortheasternUniversity,Shenyang110()04,China.Correspondent:LIUShi—xin,E-mail:sxliu@mail.neu.edu.cn) Abstract:Aguidedlocalsearch(GLS)algorithmispresentedtosolvedynamicvehicleroutingproblems(DVRP).Inthedynamicsolvingprocessafterallinitialsolution,theGLSdoesnotexchangecustomersbetweenvehiclesbutappliesthe2一optlocalsearchoperatortoupdatingtheservicingsequenceforcustomers,i.e.,tosolveatravelingsalesmanproblemoftravelingroutingofeachvehicle。Asimulationmodelisthusdevelopedforthedynamicprocessduringwhichvehiclesareintraffic.InthesimulationmodeltheGLSalgorithmisappliedtooptimizingthevehicleroutesinaccordancetothereal—timetrafficsituation,andfourrulesayeappliedtojudgingifthenewlyoptimizedvehicleroutesareaccepted.ThesimulationresultsrevealthattheGLS algorithmcanprovidereal-timeresponsetodynamicinformationtosatisfytherequirementsofsolvingDVI王P. Keywords:intelligenttransportationsystem;DVRP;trafficsimulation;GLS 物流优化已经成为当代企业的一个重要利润源泉.车辆路径问题(vehicleroutingproblems,Ⅵ冲)是物流领域的核心和热点研究问题,吸引了众多学者和业者的研究和关注.现代物流市场的激烈竞争和顾客的个性化需求不断提高,使得现代物流配送运作更加复杂,要求物流配送系统更加灵活、高效地针对变化的环境调整作业计划.计算机及通讯技术的迅速发展,使得交通状况及运输工具的实时信息更易获取,为解决物流配送面对的新问题提供了基础.动态VRP(dynamicVRP,DvRP)正是在这样的背景下开始受到了关注和研究.现有研究主要是针对环境变化,对车辆路径计划进行重计划或局部调整,涉及的方法有元启发式算法和局域搜索算法等【1-2J.本文针对城市复杂交通系统的环境变化,提出了一种DVRP中更新车辆路径的导向局域搜索(guidedlocalsearch,GLS)算法,设计了动态交通环境的仿真模型,通过对71个节点交通路网的仿真实验,得出了咖车辆路径的更新原则,研究成果对于现代城市智能交通系统中的车辆路径优化 收稿日期:2007一04—05 基金项目:国家自然科学基金资助项目(70301007,70771020,70431003);新世纪优秀人才支持计划项目(NCET-06-0286).作者简介:刘士新(1968一),男,辽宁调兵山人,东北大学教授.  万方数据

车辆路径问题

一、车辆路径问题描述和建模 1. 车辆路径问题 车辆路径问题(Vehicle Routing Problem, VRP ),主要研究满足约束条件的最优车辆使用方案以及最优化车辆路径方案。 定义:设G={V,E}是一个完备的无向图,其中V={0,1,2…n}为节点集,其中0表示车场。V ,={1,2,…n}表示顾客点集。A={(i,j),I,j ∈V,i ≠j}为边集。一对具有相同装载能力Q 的车辆从车场点对顾客点进行配送服务。每个顾客点有一个固定的需求q i 和固定的服务时间δi 。每条边(i,j )赋有一个权重,表示旅行距离或者旅行费用c ij 。 标准车辆路径问题的优化目标为:确定一个具有最小车辆数和对应的最小旅行距离或者费用的路线集,其满足下列约束条件: ⑴每一条车辆路线开始于车场点,并且于车场点约束; ⑵每个顾客点仅能被一辆车服务一次 ⑶每一条车辆路线总的顾客点的需求不超过车辆的装载能力Q ⑷每一条车辆路线满足一定的边约束,比如持续时间约束和时间窗约束等。 2.标准车辆路径的数学模型: 对于车辆路径问题定义如下的符号: c ij :表示顾客点或者顾客点和车场之间的旅行费用等 d ij :车辆路径问题中,两个节点间的空间距离。 Q :车辆的最大装载能力 d i :顾客点i 的需求。 δi :顾客点i 的车辆服务时间 m:服务车辆数,标准车辆路径问题中假设所有的车辆都是同型的。 R :车辆集,R={1,2….,m} R i :车辆路线,R i ={0,i 1,…i m ,0},i 1,…i m ?V ,,i ?R 。 一般车辆路径问题具有层次目标函数,最小化车辆数和最小化车辆旅行费用,在文献中一般以车辆数作为首要优化目标函数,在此基础上使得对应的车辆旅行费用最小,下面给出标准车辆路径问题的数学模型。 下面给出标准车辆路径问题的数学模型。 对于每一条弧(I,j ),定义如下变量: x ijv = 1 若车辆v 从顾客i 行驶到顾客点j 0 否则 y iv = 1 顾客点i 的需求由车辆v 来完成0 否则 车辆路径问题的数学模型可以表述为: minF x =M x 0iv m i=1n i=1+ x ijv m v=1n j=0n i=0.c ij (2.1) x ijv n i=0m v=1≥1 ?j ∈V , (2.2)

粒子群优化算法车辆路径问题

粒子群优化算法 计算车辆路径问题 摘要 粒子群优化算法中,粒子群由多个粒子组成,每个粒子的位置代表优化问题在D 维搜索空间中潜在的解。根据各自的位置,每个粒子用一个速度来决定其飞行的方向和距离,然后通过优化函数计算出一个适应度函数值(fitness)。粒子是根据如下三条原则来更新自身的状态:(1)在飞行过程中始终保持自身的惯性;(2)按自身的最优位置来改变状态;(3)按群体的最优位置来改变状态。本文主要运用运筹学中粒子群优化算法解决车辆路径问题。车辆路径问题 由Dan tzig 和Ram ser 于1959年首次提出的, 它是指对一系列发货点(或收货点) , 组成适当的行车路径, 使车辆有序地通过它们, 在满足一定约束条件的情况下, 达到一定的目标(诸如路程最短、费用最小, 耗费时间尽量少等) , 属于完全N P 问题, 在运筹、计算机、物流、管理等学科均有重要意义。粒子群算法是最近出现的一种模拟鸟群飞行的仿生算法, 有着个体数目少、计算简单、鲁棒性好等优点, 在各类多维连续空间优化问题上均取得非常好的效果。本文将PSO 应用于车辆路径问题求解中, 取得了很好的效果。 针对本题,一个中心仓库、7个需求点、中心有3辆车,容量均为1,由这三辆车向7个需求点配送货物,出发点和收车点都是中心仓库。 1233,1,7. k q q q l =====货物需求 量12345670.89,0.14,0.28,0.33,0.21,0.41,0.57g g g g g g g =======, 且 m a x i k g q ≤。利用matlab 编程,求出需求点和中心仓库、需求点之间的各 个距离,用ij c 表示。求满足需求的最小的车辆行驶路径,就是求 m i n i j i j k i j k Z c x = ∑∑∑ 。经过初始化粒子群,将初始的适应值作为每个粒子的个

遗传算法的时相关动态车辆路径规划模型

基于遗传算法的时相关动态车辆路径规划模型 作者:唐健, 史文中, 孟令奎 作者单位:唐健(武汉大学遥感信息工程学院,武汉市珞喻路129号,430079;香港理工大学土地测量与地理资讯学系,香港九龙红磡), 史文中(香港理工大学土地测量与地理资讯学系,香港九龙红 磡), 孟令奎(武汉大学遥感信息工程学院,武汉市珞喻路129号,430079) 刊名: 武汉大学学报(信息科学版) 英文刊名:GEOMATICS AND INFORMATION SCIENCE OF WUNAN UNIVERSITY 年,卷(期):2008,33(8) 引用次数:1次 参考文献(11条) 1.Gendreau M,Potvin J Y.Dynamic Vehicle Routing and Dispatching[C].Fleet Management and Logis- tics,Kluwer,Boston,1998 2.Yang Jian,Jaillet P,Mahmassani H.Real-time Mul-tivehicle Truckload Pickup and Delivery Problems[J].Transportation Science,2004(38):135-148 3.Fabri A,Reeht P.On Dynamic Pickup and Delivery Vehicle Routing with Several Time Windows and Waiting Times[J].Transportation Research Part B,2006(40):335-350 4.Fleischmann B,Gnutzmann S,Sandvoss E.Dy-namic Vehicle Routing Based on Online Traffic In-formation[J].Transportation Science,2004 (38):420-433 5.李兵,郑四发,曹剑东,等.求解客户需求动态变化的车辆路径规划方法[J].交通运输工程学报,2007,7(1):106-110 6.Malandraki C,Daskin M S.Time-Dependent Vehi-cle Routing Problems:Formulations,Properties,and Heuristic Algorithms[J].Transportation Sci-ence,1992(26):185-200 7.Picard J C,Queryranne M.The Time-Dependent Traveling Salesman Problem and Its Application to the Tardiness Problem in One-Machine Scheduling[J].Operations Research,1978(26):86-110 8.Fox K R,Garish B,Graves S C.A n-Constraint Formulation of the (Time-Dependent) Traveling Salesman Problern[J].Operations Research,1980(28):1 018-1 021 9.Lucena A.Time-Dependent Traveling Salesman Problem-the Deliveryman Case[J].Networks,1990(120):753-763 10.Wiel R J V,Sahinidis N V.Heuristic Bounds and Test Problem Generation for the Time-Dependent Traveling Salesman Problem[J].Transportation Science,1995(29):167-183 11.Cheung B K S,Choy K L,Li C L,et al.Dynamic Routing Model and Solution Methods for Fleet Management with Mobile Technologies[J].Interna-tional Journal of Production Economics,2008,113 (2):694-7O5 相似文献(0条) 引证文献(1条) 1.胡明伟.唐浩时相关旅行时间车辆路径高效启发式算法[期刊论文]-深圳大学学报(理工版) 2009(3) 本文链接:https://www.360docs.net/doc/00460143.html,/Periodical_whchkjdxxb200808027.aspx 下载时间:2010年4月8日

车辆路径问题研究综述

摘要:作为现代物流领域的研究前沿,车辆路径问题的求解算法及应用领域一直是学者研究的重点。本文在研读大量文献的基础上介绍了遗传算法的研究现状及其应用情况,并对车辆路径优化在生鲜农产品配送上的应用进行了简单的综述。 关键词:车辆路径问题;遗传算法;生鲜农场品;研究综述 一、引言 车辆路径问题最早在60年代被提出,dantzig和ramser首次在交通领域提出该问题就立即引起了社会的广泛关注。发展到现如今,车辆路径问题的应用已经跳出了交通领域,在别的很多领域被使用,如:通讯、工业管理、航空等。 二、遗传算法 1.遗传算法简介 达尔文的生物进化论自被提出以来就一直被科学家们广泛应用到各个领域。60年代时美国科学家结合进化论,提出了遗传算法。跟大自然中生物优胜劣汰的进化过程类似,遗传算法在计算过程中模拟了自然界各种群由简单到复杂,由低级到高级的进化过程,不断进化种群,直至使种群达到包含最优解或接近最优解的状态。 2.遗传算法研究现状 遗传算法作为一种群体随机搜索方法,在车辆路径问题研究中运用很多。很多国内外的研究学者对基础的遗传算法进行了改良,以期达到求解不同约束条件下车辆路径优化问题的目的。通过研究撰写遗传算法的文献发现,研究学者们分别用各种改进遗传算法对车辆路径问题进行了求解,如:免疫遗传算法、小生境遗传算法,以及遗传算法与爬山算法、禁忌搜索算法、蚁群算法相结合的混合算法。 将基础的遗传算法与改进的遗传算法进行对比仿真实验,可以发现经过改良的遗传算法,其各方面能力都更优。罗勇等为了求解更优的物流配送路线,就采用了针对性改进的遗传算法。通过研究发现,改良后的算法不仅收敛速度变快,而且全方位寻优的能力也有很大提高。由此可见改进的遗传算法是能更好的处理物流配送路径问题。基础的遗传算法有容易陷入局部最优和早熟的缺点,为了解决这个问题,周艳聪等设计了基于小生境技术的改进遗传算法,还在改进的遗传算法的基础上求解了物流配送路径的优化问题。不仅如此,还通过对物流配送过程的研究,建立了不带时间窗约束的物流配送优化模型。大规模车场的车辆路径问题是车辆路径优化问题中的一个难点,一直是学者们研究的重点。李波等引入了双层模糊聚类方法,针对基础的遗传算法进行了改进,得到了求解该问题的基本框架。通过随机的实验算例证明,所提出的方法是有效可行的。 三、车辆路径问题在生鲜农产品配送中的应用 对近年来,针对生鲜农产品配送路径问题的研究已经越来越多,人们对绿色食品的质量要求不断提高,是导致该问题备受关注的根本原因。容易腐烂变质,存放不易是大多数生鲜农产品的特点。而在整个销售过程中,生鲜农产品需要经历从农户手中到经销商手中这样一个配送过程,尽可能在配送过程中选择合适的路径,节约时间,保证生鲜农产品的质量,从而保证农户、经销商、消费者的利益就变得越来越重要。 为了保证生鲜农产品的质量、安全,生鲜农产品配送过程中的时效性一直是各个学者研究的关注点,大多数相关文献的模型建立都是以配送时间最短和配送成本最低为目标。王红玲等学者的研究考虑了生鲜农产品的特点构建了以生鲜农产品在途时间最短、配送成本最低为优化目标的农产品配送模型,并采用经过改进后的粒子群算法进行求解。由于生鲜农产品的时效性强的特点,对带时间窗的车辆路径问题的研究也相当多。邱荣祖等在分析了农产品的物流配送模式的基础上,建立了有时限的物流配送路径优化模型,并应用gis于禁忌搜索算法集成技术进行求解。文献中还选用了具体的数据进行了实验的验证,进行了初步的应用

从京东的物流配送谈车辆路径选择问题复习课程

从京东的物流配送谈车辆路径选择问题

从京东的物流配送谈车辆路径选择问题 1 京东商城简介 京东商城是中国B2C市场最大的3C网购专业平台,是中国电子商务领域最受消费者欢迎和最具有影响力的电子商务网站之一,京东商城之所以能成功,很大一部分归因于它良好的经营模式。同时京东商城提供了灵活多样的商品展示空间,在线销售家电、数码通讯、电脑、家居百货、服装服饰、母婴、图书、食品、在线旅游等12大类数万个品牌百万种优质商品。消费者查询、购物都将不受时间和地域的限制。 1.1 京东商城规模 京东商城总部设在北京,管理中心和采购中心位于北京,一级物流中心有:北京、上海、广州、成都、武汉,二级物流中心有:沈阳、济南、西安、南京、杭州、福州、佛山、深圳,全国客服中心设在宿迁。自2004年初正式涉足电子商务领域以来,京东商城一直保持高速成长,连续六年增长率均超过200%。京东商城始终坚持以纯电子商务模式运营,缩减中间环节,为消费者在第一时间提供优质的产品及满意的服务。 京东商城目前拥有遍及全国各地2500万注册用户,近6000家供应商,在线销售家电、数码通讯、电脑、家居百货、服装服饰、母婴、图书、食品等11大类数万个品牌百万种优质商品,日订单处理量超过30万单,网站日均PV(page view)即页面浏览量超过5000万。对于物流仓储来说京东商城布局已久,从08年开始,京东就自建物流配送系统,经过几年的积累,目前,京东商城已经具有完善的物流体系,仓储辐射范围以及终端配送辐射能力覆盖全国大部分城市。 1.2 京东网B2C物流流程 1. 下单:客户在京东网上决定购买某货物且提交提单的过程。 2. 系统确认订单:在顾客点击“提交订单”后新订单生成并将订单编号传递到系统。系统确认后有货,自动进入订单打印程序。 3. 订单打印:客户在网上下订单后,经过京东的网络系统可以在网上或现有的ERP系统中看到客户下的订购单。订单可分为单个打印和批量打印。待订单打印完后ERP系统中的打印栏由未打印变成已打印。再由信息员将已打印的订单进行确认,由订单变成为货物分拣界面。 4. 取货:京东的仓库中,商品按照字母A-P的顺序依次摆放着。而出库员手上的汇总订单也是按照A-P的顺序排列下来。这样就可以从A区到P区依次取货,正好绕着仓库走一圈,而不用走回头路。一次要为20份左右订单同时取货。 5. 分拣:在货物分拣完成后,交给发货包装组进行扫描出库和包装,同时分拣人员在ERP系统中的将分拣过的货品资料前面打勾后,点击确定。同时页面变成待发货页面,状态栏为待发货状态。再点击确定转为我们现有的ERP发货系统。 6. 扫描确认订单:库存组依据账物组交给的销售定单进行配货,配货结束在配货单上签字确认后交给发货组。发货组接到配货组交给的物品后依据销售定单号在ERP系统上进行扫描,扫描时核对销售单的数量,尺码大小。确认货品无误后送往发票开具区。 7. 打包:扫描和开具发票完成后,货品被送到打包区。打包员用塑料袋、泡沫和纸箱将货品包裹好封严。每一个打包员身边也有台电脑,打包员完成一次打包,就要往系统输入自己的编号和货品订单号。 8. 上车扫描:包裹在由仓库发往配送点时会进行上车扫描。如果选用第三方配送,快递公司把货物拿走的同时,会进行电脑扫描,此时,用户在页面上看到订单信息会变为已经配送。 9. 下车扫描:在包裹到达配送点后,操作员会对包裹进行“下车扫描”,这表示货物将分配给该区域的某一位配送员进行配送。

蚁群算法在车辆路径问题中的应用

蚁群算法在车辆路径问题中的应用 摘要 蚁群算法(Ant Colony Optimization, ACO)是意大利学者M.Dorigo等人通过模拟蚁群觅食行为提出的一种基于种群的模拟进化算法。通过介绍蚁群觅食过程中基于信息素(pheromone)的最短路径的搜索策略,给出了基于MATLAB 的蚁群算法在车辆路径问题(Vehicle Routing Problem, VRP)中的应用。蚁群算法采用分布式并行计算机制,易于其他方法结合,而且具有较强的鲁棒性,但搜索时间长,容易陷入局部最优解。针对蚁群算法存在的过早收敛问题,加入2—opt方法对问题求解进行了局部优化,计算机仿真结果表明,这种混合型蚁群算法对求解车辆路径问题有较好的改进效果。 关键词:蚁群算法、组合优化、车辆路径问题、2-opt方法 1.车辆路径问题 车辆路径问题(VRP)来源于交通运输,1959年由Dantzig 提出,它是组合优化问题中一个典型的NP-hard问题。最初用于研究亚特兰大炼油厂向各个加油站投送汽油的运输路径优化问题,并迅速成为运筹学和组合优化领域的前沿和研究热点。

车路优化问题如下: 已知有一批客户,各客户点的位置坐标和货物需求已知,供应商具有若干可供派送的车辆,运载能力给定,每辆车都是从起点出发,完成若干客户点的运送任务后再回到起点。现要求以最少的车辆数和最少的车辆总行程来完成货物的派送任务。 2、蚁群系统基本原理 在蚂蚁群找到食物时,它们总能找到一条从食物到蚁穴之间的最短路径。因为蚂蚁在寻找食物时会在路途上释放一种特殊的信息素。当它们碰到一个还没有走过的路口时,会随机地挑选一条路径前行。与此同时释放出与路径长度有关的信息素。路径越长,释放的激素浓度越低。当后面的蚂蚁再次碰到这个路口时,会选择激素浓度较高的路径走。这样形成了一个正反馈,最优路径上的激素浓度越来越高,而其他的路径上激素浓度却会随时间的流逝而消减。最终整个蚁群会找出最优路径。在整个寻找过程中,整个蚁群通过相互留下的信息素作用交换着路径信息,最终找到最优路径。 3、基本蚁群算法求解车辆路径问题 求解VRP问题的蚂蚁算法中,每只蚂蚁是一个独立的用 于构造路线的过程,若干蚂蚁过程之间通过信息素值来交换信

车辆路径问题资料

车辆路径问题(VRP)一般定义为:对一系列装货点和卸货点,组织适当的行车线路,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量、交发货时间、车辆容量限制、行驶里程限制、时间限制等)下,达到一定问题的目标(如路程最短、费用最少、时间尽量少、使用车辆数尽量少等)。 目前有关VRP的研究已经可以表示(如图1)为:给定一个或多个中心点(中心仓库,central depot)、一个车辆集合和一个顾客集合,车辆和顾客各有自己的属性,每辆车都有容量,所装载货物不能超过它的容量。起初车辆都在中心点,顾客在空间任意分布,车把货物从车库运送到每一个顾客(或从每个顾客处把货物运到车库),要求满足顾客的需求,车辆最后返回车库,每个顾客只能被服务一次,怎样才能使运输费用最小。而顾客的需求或已知、或随机、或以时间规律变化。 图1 VRP示意图 一、在VRP中,最常见的约束条件有: (1) 容量约束:任意车辆路径的总重量不能超过该车辆的能力负

荷。引出带容量约束的车辆路径问题(CapacitatedVehicle Routing Problem,CVRP)。 (2) 优先约束:引出优先约束车辆路径问题(VehicleRouting Problem with precedence Constraints,VRPPC)。 (3) 车型约束:引出多车型车辆路径问题(Mixed/Heterogeneous Fleet Vehicle Routing Problem,MFVRP/ HFVRP)。 (4) 时间窗约束:包括硬时间窗(Hard Time windows)和软时间窗(Soft Time windows) 约束。引出带时间窗(包括硬时间窗和软时间窗)的车辆路径问题(V ehicle Routing Problem withTime windows,VRPTW)。 (5) 相容性约束:引出相容性约束车辆路径问题(VehicleRouting Problem with Compatibility Constraints,VRPCC)。 (6) 随机需求:引出随机需求车辆路径问题(VehicleRouting Problem with Stochastic Demand,VRPSD)。 (7) 开路:引出开路车辆路径问题(Open Vehicle RoutingProblem)。 (8) 多运输中心:引出多运输中心的车辆路径问题(Multi-Depot Vehicle Routing Problem)。 (9) 回程运输:引出带回程运输的车辆路径问题(VehicleRouting Problem with Backhauls)。 (10) 最后时间期限:引出带最后时间期限的车辆路径问题(Vehicle Routing Problem with Time Deadlines)。

车辆路径问题

车辆路径问题 (VRP)一般定义为:对一系列装货点和卸货点,组织适当的行车线路,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量、交发货时间、车辆容量限制、行驶里程限制、时间限制等)下,达到一定问题的目标(如路程最短、费用最少、时间尽量少、使用车辆数尽量少等)。 目前有关VRP的研究已经可以表示(如图1)为:给定一个或多个中心点(中心仓库,centraldepot)、一个车辆集合和一个顾客集合,车辆和顾客各有自己的属性,每辆车都有容量,所装载货物不能超过它的容量。起初车辆都在中心点,顾客在空间任意分布,车把货物从车库运送到每一个顾客(或从每个顾客处把货物运到车库),要求满足顾客的需求,车辆最后返回车库,每个顾客只能被服务一次,怎样才能使运输费用最小。而顾客的需求或已知、或随机、或以时间规律变化。 图1 VRP示意图 一、在VRP中,最常见的约束条件有: (1)容量约束:任意车辆路径的总重量不能超过该车辆的能力负 荷。引出带容量约束的车辆路径问题(CapacitatedVehicle RoutingProblem,CVRP)。 (2)优先约束:引出优先约束车辆路径问题(VehicleRoutingProblem with precedence Constraints,VRPPC)。 (3)车型约束:引出多车型车辆路径问题(Mixed/HeterogeneousFleet Vehicle Routing Problem,MFVRP/ HFVRP)。 (4)时间窗约束:包括硬时间窗(Hard Time windows)和软时间窗(Soft Time windows)约束。引出带时间窗(包括硬时间窗和软时间窗)的车辆路径问题(Vehicle Routing Problem withTime windows,VRPTW)。 (5)相容性约束:引出相容性约束车辆路径问题 (VehicleRouting Problem with Compatibility Constraints,VRPCC)。

带时间窗物流配送车辆路径问题

带时间窗物流配送车辆路径问题 摘要 本题是一个带有时间窗的车辆路径安排问题(VRPTW问题)。根据题目条件,本文建立了一个求解最小派送费用的VRPTW优化模型,采用遗传算法,给出了该模型的求解方法。然后,对一个实际问题进行求解,给出了一个比较好的路线安排方式。 模型一(见5.1.2)针对问题一,在需求量、接货时间段、各种费用消耗已知的情况下,决定采用规划模型,引入0-1变量,建立各个约束条件,包括车辆的容量限制,到达每个客户的车辆和离开每个客户的车辆均为1的限制,总车辆数的限制,目标函数为费用的最小化,费用包括车辆的行驶费用,车辆早到或晚到造成的损失。 模型一的求解采用遗传算法(见5.1.3),对题目给出的实际问题进行求解, 首先按照需求期望根据模型一得到一个比较好的方案,然后按照这一方案进行送货,在送货过程中,如果出现需求量过大的情况,允许车辆返回仓库进行补充。 模型一的思路清晰,考虑条件全面。但最优解解决起来困难,遗传算法只是一种相对好的解决方法,可以找出最优解的近似解。模型二的想法比较合理,易于实施,但还有待改进。

关键词:规划 时间窗 物流 车辆路径 遗传算法 一、 问题重述 一个中心仓库,拥有一定数量容量为Q 的车辆,负责对N 个客户进行货物派送工作,客户i 的货物需求量为i q ,且i q Q <,车辆必须在一定的时间范围[],i i a b 内到达,早于i a 到达将产生等待损失,迟于i b 到达将处以一定的惩罚,请解决如下问题: (1)给出使派送费用最小的车辆行驶路径问题的数学模型及其求解算法。并具体求解以下算例: 客户总数N=8,每辆车的容量Q=8(吨/辆), 各项任务的货运量i q (单位:吨)、装货(或卸货)时间i s (单位:小时)以及要求每项任务开始执行的时间范围[],i i a b 由附录1给出,车场0与各任务点以及各任务点间的距离(单位:公里)由附件二给出,这里假设车辆的行驶时间与距离成正比,每辆车的平均行驶速度为50公里/小时,问如何安排车辆的行驶路线使总运行距离最短; (2)进一步请讨论当客户i 的货物需求量i q 为随机参数时的数学模型及处理方法。 二、 问题分析 本题主要在两种不同情况下,研究使派送费用最小的车辆行驶路径问题。车辆行驶派送的费用主要包括运输成本、车辆在客户要求到达时间之前到达产生的等待损失和车辆在客户要求到达时间之后到达所受惩罚等等。为满足派送费用最小的需求,即要使所选行车路径产生的总费用最小,从而确定出最佳的车辆派送方案。 当客户i 的货物需求量i q 固定时,首先,我们根据题意,取若干辆车进行送货,然后,主要考虑每辆车各负责哪些客户的送货任务,我们可以给出满足题中限制条件的很多参考方案供选用,并考虑以所选行车路径产生的总费用最小为目标的情况下,建立最优化模型确定最佳的车辆派送方案。 进一步讨论,当客户i 的货物需求量i q 为随机参数时,我们首先可以简化随机模型,根据客户i 的货物需求量的期望与方差,确定每天应该运送给客户i 的货物量,即i q ,再根据第一题,确定最佳的车辆派送方案。 但考虑到客户的储存能力有限及货物在客户处的储存费用,客户不需要将一天的货物一次性接收完,只要满足缺货的情况出现的概率很低,客户可以让配送中心一天几次送货,这样可以得到很多满足约束的方案,考虑以单位时间的储存

相关文档
最新文档