气轨上的弹簧简谐振动实验报告
简谐振动实验的实验报告

简谐振动实验的实验报告一、实验目的1、观察简谐振动的现象,加深对简谐振动特性的理解。
2、测量简谐振动的周期和频率,研究其与相关物理量的关系。
3、掌握测量简谐振动参数的实验方法和数据处理技巧。
二、实验原理简谐振动是一种理想化的振动形式,其运动方程可以表示为:$x= A\sin(\omega t +\varphi)$,其中$A$为振幅,$\omega$为角频率,$t$为时间,$\varphi$为初相位。
在本次实验中,我们通过研究弹簧振子的振动来探究简谐振动的特性。
根据胡克定律,弹簧的弹力$F =kx$,其中$k$为弹簧的劲度系数,$x$为弹簧的伸长量。
当物体在光滑水平面上振动时,其运动方程为$m\ddot{x} = kx$,解这个方程可得$\omega =\sqrt{\frac{k}{m}}$,振动周期$T = 2\pi\sqrt{\frac{m}{k}}$。
三、实验仪器1、气垫导轨及附件。
2、滑块。
3、弹簧。
4、光电门计时器。
5、砝码。
6、米尺。
四、实验步骤1、安装实验装置将气垫导轨调至水平,通气后检查滑块是否能在导轨上自由滑动。
将弹簧一端固定在气垫导轨的一端,另一端连接滑块。
2、测量弹簧的劲度系数$k$挂上不同质量的砝码,测量弹簧的伸长量,根据胡克定律计算$k$的值。
3、测量简谐振动的周期$T$让滑块在气垫导轨上做简谐振动,通过光电门计时器记录振动的周期。
改变滑块的质量,重复测量。
4、记录实验数据详细记录每次测量的质量、伸长量、周期等数据。
五、实验数据及处理|滑块质量$m$(kg)|弹簧伸长量$x$(m)|劲度系数$k$(N/m)|振动周期$T$(s)||||||| 010 | 005 | 200 | 063 || 020 | 010 | 200 | 090 || 030 | 015 | 200 | 109 || 040 | 020 | 200 | 126 |根据实验数据,以滑块质量$m$为横坐标,振动周期$T$的平方为纵坐标,绘制图像。
实验十 气轨上弹簧振子的简谐振动_北大物院普物实验报告

一、实验数据及数据处理
1.弹簧振子的振动周期 和振幅 的关系
将测量结果列表如下:
10.00
1.89219
1.89198
1.89202
1.89184
1.89341
1.89333
1.8925±0.0003
20.00
1.89485
1.89485
1.89480
1.89595
1.89641
0.01487
0.00754
0.00863
0.01034
0.01492
0.00755
0.00863
0.01030
0.01490
0.00752
0.00851
0.01016
0.01436
0.00752
0.00851
0.01014
0.01446
0.00750
0.00854
0.01015
0.01440
0.00753
1.89588
1.8955±0.0003
30.00
1.89699
1.89778
1.89814
1.89733
1.89774
1.89784
1.8976±0.0002
40.00
1.89967
1.89992
1.90009
1.89862
1.89899
1.89915
1.8994±0.0002
表格1
从测量结果可以看出,振幅不同时,弹簧振子振动周期基本是相同的,但是不同振幅下的振动周期还是有所区别的,可以看出,振幅越大时,振动周期会越大。这是因为振子在振动时存在阻尼的缘故。阻尼的存在使得运动周期变长。定性的来看,振幅越大,在距平衡位置同样远处速度越大,则其受的阻尼也会越大,故其受到阻尼的影响将越大,且其受到阻尼影响运动的路程也更长,则其周期将越长。实际上,根据理论分析,如果阻尼完全不存在,即振子严格做简谐振动时,振动周期应该是与振幅完全无关的。
气轨上研究简谐振动

气轨上研究简谐振动指导教师:王亚辉实验团队:袁维,李红涛,苗少少(陕西理工学院物理与电信工程学院物理系,汉中,723000)摘要 在气轨导体上观察简谐振动现象,测定简谐振动的周期,观察简谐振动系统中的弹性势能和动能之间的相互转化,测定和计算它们之间的数量关系。
关键词 气垫导轨 简谐振动 劲度系数 粘滞阻力 Ⅰ. 实验原理当气垫导轨充气后,在其上放置以滑块,用两个弹簧分别将滑块和气垫导轨两端连接起来,如图1.(a )所示。
选滑块的平衡位置为坐标原点O ,将滑块由平衡位置准静态移至某点A ,其位移为x ,此时滑块一侧弹簧被压缩,而另一侧弹簧被拉长,如图1.(b )所示。
图1若弹簧的弹性系数分别为k 1,k 2,则滑块受到的弹性力为F =-(k 1+k 2)x (1)式中,负号表示力和位移的方向相反。
由于滑块与气轨间的摩擦力极小,故可以略去。
滑块仅受到在x 方向的恢复力即弹性力F 的作用,这时系统将做简谐振动,其动力学方程为 F =-(k 1+k 2)x = m22xd dt (2)令ω2=mk k 21,则方程改写为22xd dt+ω2x=0这个常系数二阶微分方程解为x=cos(ω+φ) (3) 式中,ω称为角频率,简谐振动的周期为 T=2122k k m +=πωπ将式(3)对时间求导数,可得滑块运动的速度为 V=)sin(dxφωω+-=t A dt(4)由于滑块只受弹性力(保守力)作用,因此系统振动过程中机械能守恒。
设滑块在某位置x 处的速度为v ,则系统在该位置处的总能量应为E=E P +E K =21( k 1+k 2)x 2+21mv 2 (5) 把式(3)和式(4)代入式(5)有 E=21( k 1+k 2)A 2cos 2(ωt+φ)+ 21m ω2A 2sin 2(ωt+φ) 又ω2=mk k 21+ k 1+k 2=ω2m 故E=21m ω2A 2=21( k 1+k 2)A 2 (6) 式中,m,k 1,k 2及A 都是常量。
气垫导轨实验报告

基础物理实验实验报告计算机科学与技术【实验名称】气轨上弹簧振子的简谐振动【实验简介】气垫导轨的基本原理是在导轨的轨面与滑块之间产生一层薄薄的气垫,使滑块“漂浮”在气垫上,从而消除了接触摩擦阻力。
虽然仍然存在着空气的粘滞阻力,但由于它极小,可以忽略不计,所以滑块的运动几乎可以视为无摩擦运动。
由于滑块作近似的无摩擦运动,再加上气垫导轨与电脑计数器配套使用,时间的测量可以精确到0.01ms(十万分之一秒),这样就使气垫导轨上的实验精度大大提高,相对误差小,重复性好。
利用气垫导轨装置可以做很多力学实验,如测量物体的速度,验证牛顿第一定律;测量物体的加速度,验证牛顿第二定律;测量重力加速度;研究动量守恒定律;研究机械能守恒定律;研究简谐振动、阻尼振动等。
本实验采用气垫导轨研究弹簧振子的振动。
【实验目的】1. 观察简谐振动现象,测定简谐振动的周期。
2. 求弹簧的倔强系数和有效质量。
3. 观察简谐振动的运动学特征。
4. 验证机械能守恒定律。
1【实验仪器与用具】气垫导轨、滑块、附加砝码、弹簧、U 型挡光片、平板挡光片、数字毫秒计、天平等。
【实验内容】1. 学会利用光电计数器测速度、加速度和周期的使用方法。
2. 调节气垫导轨至水平状态,通过测量任意两点的速度变化,验证气垫导轨是否处于水平状态。
3. 测量弹簧振子的振动周期并考察振动周期和振幅的关系。
滑块的振幅 A 分别取 10.0, 20.0, 30.0, 40.0cm 时,测量其相应振动周期。
分析和讨论实验结果可得出什么结论?(若滑块做简谐振动,应该有怎么样的实验结果?)4. 研究振动周期和振子质量之间的关系。
在滑块上加骑码(铁片)。
对一个确定的振幅(如取A=40.0cm)每增加一个骑码测量一组 T。
(骑码不能加太多,以阻尼不明显为限。
) 作 T2-m 的图,如果 T 与 m 的关系式为T2= 42m1+m0,则 T2-m 的图应为一条直线,其斜率为,截距为。
k用最小二乘法做直线拟合,求出 k 和 m0。
气轨上的弹簧简谐振动实验报告

气轨上弹簧振子的简谐振动目的要求:(1)用实验方法考察弹簧振子的振动周期与系统参量的关系并测定弹簧的劲度系数和有效质量。
(2)观测简谐振动的运动学特征。
(3)测量简谐振动的机械能。
仪器用具:气轨(自带米尺,2m,1mm),弹簧两个,滑块,骑码,挡光刀片,光电计时器,电子天平(0.01g),游标卡尺(0.05mm),螺丝刀。
实验原理:(一)弹簧振子的简谐运动过程:质量为 m1的质点由两个弹簧与连接,弹簧的劲度系数分别为k1和 k2,如下图所示:当 m1偏离平衡位置 x时,所受到的弹簧力合力为令 k=,并用牛顿第二定律写出方程解得X=Asin()即其作简谐运动,其中在上式中,是振动系统的固有角频率,是由系统本身决定的。
m=m 1+m0是振动系统的有效质量, m 0是弹簧的有效质量,A是振幅,是初相位,A和由起始条件决定。
系统的振动周期为通过改变测量相应的 T,考察 T 和的关系,最小二乘法线性拟合求出 k和(二)简谐振动的运动学特征:将()对 t 求微分)可见振子的运动速度 v 的变化关系也是一个简谐运动,角频率为,振幅为,而且 v 的相位比 x 超前 . 消去 t,得x=A时,v=0,x=0 时,v 的数值最大,即实验中测量 x和 v 随时间的变化规律及 x和 v 之间的相位关系。
从上述关系可得(三)简谐振动的机械能:振动动能为系统的弹性势能为则系统的机械能式中:k 和 A均不随时间变化。
上式说明机械能守恒,本实验通过测定不同位置 x上 m 1的运动速度 v,从而求得和,观测它们之间的相互转换并验证机械能守恒定律。
(四)实验装置:1.气轨设备及速度测量实验室所用气轨由一根约 2m 长的三角形铝材做成,气轨的一端堵死,另一端送入压缩空气,气轨的两个方向上侧面各钻有两排小孔,空气从小孔喷出。
把用合金铝做成的滑块放在气轨的两个喷气侧面上,滑块的内表面经过精加工与这两个侧面精确吻合,滑块与气轨之间就会形成一层很薄的气垫,使滑块漂浮在气垫上,因此滑块受到的摩擦力很小。
弹簧振动实验报告

弹簧振动实验报告实验目的:通过实验验证弹簧振动的基本规律,探究振动频率和振动周期与振幅、弹簧劲度系数之间的关系。
实验原理:当质点沿直线作往复振动时,称为简谐振动。
对于弹簧振子而言,其振动是一种简谐振动,其运动规律可以用振幅、周期和频率等参数来描述。
振子的周期$T$与频率$f$之间的关系为$T=1/f$。
弹簧的劲度系数$k$是衡量其刚度的物理量,它与振动的周期和频率有密切关系。
实验仪器:弹簧振子、支架、计时器、尺子等。
实验步骤:1. 将弹簧振子悬挂在支架上,并调整振子的静止位置;2. 将振子拉向一侧,释放后开始振动;3. 使用计时器记录振子的周期;4. 分别测量不同振幅下的振动周期,并计算频率;5. 调整振子的质量,重复上述步骤,得到不同劲度系数下的振动数据;6. 绘制振动周期与振幅、劲度系数的关系曲线。
实验数据及结果:\begin{table}[H]\centering\begin{tabular}{|c|c|c|c|c|}\hline振幅(m) & 周期(s) & 频率(Hz) & 劲度系数(N/m) & 实验结果 \\\hline0.05 & 1.02 & 0.98 & 10 & 符合 \\\hline0.10 & 1.45 & 0.69 & 15 & 符合 \\\hline0.15 & 1.88 & 0.53 & 20 & 符合 \\\hline0.20 & 2.32 & 0.43 & 25 & 符合 \\\hline\end{tabular}\end{table}通过实验数据的分析,可以得出不同振幅下的振动周期逐渐增加,而频率呈现下降趋势。
同时,劲度系数越大,周期越短,频率越高,振动越快。
实验结果符合弹簧振动的基本规律。
实验结论:弹簧振动实验验证了振动周期和频率与振幅、劲度系数之间的关系。
气垫导轨上的实验——弹簧振子的简谐振动

气垫导轨上的实验——弹簧振子的简谐振动导轨实验是物理学中非常重要的实验之一,这种实验可以帮助我们更好地理解物理学中的一些基本原理和概念。
本文将介绍气垫导轨上的实验——弹簧振子的简谐振动。
实验介绍气垫导轨是一种高精度的实验装置,采用此装置可以消除重力、摩擦等因素的影响,实现真正意义上的理想运动。
弹簧振子是物理学中的一种经典问题。
在本实验中,我们将利用气垫导轨上的弹簧振子来研究简谐振动的基本特征。
具体来说,我们将观察弹簧振子的振动周期、振幅等参数,分析这些参数与弹簧振子的基本特性之间的关系。
实验原理弹簧振子的运动可以近似地看作一种简谐振动。
简谐运动是指物体在恒定张力或弹力作用下,沿着一条直线或固定曲线做往返运动的一类运动形式。
弹簧振子的振动就是一种典型的简谐振动。
在弹簧振子的振动过程中,弹簧的弹性力是其运动的主导因素。
弹簧的弹性势能与其弹性形变的平方成正比,同时其弹性恢复力与其形变量成正比。
因此,我们可以通过测量弹簧振子的振幅与周期来确定弹簧的劲度系数和质量。
实验装置实验需要使用的装置有气垫导轨、弹簧振子、平衡砝码、计时器等。
实验步骤1.将弹簧挂在气垫导轨上。
2.调整弹簧长度和质量,使其达到稳定的振动状态。
3.测量弹簧振子的振幅和周期。
4.根据测量数据,计算弹簧的劲度系数和质量。
实验结果与分析弹簧振子的周期T可以通过震动次数n和时间t的比值来计算,即T = t / n。
根据数据处理结果发现,弹簧振子的周期与其物理参数(劲度系数k和质量m)有关系,其中周期与劲度系数成反比例关系,周期与质量成正比例关系,即:T ∝ 1 / kT ∝ m因为弹簧振子的振动是简谐振动,所以其振幅的大小与周期有关系,具体来说,振幅的大小与周期的平方根成反比例关系,即:结论本实验通过气垫导轨上的弹簧振子进行了简谐振动的研究。
结果表明,弹簧振子的周期与劲度系数成反比例关系,周期与质量成正比例关系,振幅的大小与周期的平方根成反比例关系。
实验报告弹簧振子的简谐运动

表格 2 振子周期和质量之间的关系
A = 40.0(cm)
m0(g) 453.8 505.0 556.3 608.5 659.7 710.9
TL (s) 2.08580 2.19880 2.30622 2.41073 2.50893 2.60368
2.08582 2.19866 2.30653 2.41077 2.50916 2.60376
vmax = ω0A ...............................................................................(5)
3.
简谐振动的机械能
在实验中, 任何时刻系统的振动动能为:
系别 同组姓名
___________ __________
实验日期 _________________________
教师评定 ______________
800.1 700.1
y = 4180.7x - 6.9347
600.1
500.1
t2/4pi2
400.1
300.1
200.1
100.1
0.1 0.000000
0.020000
0.040000
0.060000
有效质量;
2.
观测简谐振动的运动学特征;
3.
测量简谐振动的机械能.
【仪器用具】
气轨, 弹簧, 划块, 骑码, 挡光刀片, 光电计时器(精度:0.00001s), 电子天平(精度:0.01g), 游 标卡尺(游标刻度 0.02mm).
【实验原理】
k
m1
k
1.
弹簧振子的简谐运动方程
质量为 m1 的质点由两个弹簧拉着, 弹簧的劲度系数分别为 k1 和 k2, 如图所示. 当 m 偏离平 衡位置的距离为 x 时, 它受弹簧作用力:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气轨上弹簧振子的简谐振动
目的要求:
(1)用实验方法考察弹簧振子的振动周期与系统参量的关系并测定弹簧的劲度系数和有效质量。
(2)观测简谐振动的运动学特征。
(3)测量简谐振动的机械能。
仪器用具:
气轨(自带米尺,2m,1mm),弹簧两个,滑块,骑码,挡光刀片,光电计时器,电子天平(0.01g),游标卡尺(0.05mm),螺丝刀。
实验原理:
(一)弹簧振子的简谐运动过程:
质量为 m1的质点由两个弹簧与连接,弹簧的劲度系数分别
为k1和 k2,如下图所示:
当 m1偏离平衡位置 x时,所受到的弹簧力合力为
令 k=,并用牛顿第二定律写出方程
解得
X=Asin()
即其作简谐运动,其中
在上式中,是振动系统的固有角频率,是由系统本身决定的。
m=m 1+m0是振动系统的有效质量, m 0是弹簧的有效质量,A是振幅,是初相位,A和由起始条件决定。
系统的振动周期为
通过改变测量相应的 T,考察 T 和的关系,最小二乘法线性拟合求出 k
和
(二)简谐振动的运动学特征:
将()对 t 求微分
)
可见振子的运动速度 v 的变化关系也是一个简谐运动,角频率为,振幅为,而且 v 的相位比 x 超前 . 消去 t,得
v2=v02(v2−v2)
x=A时,v=0,x=0 时,v 的数值最大,即
实验中测量 x和 v 随时间的变化规律及 x和 v 之间的相位关系。
从上述关系可得
(三)简谐振动的机械能:
振动动能为
系统的弹性势能为
则系统的机械能
式中:k 和 A均不随时间变化。
上式说明机械能守恒,本实验通过测定不同
位置 x上 m 1的运动速度 v,从而求得和,观测它们之间的相互转换并验证机械能守恒定律。
(四)实验装置:
1.气轨设备及速度测量
实验室所用气轨由一根约 2m 长的三角形铝材做成,气轨的一端堵死,另
一端送入压缩空气,气轨的两个方向上侧面各钻有两排小孔,空气从小孔喷出。
把用合金铝做成的滑块放在气轨的两个喷气侧面上,滑块的表面经过精加工与
这两个侧面精确吻合,滑块与气轨之间就会形成一层很薄的气垫,使滑块漂浮在气垫上,因此滑块受到的摩擦力很小。
为使气轨水平,需使滑块在气轨上做匀速运动,需使气轨有一个合适的倾角。
本实验用光电计时器记时,配合U型挡光刀片可以较精确地测量滑块在某一位置的速度。
固定在滑块上的U型挡光刀片迅速通过光电门时,光电计时器测量两次挡光的时间间隔δt,用游标卡尺测量U型挡光刀片上挡光的两边间距δs,则滑块在该位置的速度为v=δs
δt
2.周期测量
在水平的气垫导轨上,两个相同的弹簧中间连接一滑块做往返运动,由于空气阻尼及其他能量损耗很小,可近似看作是简谐运动,滑块上装有平板型挡光刀片,用来测量周期。
在滑块处于平衡位置时,把光电门的光束对准挡光刀片的中心位置。
用光电计时器测量平板型挡光片第一次到第三次挡光之间的时间间隔,这便是滑块的振动周期 T。
实验步骤:
(1)测量弹簧振子的振动周期并考察振动周期和振幅的关系。
滑块振动的振幅 A分别取10.0,20.0,30.0,40.0 cm时测量其相应的周期,每一振幅周期测量 6 次。
(2)研究振动周期和振子质量之间的关系。
用电子天平分别测量滑块和各个骑码的质量。
在滑块上加骑码,对一个确定的振幅(取A=40.0 cm)每增加一个骑码测量一组 T,个数同(1),作图,用最小二乘法作线性拟合,斜率为,截距为,求出弹簧的倔强系数和有效质量。
(3)验证机械能守恒。
取一组滑块和骑码的组合,及A= 40.00cm,将平板型挡光刀片换为U型挡光刀片,调整光电门的位置,测量不同位置x处的挡光时间间隔δt,用游标卡尺测量挡光边的间距δs,得出速度v,利用(2)中测量的滑块和骑码的质量计算机械能的值并比较。
(从平衡位置到初始位置之间取5-7 个点,包含平衡位置。
)
实验数据:
1.弹簧振子的振动周期与振幅的关系:
2.弹簧振子的振动周期与振子质量的关系
3.验证振动系统的机械能守恒
A=40.0cm,v1=659.51v
(1)从平衡位置左侧释放,δs=10.00mm
数据处理:
1.振幅T与周期A的关系图如下,可见随振幅的增大,周期也在不断增大。
由于滑块在运动过程中有空气阻力,实际的运动为阻尼振动,满足T随A 增大而增大的关系。
2.v2和v1的关系图如下:
设图中直线为 y=a0+a1x,计算得:
4v2 v =v
1
=vv
̅̅̅̅̅̅−v̅̅̅v̅̅̅
v2
̅̅̅̅̅−(v̅̅̅)2
=9.3415v2vv
⁄
k=4.2384
kg
v2
⁄v v=
0.0004kg
v2
⁄
4v2 v v0=v
=v̅̅̅−v1v̅̅̅=0.062383v2v0=6.6974g
v v
=0.0002v
相关系数 r=0.9999998
综上,
k±v v=(4.2384±0.0004) kg v2
⁄
v0±v v
=(6.6974±0.0002)g
3.验证机械能守恒
x(cm) 0 5.0 10.0 15.0 20.0 25.0 30.0 v(m/s)(左) 1.000 0.9940 0.9756 0.9381 0.8780 0.7968 0.6821 v(m/s)(右) 1.000 0.9980 0.9766 0.9390 0.8772 0.7994 0.6821
v̅̅̅(v/v) 1.000 0.9960 0.9769 0.9386 0.8776 0.7981 0.6821
机械能E=1(v+v)v̅̅̅2+1vv2
E̅=0.340J v v=0.004J 相对误差v
v E =1%
由此可见空气阻力等因素对实验的影响不大,弹簧振子系统机械能守恒。
思考题:
(1)需要把气轨调水平。
虽然周期和气轨水平没有关系,但考虑到要测量
机械能守恒,而机械能中的重力势能的改变是无法测量的,所以必须使其水平
使实验中没有重力势能的改变。
(2)措施:
1. 每一振幅周期测量 6 次,且平衡位置左右各释放 3 次。
2. 测周期时光电门位置为平衡点,考虑到滑块中的挡板的宽度,所以左右释
放时,要注意调整光电门的位置。
在验证机械能的守恒时,测量速度 v 时也是如此。
3.在验证机械能的守恒时,为确定某一点的位置,应用光电门的微移来确定。
4.在测量速度时,只测量 1/4 个周期的,防止因为阻尼速度过量衰减。