高考数学一轮复习第十一章课后作业理8(2)
高考一轮数学(理)复习课时作业11

课时作业11 函数与方程1.(2019·烟台模拟)函数f (x )=ln(x +1)-1x 的一个零点所在的区间是( B )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:∵f (x )在(0,+∞)上为增函数,且f (1)=ln2-1<0,f (2)=ln3-12>0,∴f (x )的零点所在区间为(1,2),故选B.2.下列函数中,在(-1,1)内有零点且单调递增的是( B )A .y =log 12xB .y =2x -1C .y =x 2-12D .y =-x 3解析:函数y =log 12x 在定义域上单调递减,y =x 2-12在(-1,1)上不是单调函数,y =-x 3在定义域上单调递减,均不符合要求.对于y =2x -1,当x =0∈(-1,1)时,y =0且y =2x -1在R 上单调递增,故选B.3.函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( C )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:因为f (x )在(0,+∞)上是增函数,则由题意得f (1)·f (2)=(0-a )(3-a )<0,解得0<a <3,故选C.4.(2019·安庆模拟)函数f (x )=x 2-ax +1在区间⎝ ⎛⎭⎪⎫12,3上有零点,则实数a 的取值范围是( D )A .(2,+∞)B .[2,+∞) C.⎣⎢⎡⎭⎪⎫2,52 D.⎣⎢⎡⎭⎪⎫2,103 解析:由题意知方程ax =x 2+1在⎝ ⎛⎭⎪⎫12,3上有解, 即a =x +1x 在⎝ ⎛⎭⎪⎫12,3上有解, 设t =x +1x ,x ∈⎝ ⎛⎭⎪⎫12,3,则t 的取值范围是⎣⎢⎡⎭⎪⎫2,103. ∴实数a 的取值范围是⎣⎢⎡⎭⎪⎫2,103. 5.(2019·安徽安庆模拟)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧x 2+2,x ∈[0,1),2-x 2,x ∈[-1,0),且f (x +1)=f (x -1),若g (x )=3-log 2x ,则函数F (x )=f (x )-g (x )在(0,+∞)内的零点个数为( B )A .3B .2C .1D .0解析:由f (x +1)=f (x -1),知f (x )的周期是2,画出函数f (x )和g (x )的部分图象,如图所示,由图象可知f (x )与g (x )的图象有2个交点,故f (x )有2个零点,故选B.6.(2019·安徽马鞍山一模)已知函数f (x )=⎩⎪⎨⎪⎧3|x -1|,x >0,-x 2-2x +1,x ≤0,若关于x 的方程[f (x )]2+(a -1)f (x )-a =0有7个不等的实数根,则实数a 的取值范围是( C )A .[1,2]B .(1,2)C .(-2,-1)D .[-2,-1]解析:函数f (x )=⎩⎪⎨⎪⎧3|x -1|,x >0,-x 2-2x +1,x ≤0的图象如图:关于x 的方程[f (x )]2+(a -1)f (x )-a =0有7个不等的实数根,即[f (x )+a ][f (x )-1]=0有7个不等的实数根,易知f (x )=1有3个不等的实数根,∴f (x )=-a 必须有4个不相等的实数根,由函数f (x )的图象可知-a ∈(1,2),∴a ∈(-2,-1).故选C.7.已知函数f (x )=⎩⎪⎨⎪⎧2x -1(0≤x ≤1),f (x -1)+m (x >1)在定义域[0,+∞)上单调递增,且对于任意a ≥0,方程f (x )=a 有且只有一个实数解,则函数g (x )=f (x )-x 在区间[0,2n ](n ∈N *)上的所有零点的和为( B )A.n (n +1)2B .22n -1+2n -1 C.(1+2n )22 D .2n -1解析:函数f (x )=⎩⎪⎨⎪⎧2x -1(0≤x ≤1),f (x -1)+m (x >1) 在定义域[0,+∞)上单调递增,且对于任意a ≥0,方程f (x )=a 有且只有一个实数解,则f (x )是连续函数,可得m =1.画出y =f (x )与y =x 的图象如图,图象交点的横坐标就是函数g (x )=f (x )-x 的零点.由图知,函数g (x )在区间[0,2n ](n ∈N *)上的所有零点的和为1+2+3+…+(2n -1)+2n =22n -1+2n -1,故选B.8.(2019·广东茂名一模)定义在R 上的奇函数f (x )满足条件f (1+x )=f (1-x ),当x ∈[0,1]时,f (x )=x ,若函数g (x )=|f (x )|-a e -|x |在区间[-2 018,2 018]上有4 032个零点,则实数a 的取值范围是( B )A .(0,1)B .(e ,e 3)C .(e ,e 2)D .(1,e 3) 解析:f (x )满足条件f (1+x )=f (1-x )且为奇函数,则f (x )的图象关于x =1对称, 且f (x )=f (2-x ),f (x )=-f (-x ),∴-f (-x )=f (2-x ),即-f (x )=f (2+x ),∴f (x +4)=f (x ),∴f (x )的周期为4.令m (x )=|f (x )|,n (x )=a e -|x |,画出m (x )、n (x )的图象如图,可知m (x )与n (x )为偶函数,且要使m (x )与n (x )图象有交点,需a >0,由题意知要满足g (x )在区间[-2 018,2 018]上有4 032个零点,只需m (x )与n (x )的图象在[0,4]上有两个交点,则⎩⎪⎨⎪⎧m (1)<n (1),m (3)>n (3),可得e <a <e 3,故选B.9.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤a ,x 2,x >a .若存在实数b ,使函数g (x )=f (x )-b 有两个零点,则a 的取值范围是 (-∞,0)∪(1,+∞) .解析:令φ(x )=x 3(x ≤a ),h (x )=x 2(x >a ),函数g (x )=f (x )-b 有两个零点,即函数y =f (x )的图象与直线y =b 有两个交点,结合图象(图略)可得a <0或φ(a )>h (a ),即a <0或a 3>a 2,解得a <0或a >1,故a ∈(-∞,0)∪(1,+∞).10.已知e 是自然对数的底数,函数f (x )=e x +x -2的零点为a ,函数g (x )=ln x +x -2的零点为b ,则f (a ),f (1),f (b )的大小关系为 f (a )<f (1)<f (b ) .解析:由题意,知f ′(x )=e x +1>0恒成立,所以函数f (x )在R 上是单调递增的,而f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,所以函数f (x )的零点a ∈(0,1);由题意,知g ′(x )=1x +1>0,所以函数g (x )在(0,+∞)上是单调递增的,又g (1)=ln1+1-2=-1<0,g (2)=ln2+2-2=ln2>0,所以函数g (x )的零点b ∈(1,2).综上,可得0<a <1<b <2.因为f (x )在R 上是单调递增的,所以f (a )<f (1)<f (b ).11.已知函数f (x )=-x 2-2x ,g (x )=⎩⎨⎧ x +14x,x >0,x +1,x ≤0.(1)求g (f (1))的值; (2)若方程g (f (x ))-a =0有4个不相等的实数根,求实数a 的取值范围.解:(1)利用解析式直接求解得g (f (1))=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在(-∞,1)上有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象如图,由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎢⎡⎭⎪⎫1,54. 12.已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x )x -4ln x 的零点个数.解:(1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R },∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0.∵f (x )min =f (1)=-4a =-4,∴a =1.故函数f (x )的解析式为f (x )=x 2-2x -3.(2)∵g (x )=x 2-2x -3x -4ln x =x -3x -4ln x -2(x >0),∴g ′(x )=1+3x 2-4x =(x -1)(x -3)x 2. 令g ′(x )=0,得x =1或x =3.当x 变化时,g ′(x ),g (x )的取值变化情况如下:当0<x≤3时,g(x)≤g(1)=-4<0.又因为g(x)在(3,+∞)上单调递增,因而g(x)在(3,+∞)上只有1个零点,故g(x)在(0,+∞)上仅有1个零点.13.(2019·河南安阳模拟)设函数f(x)=ln(x+1)+a·(x2-x),若f(x)在区间(0,+∞)上无零点,则实数a的取值范围是(A) A.[0,1] B.[-1,0]C.[0,2] D.[-1,1]解析:令f(x)=0,可得ln(x+1)=-a(x2-x),令g(x)=ln(x+1),h(x)=-a(x2-x),∵f(x)在区间(0,+∞)上无零点,∴g(x)=ln(x+1)与h(x)=-a(x2-x)的图象在y轴右侧无交点.显然当a=0时符合题意;当a<0时,作出g(x)=ln(x+1)与h(x)=-a(x2-x)的函数图象如图1所示,显然两函数图象在y轴右侧必有一交点,不符合题意;当a>0时,作出g(x)=ln(x+1)与h(x)=-a(x2-x)的函数图象如图2所示,若两函数图象在y轴右侧无交点,则h′(0)≤g′(0),即a≤1.综上,0≤a≤1,故选A.图1图214.(2019·福建宁德一模)已知函数f (x )=⎩⎨⎧ kx +3,x ≥0,⎝ ⎛⎭⎪⎫12x ,x <0,若方程f (f (x ))-2=0恰有三个实数根,则实数k 的取值范围是( C )A .[0,+∞)B .[1,3] C.⎝ ⎛⎦⎥⎤-1,-13 D.⎣⎢⎡⎦⎥⎤-1,-13 解析:∵f (f (x ))-2=0,∴f (f (x ))=2,∴f (x )=-1或f (x )=-1k (k ≠0).(1)当k =0时,作出函数f (x )的图象如图①所示,由图象可知f (x )=-1无解,∴k =0不符合题意;(2)当k >0时,作出函数f (x )的图象如图②所示,由图象可知f (x )=-1无解且f (x )=-1k 无解,即f (f (x ))-2=0无解,不符合题意;(3)当k <0时,作出函数f (x )的图象如图③所示,由图象可知f (x )=-1有1个实根,∵f (f (x ))-2=0有3个实根,∴f (x )=-1k 有2个实根,∴1<-1k ≤3,解得-1<k ≤-13.综上,k 的取值范围是⎝ ⎛⎦⎥⎤-1,-13,故选C. 15.对任意实数a ,b 定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-1)⊗(4+x ),若函数g (x )=f (x )+k 的图象与x 轴恰有三个不同的交点,则k 的取值范围是 [-2,1) .解析:解不等式x 2-1-(4+x )≥1,得x ≤-2或x ≥3,所以f (x )=⎩⎪⎨⎪⎧x +4,x ∈(-∞,-2]∪[3,+∞),x 2-1,x ∈(-2,3). 函数g (x )=f (x )+k 的图象与x 轴恰有三个不同的交点转化为函数f (x )的图象和直线y =-k 恰有三个不同的交点.作出函数f (x )的图象如图所示,所以-1<-k ≤2,故-2≤k <1.16.(2019·郑州模拟)若a >1,设函数f (x )=a x +x -4的零点为m ,函数g (x )=log a x +x -4的零点为n ,则1m +1n 的最小值为 1 .解析:设F (x )=a x ,G (x )=log a x ,h (x )=4-x ,则h (x )与F (x ),G (x )的交点A ,B 横坐标分别为m ,n (m >0,n >0).因为F (x )与G (x )关于直线y =x 对称,所以A ,B 两点关于直线y =x 对称.又因为y =x 和h (x )=4-x 交点的横坐标为2,所以m +n =4.又m >0,n >0,所以1m +1n =⎝ ⎛⎭⎪⎫1m +1n ·m +n 4=14⎝ ⎛⎭⎪⎫2+n m +m n ≥14⎝ ⎛⎭⎪⎫2+2n m ×m n =1. 当且仅当n m =m n ,即m =n =2时等号成立.所以1m +1n 的最小值为1.。
2021年高考数学一轮复习 第11讲 导数的综合题课后练习 理

2021年高考数学一轮复习第11讲导数的综合题课后练习理题一:已知点P为曲线y =x2与y =a ln x(a ≠0)的公共点,且两条曲线在点P 处的切线重合,则a = .题二:已知函数的减区间是.⑴试求m、n的值;⑵求过点且与曲线相切的切线方程;⑶过点A(1,t)是否存在与曲线相切的3条切线?若存在求实数t的取值范围;若不存在,请说明理由.题三:已知函数,.当时,讨论函数的单调性.题四:已知函数.(Ⅰ)讨论函数的单调性;(Ⅱ)设,证明:对任意,.题五:设函数.(Ⅰ)若为函数的极值点,求实数;(Ⅱ)求实数的取值范围,使得对任意的∈,恒有≤4成立.题六:设函数,.(Ⅰ)讨论函数的单调性;(Ⅱ)如果存在,使得成立,求满足上述条件的最大整数;(Ⅲ)如果对任意的,都有成立,求实数的取值范围.第11讲导数的综合题题一:2e.详解:设f(x)=x2与g(x)=a ln x在公共点(x0,y0)处的切线相同.f ′(x)=2x,.由题意知f(x0)=g(x0),f ′(x0)=g ′(x0)即,解得a =2e.故答案为:2e.题二:(1)m=1,n=0;(2)或;(3)存在,.详解:⑴ 由题意知:f ′(x)的解集为,所以,2和2为方程的根,由韦达定理知,即m=1,n=0.⑵ ∵,∴,∵当A为切点时,切线的斜率,∴切线为,即;当A不为切点时,设切点为,这时切线的斜率是,切线方程为,即因为过点A(1,-11),,∴,∴ 或,而为A点,即另一个切点为,∴ ,切线方程为,即所以,过点的切线为或.⑶ 存在满足条件的三条切线.设点是曲线的切点,则在P点处的切线的方程为即因为其过点A(1,t),所以,,由于有三条切线,所以方程应有3个实根,设,只要使曲线有3个零点即可.设 =0,∴分别为的极值点,当时,在和上单调递增,当时,在上单调递减,所以,为极大值点,为极小值点.所以要使曲线与x轴有3个交点,当且仅当即,解得.题三:省略详解:∵2(1)(1)() ()(1)m x m x m x x mf x x mx x x+---+'=-+-==,∴(1)当时,若为增函数;为减函数;为增函数.(2)当时,若为增函数;为减函数;为增函数.题四:省略详解:(Ⅰ) f (x)的定义域为(0,+),.当a ≥ 0时,>0,故f (x)在(0,+)上单调递增;当a ≤-1时,<0, 故f (x)在(0,+)上单调递减;当-1<a<0时,令=0,解得x=.当x∈(0, )时, >0;x∈(,+)时,<0, 故f (x)在(0, )单调递增,在(,+)单调递减.(Ⅱ)不妨假设x1 ≥x2.由于a ≤-2,故f (x)在(0,+)单调递减.所以等价于即令,则+4=.于是≤=≤0.从而在(0,+)单调递减,故,故对任意x1,x2∈(0,+) ,.题五:(1)或;(2)详解:(Ⅰ)或,检验知符合题意(Ⅱ)在∈时恒成立当时,显然恒成立当时由得在∈时恒成立在∈时恒成立令,在单调递增∴时,单调递减,时单调递增∴∴题六:(1)省略;(2);(3).详解:(Ⅰ),,①,函数在上单调递增②,,函数的单调递增区间为,函数的单调递减区间为(Ⅱ)存在,使得成立等价于:,考察,,由上表可知:,,所以满足条件的最大整数; (Ⅲ)当时,恒成立等价于恒成立,记,所以a ≥h ( x )max, .记,,即函数在区间上单调递增, 记,,即函数在区间上单调递减, 取到极大值也是最大值所以另解:,,由于,,所以在上单调递减,当时,,时,,即函数在区间上单调递增,在区间上单调递减,所以,所以. { 38270 957E 镾 24151 5E57 幗25490 6392 排22196 56B4 嚴37292 91AC 醬k23704 5C98 岘21472 53E0 叠C33805 840D 萍21918 559E 喞。
2021版高考数学一轮总复习第十一章计数原理和概率题组训练85n次独立重复试验与二项分布理20210

2021版高考数学一轮总复习第十一章计数原理和概率题组训练85n 次独立重复试验与二项分布理2021051541341.下列表中能成为随机变量X 的分布列的是( )答案 C2.袋中有大小相同的红球6个、白球5个,从袋中每次任意取出1个球,直到取出的球是白球时为止,所需要的取球次数为随机变量ξ,则ξ的可能值为( ) A .1,2,…,6 B .1,2,…,7 C .1,2,…,11 D .1,2,3,…答案 B解析 除白球外,其他的还有6个球,因此取到白球时取球次数最少为1次,最多为7次.故选B.3.若某一随机变量X 的概率分布如下表,且m +2n =1.2,则m -n2的值为( )X 0 1 2 3 P0.1mn0.1 A.-0.2 C .0.1 D .-0.1答案 B解析 由m +n +0.2=1,m +2n =1.2,可得m =n =0.4,m -n2=0.2.4.已知随机变量X 的分布列为P(X =k)=12k ,k =1,2,…,则P(2<X≤4)等于( )A.316B.14C.116D.516答案 A解析 P(2<X≤4)=P(X =3)+P(X =4)=123+124=316.5.若随机变量X 的分布列为则当P(X<a)=0.8A .(-∞,2] B .[1,2] C .(1,2] D .(1,2)答案 C解析 由随机变量X 的分布列知:P(X<-1)=0.1,P(X<0)=0.3,P(X<1)=0.5,P(X<2)=0.8,则当P(X<a)=0.8时,实数a 的取值范畴是(1,2].6.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为( ) A .25 B .10 C .7 D .6答案 C解析 X 的可能取值为1+2=3,1+3=4,1+4=5=2+3,1+5=6=4+2,2+5=7=3+4,3+5=8,4+5=9.7.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,竞赛规定:关于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分).若X 是甲队在该轮竞赛获胜时的得分(分数高者胜),则X 的所有可能取值是________. 答案 -1,0,1,2,3解析 X =-1,甲抢到一题但答错了;X =0,甲没抢到题,或甲抢到2题,但答时一对一错;X =1时,甲抢到1题且答对或甲抢到3题,且一错两对;X =2时,甲抢到2题均答对;X =3时,甲抢到3题均答对.8.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P(ξ=2)=________. 答案310解析 ξ可能取的值为0,1,2,3,P (ξ=0)=C 32C 42C 42C 62=15,P (ξ=1)=C 31C 42+C 32C 21C 41C 42C 62=715,又P(ξ=3)=C 31C 42C 62=130,∴P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=1-15-715-130=310.9.一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同). (1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X ,求随机变量X 的分布列与数学期望.答案 (1)67 (2)175解析 (1)设“取出的4张卡片中,含有编号为3的卡片”为事件A , 则P(A)=C 21C 53+C 22C 52C 74=67. 因此取出的4张卡片中,含有编号为3的卡片的概率为67.(2)随机变量X 的所有可能取值为1,2,3,4. P(X =1)=C 33C 74=135,P(X =2)=C 43C 74=435,P(X =3)=C 53C 74=27,P(X =4)=C 63C 74=47.则随机变量X 的分布列是故随机变量X 的数学期望E(X)=1×35+2×35+3×7+4×7=5.10.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 元的概率分布列. 答案 (1)23(2)略解析 (1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由因此等可能地抽取,因此该顾客中奖的概率 P =C 41C 61+C 42C 102=3045=23.(或用间接法,即P =1-C 62C 102=1-1545=23).(2)依题意可知,X 的所有可能取值为0,10,20,50,60(元),且P(X =0)=C 40C 62C 102=13,P(X =10)=C 31C 61C 102=25,P(X =20)=C 32C 102=115,P(X =50)=C 11C 61C 102=215,P(X =60)=C 11C 31C 102=115.因此X 的分布列为:11.在103件,求:(1)取出的3件产品中一等品件数X 的分布列;(2)取出的3件产品中一等品件数多于二等品件数的概率. 答案 (1)略 (2)31120解析 (1)由于从10件产品中任取3件的结果数为C 103,从10件产品中任取3件,其中恰有k 件一等品的结果数为C 3kC 73-k,那么从10件产品中任取3件,其中恰有k 件一等品的概率为P(X =k)=C 3kC 73-kC 103,k =0,1,2,3.因此随机变量X 的分布列是(2)设“取出的31件一等品和2件三等品”为事件A 1,“恰好取出2件一等品”为事件A 2,“恰好取出3件一等品”为事件A 3.由于事件A 1,A 2,A 3彼此互斥,且A =A 1∪A 2∪A 3,而P(A 1)=C 31C 32C 103=340,P(A 2)=P(X =2)=740,P(A 3)=P(X =3)=1120,∴取出的3件产品中一等品件数多于二等品件数的概率为P(A)=P(A 1)+P(A 2)+P(A 3)=340+740+1120=31120. 12.(2021·大连质检)某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,23.(1)求该高中获得冠军个数X 的概率分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分Y 的概率分布列. 答案 (1)略 (2)略解析 (1)由题意知X 的可能取值为0,1,2,3, 则P(X =0)=(1-12)×(1-13)×(1-23)=19,P(X =1)=12×(1-13)×(1-23)+(1-12)×13×(1-23)+(1-12)×(1-13)×23=718,P(X =2)=12×13×(1-23)+(1-12)×13×23+12×(1-13)×23=718,P(X =3)=12×13×23=19.∴X 的分布列为(2)∵得分Y =5X +2(3∵X 的可能取值为0,1,2,3.∴Y 的可能取值6,9,12,15.则P(Y =6)=P(X =0)=19,P(Y =9)=P(X =1)=718,P(Y =12)=P(X =2)=718,P(Y =15)=P(X =3)=19.∴Y 的分布列为13.力打造的大型励志专业音乐评论节目,于2012年7月13日正式在浙江卫视播出.每期节目有四位导师参加.导师背对歌手,若每位参赛选手演唱完之前有导师为其转身,则该选手能够选择加入为其转身的导师的团队中同意指导训练.已知某期《中国新歌声》,6位选手演唱完后,四位导师为其转身的情形如下表所示:现从这6(1)求选出的2人导师为其转身的人数和为4的概率;(2)记选出的2人导师为其转身的人数之和为X ,求X 的分布列及数学期望E(X). 答案 (1)15(2)E(X)=5解析 (1)设6位选手中,A 有4位导师为其转身,B ,C 有3位导师为其转知,D ,E 有2位导师为其转身,F 只有1位导师为其转身.从6人中随机抽取两人有C 62=15种情形,其中选出的2人导师为其转身的人数和为4的有C 22+C 21C 11=3种,∴所求概率为P =315=15.(2)X 的所有可能取值为3,4,5,6,7.P(X =3)=C 21C 11C 62=215;P(X =4)=15;P(X =5)=1+C 21C 21C 62=515=13;P(X =6)=C 21C 11+C 22C 62=315=15;P(X =7)=C 21C 11C 62=215. ∴X 的分布列为X 3 4 5 6 7 P215151315215E(X)=3×215+4×5+5×3+6×5+7×15=5.1.由于电脑故障,使得随机变量X 的分布列中部分数据丢失(以“x,y ”代替),其分布列如下:X 1 2 3 4 5 6 P0.200.100.x50.100.1y0.20答案 2,5解析 由于0.20+0.10+(0.1x +0.05)+0.10+(0.1+0.01y)+0.20=1,得10x +y =25,又因为x ,y 为正整数,故两个数据依次为2,5.2.一实验箱中装有标号为1,2,3,3,4的5只白鼠,若从中任取1只,记取到的白鼠的标号为Y ,则随机变量Y 的分布列是________. 答案Y 1 2 3 4 P15152515解析 Y P(Y =1)=15,P(Y =2)=15,P(Y =3)=25,P(Y =4)=15.∴Y 的分布列为3.一个袋子中装有74,黄球3个,编号分别为2,4,6,从袋中任取4个球(假设取到任何一个球的可能性相同). (1)求取出小球中有相同编号的概率;(2)记取出的小球的最大编号为X ,求随机变量X 的分布列. 答案 (1)1935(2)略解析 (1)设“取出的小球中有相同编号的”为事件A ,编号相同可分成一个相同和两个相同,则P(A)=2(C 21C 31+C 32)+1C 74=1935. (2)随机变量X 的可能取值为:3,4,6. P(X =3)=1C 74=135,P(X =4)=C 21C 43+C 42C 74=25, P(X =6)=C 63C 74=47,随机变量X 的分布列为:4.一袋中装有102个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的分布列. 答案 (1)5个 (2)略解析 (1)记“从袋中任意摸出2个球,至少得1个白球”为事件A ,设袋中白球的个数为x ,则P(A)=1-C 10-x 2C 102=79,得到x =5.故白球有5个.(2)X 服从超几何分布,P(X =k)=C 5kC 53-kC 103,k =0,1,2,3.因此可得其分布列为P112 512 512 1125.(2020·福建,理)该银行卡将被锁定.小王到该银行取钱时,发觉自己不记得了银行卡的密码,但能够确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则终止尝试;否则连续尝试,直至该银行卡被锁定. (1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X ,求X 的分布列和数学期望. 答案 (1)12 (2)分布列略,E(X)=52解析 (1)设“当天小王的该银行卡被锁定”的事件为A , 则P(A)=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3.又P(X =1)=16,P(X =2)=56×15=16,P(X =3)=56×45×1=23.因此X 的分布列为X 1 2 3 P161623因此E(X)=1×16+2×16+3×3=2.6.某中学动员学生在春节期间至少参加一次社会公益活动(下面简称为“活动”).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(1)求合唱团学生参加活动的人均次数;(2)从合唱团中任选两名学生,求他们参加活动次数恰好相等的概率;(3)从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列.答案 (1)2.3 (2)4199(3)略解析 依照统计图知参加活动1次、2次、3次的学生数分别为10,50,40.(1)该合唱团学生参加活动的人均次数为x -=1×10+2×50+3×40100=2.3.(2)从合唱团中任选两名学生,他们参加活动次数恰好相等的概率P =C 102+C 502+C 402C 1002=4199. (3)ξ的取值为0,1,2,ξ的分布列为7.(2020·重庆)摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.依照摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:(1)求一次摸奖恰好摸到1个红球的概率; (2)求摸奖者在一次摸奖中获奖金额X 的分布列. 答案 (1)1835(2)略解析 设A i 表示摸到i 个红球,B j 表示摸到j 个蓝球,则A i (i =0,1,2,3)与B j (j =0,1)独立.(1)恰好摸到1个红球的概率为P(A 1)=C 31C 42C 73=1835.(2)X 的所有可能的值为:0,10,50,200, 则P(X =200)=P(A 3B 1)=P(A 3)P(B 1)=C 33C 73·13=1105,P(X =50)=P(A 3B 0)=P(A 3)P(B 0)=C 33C 73·23=2105,P(X =10)=P(A 2B 1)=P(A 2)P(B 1)=C 32C 41C 73·13=12105=435,P(X =0)=1-1105-2105-435=67.综上知X 的分布列为8.试销终止后(3件,当天营业终止后检查存货,若发觉存量少于2件,则当天进货补充至3件,否则不进货.将频率视为概率.(1)求当天商店不进货的概率;(2)设X 为翌日开始营业时该商品的件数,求X 的分布列和均值. 答案 (1)310 (2)114解析 (1)P(“当天商店不进货”)=P(“当天商品销售量为0件”)+P(“当天商品销售量为1件”)=120+520=310.(2)由题意知,X 的可能取值为2,3.P(X =2)=P(“当天商品销售量为1件”)=520=14;P(X =3)=P(“当天商品销售量为0件”)+P(“当天商品销售量为2件”)+P(“当天商品销售量为3件”)=120+920+520=34.故X 的分布列为X 的均值为E(X)=2×14+3×34=4.9.设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1. (1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).解析 (1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,因此共有8C 32对相交棱,因此P(ξ=0)=8C 32C 122=8×366=411.(2)若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对,故P(ξ=2)=6C 122=111. 因此P(ξ=1)=1-P(ξ=0)-P(ξ=2)=1-411-111=611.因此随机变量ξ的分布列是因此E(ξ)=1×611+10.(2020·贵州遵义联考)2021年巴西奥运会的周边商品有80%左右为“中国制造”,所有的厂家差不多上通过层层选择才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采纳分层抽样的方法从甲、乙两厂生产的产品共98件中分别抽取9件和5件,测量产品中的微量元素的含量(单位:毫克).下表是从乙厂抽取的5件产品的测量数据:(1)(2)当产品中的微量元素x ,y 满足x≥175,且y≥75,该产品为优等品.用上述样本数据估量乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望). 答案 (1)35 (2)14 (3)45解析 (1)乙厂生产的产品总数为5÷1498=35.(2)样品中优等品的频率为25,估量乙厂生产的优等品的数量为35×25=14.(3)ξ=0,1,2,P (ξ=i)=C 2iC 32-iC 52(i =0,1,2), ξ的分布列为3 10+1×35+2×110=45.均值E(ξ)=0×。
[创新设计]2014届高考数学人教a版(理)一轮复习[配套word版文档]:第十一篇 第8讲 二项分布与正态分布
![[创新设计]2014届高考数学人教a版(理)一轮复习[配套word版文档]:第十一篇 第8讲 二项分布与正态分布](https://img.taocdn.com/s3/m/c8c3a967561252d380eb6e32.png)
第8讲 二项分布与正态分布A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2011·湖北)如图,用K 、A1、A 2三类不同的元件连接成一个系统,当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( ). A .0.960B .0.864C .0.720D .0.576解析 P =0.9×[1-(1-0.8)2]=0.864. 答案 B2.(2011·广东)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ).A.34B.23C.35D.12解析 问题等价为两类:第一类,第一局甲赢,其概率P 1=12;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P 2=12×12=14.故甲队获得冠军的概率为P 1+P 2=34. 答案 A3.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是 ( ). A .[0.4,1] B .(0,0.4] C .(0,0.6]D .[0.6,1]解析 设事件A 发生的概率为p ,则C 14p (1-p )3≤C 24p 2(1-p )2,解得p ≥0.4,故选A.答案 A4.设随机变量X 服从正态分布N (2,9),若P (X >c +1)=P (X <c -1),则c 等于( ). A .1B .2C .3D .4解析 ∵μ=2,由正态分布的定义,知其函数图象关于x =2对称,于是c +1+c -12=2,∴c =2. 答案 B二、填空题(每小题5分,共10分)5.(2013·台州二模)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.解析 由已知条件第2个问题答错,第3、4个问题答对,记“问题回答正确”事件为A ,则P (A )=0.8,P =P [](A ∪A -)A -AA =(1-P (A )] P (A ) P (A )=0.128. 答案 0.1286.设随机变量X 服从正态分布N (0,1),如果P (X ≤1)=0.8413,则P (-1<X <0)=________.解析 ∵P (X ≤1)=0.841 3,∴P (X >1)=1-P (X ≤1)=1-0.841 3=0.158 7. ∵X ~N (0,1),∴μ=0.∴P (X <-1)=P (X >1)=0.158 7,∴P (-1<X <1)=1-P (X <-1)-P (X >1)=0.682 6. ∴P (-1<X <0)=12P (-1<X <1)=0.341 3. 答案 0.341 3 三、解答题(共25分)7.(12分)设在一次数学考试中,某班学生的分数X ~N (110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分以上)的人数和130分以上的人数.解由题意得μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μ<-σ)+P(-σ≤X-μ≤σ)+P(X-μ>σ)=2P(X-μ<-σ)+0.682 6=1,∴P(X-μ<-σ)=0.158 7,∴P(X≥90)=1-P(X-μ<-σ)=1-0.158 7=0.841 3.∴54×0.841 3≈45(人),即及格人数约为45人.∵P(X≥130)=P(X-110≥20)=P(X-μ≥σ),∴P(X-μ≤-σ)+P(-σ≤X-μ≤σ)+P(X-μ>σ)=0.682 6+2P(X-μ≥σ)=1,∴P(X-μ≥σ)=0.158 7.∴54×0.158 7≈9(人),即130分以上的人数约为9人.8.(13分)(2012·重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求甲获胜的概率;(2)求投篮结束时甲的投球次数ξ的分布列与期望.解设A k,B k分别表示甲、乙在第k次投篮投中,则P(A k)=13,P(B k)=12(k=1,2,3).(1)记“甲获胜”为事件C,由互斥事件有一个发生的概率与相互独立事件同时发生的概率计算公式知P(C)=P(A1)+P(A1B1A2)+P(A1B1A2B2A3)=P(A1)+P(A1)P(B1)P(A2)+P(A1)P(B1)P(A2)P(B2)P(A3)=13+23×12×13+⎝⎛⎭⎪⎫232×⎝⎛⎭⎪⎫122×13=13+19+127=1327.(2)ξ的所有可能值为1,2,3由独立性,知P(ξ=1)=P(A1)+P(A1B1)=13+23×12=23,P (ξ=2)=P (A 1B 1A 2)+P (A 1B 1A 2B 2) =23×12×13+⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫122=29,P (ξ=3)=P ()A 1B 1 A 2 B 2=⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫122=19. 综上知,ξ的分布列为从而E (ξ)=1×23+2×29+3×19=139(次).B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·金华模拟)已知三个正态分布密度函数φi (x )=12πσi ·e -(x -μi )22σ2i (x ∈R ,i =1,2,3)的图象如图所示,则( ).A .μ1<μ2=μ3,σ1=σ2>σ3B .μ1>μ2=μ3,σ1=σ2<σ3C .μ1=μ2<μ3,σ1<σ2=σ3D .μ1<μ2=μ3,σ1=σ2<σ3解析 正态分布密度函数φ2(x )和φ3(x )的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x )和φ2(x )的图象一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3. 答案 D2.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是 ( ).A.⎝ ⎛⎭⎪⎫125B .C 25⎝ ⎛⎭⎪⎫125C .C 35⎝ ⎛⎭⎪⎫123D .C 25C 35⎝ ⎛⎭⎪⎫125解析 由于质点每次移动一个单位,移动的方向为向上或向右,移动五次后位于点(2,3),所以质点P 必须向右移动两次,向上移动三次,故其概率为 C 35⎝ ⎛⎭⎪⎫123·⎝ ⎛⎭⎪⎫122=C 35⎝ ⎛⎭⎪⎫125=C 25⎝ ⎛⎭⎪⎫125,故选B. 答案 B二、填空题(每小题5分,共10分)3.(2013·湘潭二模)如果X ~B (20,p ),当p =12且P (X =k )取得最大值时,k =________.解析 当p =12时,P (X =k )=C k 20⎝ ⎛⎭⎪⎫12k ·⎝ ⎛⎭⎪⎫1220-k =C k 20·⎝ ⎛⎭⎪⎫1220,显然当k =10时,P (X =k )取得最大值. 答案 104.(2013·九江一模)将一个半径适当的小球放入如图所示的容器最上方的入口处,小1球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为________.解析 记“小球落入A 袋中”为事件A ,“小球落入B 袋中”为事件B ,则事件A 的对立事件为B ,若小球落入B 袋中,则小球必须一直向左落下或一直向右落下,故P (B )=⎝ ⎛⎭⎪⎫123+⎝ ⎛⎭⎪⎫123=14,从而P (A )=1-P (B )=1-14=34.答案 34三、解答题(共25分)5.(12分)(2012·湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)解(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得P(X=1)=15100=320,P(X=1.5)=30100=310,P(X=2)=25100=14,P(X=2.5)=20100=15,P(X=3)=10100=110.X的分布列为X的数学期望为E(X)=1×320+1.5×310+2×14+2.5×15+3×110=1.9.(2)记A为事件“该顾客结算前的等候时间不超过2.5分钟”,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P(X1=1且X2=1)+P(X1=1且X2=1.5)+P(X1=1.5且X2=1).由于各顾客的结算相互独立,且X1,X2的分布列都与X的分布列相同,所以P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)=320×320+320×310+310×320=980.故该顾客结算前的等候时间不超过2.5分钟的概率为9 80.6.(13分)(2012·山东)现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望E (X ).解 (1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D .由题意,知P (B )=34,P (C )=P (D )=23, 由于A =B C - D -+B -C D -+B - C -D , 根据事件的独立性和互斥性,得 P (A )=P (B C - D -+B -C D -+B - C -D ) =P (B C - D -)+P (B -C D -)+P (B - C -D )=P (B )P (C -)P (D -)+P (B -)P (C )P (D -)+P (B -)P (C -)P (D )=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=736.(2)根据题意,知X 的所有可能取值为0,1,2,3,4,5.根据事件的独立性和互斥性,得P (X =0)=P (B - C - D -) =[1-P (B )][1-P (C )][1-P (D )] =⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=136; P (X =1)=P (B C - D -)=P (B )P (C -)P (D -) =34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=112;P (X =2)=P (B - C D -+B - C - D )=P (B - C D -)+P (B - C -D )=⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×23=19; P (X =3)=P (BC D -+B C -D )=P (BC D -)+P (B C -D ) =34×23×⎝ ⎛⎭⎪⎫1-23+34×⎝ ⎛⎭⎪⎫1-23×23=13; P (X =4)=P (B -CD )=⎝ ⎛⎭⎪⎫1-34×23×23=19,P (X =5)=P (BCD )=34×23×23=13. 故X 的分布列为所以E (X )=0×136+1×112+2×19+3×13+4×19+5×13=4112.。
2022届高考数学一轮复习课时作业 第十一章 单元测试卷 理 新人教版

第十一章单元测试卷一、选择题本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求1.将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的五个盒子,每个盒内放一个球,若恰好有三个球的编号与盒子编号相同,则不同的投放方法的种数为A.6 B.10C.20 D.30答案 B解析从编号为1,2,3,4,5的五个球中选出三个与盒子编号相同的球的投放方法有C错误!=10种;另两个球的投放方法有1种,所以共有10种不同的投放方法.选择B2.1+101+错误!10展开式中的常数项为A.1 B.C错误!2C.C错误!D.C错误!答案 D解析因为1+101+错误!10=[1+1+错误!]10=2++错误!10=错误!+错误!20>0,所以T r+1=C错误!错误!20-r错误!r=C错误!-r,由10-r=0,得r=10,故常数项为T11=C错误!,选D 3如图,三行三列的方阵中有9个数a i i=1,2,3;=1,2,3,从中任取三个数,则至少有两个数位于同位或同列的概率是错误!答案 C解析所取三数既不同行也不同列的概率为错误!=错误!,所求概率为1-错误!=错误!4.设随机变量ξ服从正态分布N3,4,若2a2a2a1”=8+4+6=18种,故所求概率为=错误!=错误!8.2022年陕西园艺世博会期间,某国旅游团计划从8个他们最喜爱的中国城市里选择6个进行游览.如果M,N,、n,向量a=m,n,b m、n共有36种情形,其中15种满足条件,故所求概率是错误!二、填空题本大题共4小题,每小题5分,共20分,把答案填在题中横线上13.在神舟八号飞船飞行的过程中,地面上有A、B、C、D四个科研机构在接收其发回的重要信息.这四个科研机构两两之间可以互相接发信息,但飞船只能随机地向其中一个科研机构发送信息,每个科研机构都不能同时向两个或两个以上的科研机构发送信息.某日,这四个机构之间发送了三次信息后,都获得了飞船发回的同一条信息,那么是A机构接收到该信息后与其他机构互相联系的方式共有________.答案16种解析第一类:A直接发送给B,C,D三处,有C错误!=1种.第二类:A直接发送给B,C,D 中的两处,再由其中一处通知第四处,有C错误!·C错误!=6种.第三类:A直接发送给B,C,D 中的一处,再由该处通知另两处,有C错误!·C错误!+1=9种.所以由A机构接收到该信息后与其他机构互相联系的方式共有1+6+9=16种.14.2022年奥运会足球预选赛亚洲区决赛俗称九强赛,中国队和韩国队都是九强赛中的队,现要将九支队随机分成三组进行决赛,则中国队与韩国队分在同一组的概率是________.答案错误!解析2估计这块地中高粱高单位:cm在[165,180的概率;3在红粒高粱中,从高度单位:cm在[180,190中任选3棵,设ξ表示所选3棵中高单位:cm 在[180,185的棵数,求ξ的分布列和数学期望.解析1样本中红粒高粱为40棵,白粒高粱30棵,由抽样比例可得这亩地中红粒高粱棵数为400频率分布直方图如图所示:2由表1、表2可知,样本中高在[165,180的棵数为5+14+13+6+3+1=42,样本容量为70,∴样本中高在[165,180的频率f=错误!=错误!3依题意知ξ的可能值为:1,2,3∵in1030507090概率错误!错误!错误!×错误!错误!×错误!错误!×错误!310×错误!+30×错误!+50×错误!+70×错误!+90×错误!=5+错误!+错误!+错误!+错误!=30∴该旅客候车时间的数学期望是30 min22.本小题满分12分2011年12月25日某俱乐部举行迎圣诞活动,每位会员交50元活动费,可享受20元的消费,并参加一次游戏:掷两颗正方体骰子,点数之和为12点获一等奖,奖价值为a元的奖品;点数之和为11或10点获二等奖,奖价值为100元的奖品;点数之和为9或8点获三等奖,奖价值为30元的奖品:点数之和小于8点的不得奖.求:1同行的三位会员一人获一等奖、两人获二等奖的概率;2若该俱乐部在游戏环节不亏也不赢利,求a的值.解析1设掷两颗正方体骰子所得的点数记为,,其中1≤,≤6,则获一等奖只有6,6一种可能,其概率为错误!;获二等奖有6,5、5,6、4,6、6,4、5,5,共5种可能,其概率为错误!设事件A表示“同行的三位会员一人获一等奖、两人获二等奖”,则由1知PA=C错误!×错误!×错误!2=错误!2设俱乐部在游戏环节收益为ξ元,则ξ的可能取值为30-a,-70,0,30,其分布列为:ξ30-a -70030错误!错误!错误!错误!则Eξ=30-a×错误!!,由Eξ=0,得a=3101.已知1++1+2+…+1+n=a0+a1+a22+…+a n n,且a1+a2+…+a n-1=29-n,则n=________ 答案 4解析令=0,则有a0=n,令=1,则a0+a1+a2+…+a n-1+a n=2n+1-2又∵C错误!·10·n=a n n,∴a n=1∴29-n=2n+1-2-1-n,则n=42.2022·唐山一中4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为答案 C解析从4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为错误!=错误!3.甲、乙、丙3人进行擂台赛,每局2人进行单打比赛,另1人当裁判,每一局的输方当下一局的裁判,由原来裁判向胜者挑战,比赛结束后,经统计,甲共打了5局,乙共打了6局,而丙共当了2局裁判,那么整个比赛共进行了A.9局B.11局C.13局D.18局答案 A解析由题意甲与乙之间进行了两次比赛,剩余赛事为甲与丙或乙与丙进行,因此比赛场数为5+6-2=94.某计算机程序每运行一次都随机出现一个五位的二进制数A=错误!错误!错误!错误!错误!其中A的各位数中,a1=1,a=2,3,4,5出现0的概率为错误!,出现1的概率为错误!记ξ=a1+a2+a3+a4+a5,当程序运行一次时,ξ的数学期望Eξ=答案 C解析ξ=1时,P1=C错误!错误!4错误!0=错误!,ξ=2时,P2=C错误!错误!3·错误!=错误!,ξ=3时,P3=C错误!·错误!2·错误!2=错误!,ξ=4时,P4=C错误!错误!·错误!3=错误!,ξ=5时,P5=C错误!错误!4=错误!,Eξ=1×错误!+2×错误!+3×错误!+4×错误!+5×错误!=错误!5某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD边长为3个单位的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为ii =1,2,…,6,则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有A.22种B.24种C.25种D.36种答案 C解析抛掷三次骰子后棋子恰好又回到点A处是指三次投掷骰子之和为12,第一颗骰子点数为1时,有2种方法;第一颗骰子点数为2时,有3种方法;第一颗骰子点数为3时,有4种方法;第一颗骰子点数为4时,有5种方法;第一颗骰子点数5时,有6种方法;第一颗骰子点数为6时,有5种方法,共有2+3+4+5+6+5=25种方法.6.某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如下表所示:1从该单位任选两名职工,用η表示这两人休年假次数之和,记“函数f=2-η-1在区间4,6上有且只有一个零点”为事件A,求事件A发生的概率P;2从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ解析1函数f=2-η-1过0,-1点,在区间4,6上有且只有一个零点,则必有错误!即:错误!,解得错误!<η<错误!,所以,η=4或η=5,当η=4时,P1=错误!=错误!,当η=5时,P2=错误!=错误!,η=4与η=5为互斥事件,所以有一个发生的概率公式P=P1+P2=错误!+错误!=错误!2从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,则ξ的可能取值分别是0,1,2,3于是Pξ=0=错误!=错误!,Pξ=1=错误!=错误!,Pξ=2=错误!=错误!,Pξ=3=错误!=错误!从而ξ的分布列:ξ的数学期望:Eξ错误!7.在上海世博会期间中国馆和美国馆异常火爆,10月1日中国馆内有2个广东旅游团和2个湖南旅游团,美国馆内有2个广东旅游团和3个湖南旅游团.现从中国馆中的4个旅游团选出其中一个旅游团,与从美国馆中的5个旅游团中选出的其中一个旅游团进行互换.1求互换后中国馆恰有2个广东旅游团的概率;2求互换后中国馆内广东旅游团数的期望.解析1记A={互换后中国馆恰有2个广东旅游团},①互换的都是广东旅游团,则此时中国馆恰有2个广东旅游团为事件A1的概率为PA1=错误!=错误!②互换的都是湖南旅游团,则此时中国馆恰有2个广东旅游团事件A2的概率为PA2=错误!=错误!又A=A1∪A2,且A1,A2互斥事件,则PA=PA1+PA2=错误!+错误!=错误!∴互换后中国馆恰有2个广东旅游团的概率为错误!2设互换后中国馆内广东旅游团数为ξ,则ξ的取值为1,2,3Pξ=1=错误!=错误!,Pξ=2=错误!,Pξ=3=错误!=错误!,∴ξ的分布列为:∴Eξ=错误!×1+错误!∴互换后中国馆内广东旅游团的期望为错误!8.某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:1补全频率分布直方图,并n、a、的值;2从[40,50岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为邻队,记选取的3名领队中年龄在[40,45岁的人数为X,求X的分布列和期望EX 解析1第二组的频率为1-++++×5=,∴高为错误!=频率直方图如下:第一组的人数为错误!=200,频率为×5=,∴n=错误!=1000由题可知,第二组的频率为×5=,∴第二组的人数为1000×=300,∴=错误!=第四组的频率为×5=,∴第四组的人数为1000×=150,∴a=150×=602∵[40,45岁年龄段的“低碳族”与[45,50岁年龄段的“低碳族”的比值为60∶30=2∶1,∴采用分层抽样法抽取18人,[40,45岁中有12人,[45,50岁中有6人.∵随机变量X服从超几何分布,∴PX=0=错误!=错误!,PX=1=错误!=错误!,PX=2=错误!=错误!,PX=3=错误!=错误!∴随机变量X的分布列为∴EX=0×错误!+1×9.四个纪念币A、B、C、D,投掷时正面向上的概率如下表所示0<a<11求ξ的分布列与数学期望;2在概率Pξ=ii=0,1,2,3,4中,若Pξ=2的值最大,求a的取值范围.解1Pξ是ξ个正面向上,4-ξ个背面向上的概率.其中ξ的可能取值为0,1,2,3,4 Pξ=0=C错误!1-错误!2C错误!1-a2=错误!1-a2,Pξ=1=C错误!·错误!1-错误!C错误!1-a2+C错误!1-错误!2C错误!a1-a=错误!1-a,Pξ=2=C错误!·错误!2C错误!1-a2+C错误!·错误!1-错误!C错误!a1-a+C错误!1-错误! 2C错误!a2=错误!1+2a-2a2,Pξ=3=C错误!错误!2C错误!a1-a+C错误!·错误!1-错误!C错误!a2=错误!,Pξ=4=C错误!错误!2C错误!a2=错误!a2∴ξ的分布列为Eξ=0×错误!1-a2+1×错误!1-a+2×错误!×1+2a-2a2+3×错误!+4×错误!a2=2a+1 2∵0<a<1,∴Pξ=0<Pξ=1,Pξ=4<Pξ=3.则Pξ=2-Pξ=1=错误!1+2a-2a2-错误!=-错误!2a2-4a+1≥0,Pξ=2-Pξ=3=错误!1+2a-2a2-错误!=-错误!2a2-1≥0,由错误!得错误!≤a≤错误!,即a的取值范围是[错误!,错误!].10.四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子里,从中任意摸出两个小球,它们所标有的数字分别为,,记ξ=+1求随机变量ξ的分布列及数学期望;2设“函数f=2-ξ-1在区间2,3上有且只有一个零点”为事件A,求事件A发生的概率.解析1由题知随机变量ξ的可能取值为2,3,4从盒子中摸出两个小球的基本事件总数为C错误!=6当ξ=2时,摸出的小球所标的数字为1、1,∴Pξ=2=错误!当ξ=4时,摸出的小球所标的数字为2、2,∴Pξ=4=错误!∴可知当ξ=3时,Pξ=3=1-错误!-错误!=错误!,∴ξ的分布列为:∴Eξ=2×错误!+3×2∵函数f=2-ξ-1在区间2,3上有且只有一个零点,∴f2f3<0,即3-2ξ8-3ξ<0,∴错误!<ξ<错误!,且ξ的所有可能取值为2、3、4,∴ξ=2,∴PA=Pξ=2=错误!,∴事件A发生的概率为错误!。
2018届高三数学(理)一轮复习课后作业:第十一章 选修系列 选修4-5 不等式选讲

课时作业 A 组 基础对点练1.已知x ,y ∈R ,且|x |<1,|y |<1. 求证:11-x 2+11-y 2≥21-xy. 证明:法一:(分析法)∵|x |<1,|y |<1, ∴11-x 2>0,11-y 2>0, ∴11-x 2+11-y 2≥2(1-x 2)(1-y 2). 故要证明结论成立, 只要证明2(1-x 2)(1-y 2)≥21-xy成立.即证1-xy ≥(1-x 2)(1-y 2)成立即可. ∵(y -x )2≥0,有-2xy ≥-x 2-y 2, ∴(1-xy )2≥(1-x 2)(1-y 2), ∴1-xy ≥(1-x 2)(1-y 2)>0. ∴不等式成立.法二:(综合法)∵211-x 2+11-y 2≤1-x 2+1-y 22=2-(x 2+y 2)2≤2-2|xy |2=1-|xy |,∴11-x 2+11-y 2≥21-|xy |≥21-xy, ∴原不等式成立.2.(2017·唐山模拟)已知函数f (x )=|2x -a |+|x +1|. (1)当a =1时,解不等式f (x )<3; (2)若f (x )的最小值为1,求a 的值.解析:(1)当a =1时,f (x )=|2x -1|+|x +1|=⎩⎪⎨⎪⎧-3x ,x ≤-1,-x +2,-1<x <12,3x ,x ≥12,且f (1)=f (-1)=3,所以f (x )<3的解集为{x |-1<x <1}.(2)|2x -a |+|x +1|=⎪⎪⎪⎪⎪⎪x -a 2+|x +1|+⎪⎪⎪⎪⎪⎪x -a 2≥⎪⎪⎪⎪⎪⎪1+a 2+0=⎪⎪⎪⎪⎪⎪1+a 2,当且仅当(x +1)⎝ ⎛⎭⎪⎫x -a 2≤0且x -a 2=0时,取等号.所以⎪⎪⎪⎪⎪⎪1+a 2=1,解得a =-4或0.3.(2017·大同调研)已知函数f (x )=|2x -1|+|x -2a |. (1)当a =1时,求f (x )≤3的解集;(2)当x ∈1,2]时,f (x )≤3恒成立,求实数a 的取值范围. 解析:(1)当a =1时,由f (x )≤3,可得|2x -1|+|x -2|≤3, ∴⎩⎪⎨⎪⎧x <12,1-2x +2-x ≤3①或⎩⎪⎨⎪⎧12≤x <2,2x -1+2-x ≤3②或⎩⎨⎧x ≥2,2x -1+x -2≤3.③ 解①求得0≤x <12;解②求得12≤x <2;解③求得x =2.综上可得,0≤x ≤2,即不等式的解集为0,2]. (2)∵当x ∈1,2]时,f (x )≤3恒成立, 即|x -2a |≤3-|2x -1|=4-2x ,故2x -4≤2a -x ≤4-2x ,即3x -4≤2a ≤4-x . 再根据3x -4的最大值为6-4=2, 4-x 的最小值为4-2=2, ∴2a =2,∴a =1, 即a 的取值范围为{1}.B 组 能力提速练1.(2017·南昌模拟)设函数f (x )=x -2+11-x 的最大值为M . (1)求实数M 的值;(2)求关于x 的不等式|x -2|+|x +22|≤M 的解集. 解析:(1)f (x )=x -2+11-x ≤2(x -2)+(11-x )2=32,当且仅当x =132时等号成立. 故函数f (x )的最大值M =3 2.(2)由(1)知M =3 2.由绝对值三角不等式可得|x -2|+|x +22|≥|(x -2)-(x +22)|=3 2.所以不等式|x -2|+|x +22|≤32的解集就是方程|x -2|+|x +22|=32的解. 由绝对值的几何意义得,当且仅当-22≤x ≤2时,|x -2|+|x +22|=32, 所以不等式|x -2|+|x +22|≤M 的解集为{x |-22≤x ≤2}. 2.(2015·高考全国Ⅰ卷)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解析:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1; 当x ≥1时,不等式化为-x +2>0,解得1≤x <2. 所以f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <2. (2)由题设可得,f (x )=⎩⎨⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1), △ABC 的面积为23(a +1)2. 由题设得23(a +1)2>6,故a >2. 所以a 的取值范围为(2,+∞).3.(2017·合肥模拟)已知a >0,b >0,记A =a +b ,B =a +b . (1)求2A -B 的最大值;(2)若ab =4,是否存在a ,b ,使得A +B =6?并说明理由.解析:(1)2A -B =2a -a +2b -b =-⎝ ⎛⎭⎪⎫a -222-⎝ ⎛⎭⎪⎫b -222+1≤1,等号在a=b =12时取得,即2A -B 的最大值为1. (2)A +B =a +b +a +b ≥2ab +2ab ,因为ab =4,所以A +B ≥4+22>6,所以不存在这样的a ,b ,使得A +B =6.4.(2017·湖北七校联考)设函数f (x )=|x -a |,a ∈R . (1)若a =1,解不等式f (x )≥12(x +1);(2)记函数g (x )=f (x )-|x -2|的值域为A ,若A ⊆-1,3],求a 的取值范围. 解析:(1)由于a =1,故f (x )=⎩⎨⎧1-x ,x <1.x -1,x ≥1.当x <1时,由f (x )≥12(x +1), 得1-x ≥12(x +1),解得x ≤13; 当x ≥1时,f (x )≥12(x +1), 得x -1≥12(x +1),解得x ≥3.综上,不等式f (x )≥12(x +1)的解集为⎝ ⎛⎦⎥⎤-∞,13∪3,+∞).(2)当a <2时,g (x )=⎩⎨⎧a -2,x ≤a ,2x -2-a ,a <x <2,2-a ,x ≥2.g (x )的值域A =a -2,2-a ],由A ⊆-1,3],得⎩⎨⎧a -2≥-1,2-a ≤3,解得a ≥1,又a <2,故1≤a <2;当a ≥2时,g (x )=⎩⎨⎧a -2,x ≤2,-2x +2+a ,2<x <a ,2-a ,x ≥a ,g (x )的值域A =2-a ,a -2],由A ⊆-1,3],得⎩⎨⎧2-a ≥-1,a -2≤3,解得a ≤3,又a≥2,故2≤a≤3.综上,a的取值范围为1,3].。
2020版高考数学一轮复习 第11章 算法复数推理与证明 第2讲 课后作业 理(含解析)

第11章 算法复数推理与证明 第2讲A 组 基础关1.(2018·榆林模拟)已知复数z 1=6-8i ,z 2=-i ,则z 1z 2=( ) A .8-6i B .8+6i C .-8+6i D .-8-6i 答案 B解析 z 1z 2=6-8i -i=(6-8i)·i=8+6i.2.(2019·青岛模拟)在复平面内,复数z =4-7i2+3i (i 是虚数单位),则z 的共轭复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B 解析 z =4-7i2+3i=4-7i2-3i13=-13-26i 13=-1-2i ,其共轭复数z =-1+2i对应的点(-1,2)在第二象限.3.(2018·河南省天一大联考)已知复数z =2-3i ,若z 是复数z 的共轭复数,则z ·(z +1)=( )A .15-3iB .15+3iC .-15+3iD .-15-3i答案 A解析 依题意,z ·(z +1)=(2-3i)(3+3i)=6+6i -9i +9=15-3i.4.(2019·广东测试)若z =(a -2)+a i 为纯虚数,其中a ∈R ,则a +i 71+a i=( )A .iB .1C .-iD .-1 答案 C解析 ∵z 为纯虚数,∴⎩⎨⎧a -2=0,a ≠0,∴a =2,∴a +i 71+a i =2-i 1+2i =2-i 1-2i 1+2i1-2i=-3i3=-i.故选C.5.已知m 为实数,i 为虚数单位,若m +(m 2-4)i>0,则m +2i2-2i=( )A .iB .1C .-iD .-1 答案 A解析 因为m +(m 2-4)i>0,所以m +(m 2-4)i 是实数,所以⎩⎨⎧m >0,m 2-4=0,故m =2.所以m +2i 2-2i=2+2i 2-2i =1+i1-i=i. 6.(2018·成都市第二次诊断性检测)若虚数(x -2)+y i(x ,y ∈R )的模为3,则yx的最大值是( )A.32B.33C.12 D.3 答案 D解析 因为(x -2)+y i 是虚数, 所以y ≠0,又因为|(x -2)+y i|=3, 所以(x -2)2+y 2=3.因为y x是复数x +y i 对应点的斜率,所以⎝ ⎛⎭⎪⎫y x max =tan ∠AOB =3,所以y x 的最大值为 3.7.(2017·全国卷Ⅰ)设有下面四个命题:p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2; p 4:若复数z ∈R ,则z ∈R .其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4 答案 B解析 设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ),z 2=a 2+b 2i(a 2,b 2∈R ). 对于p 1,若1z ∈R ,即1a +b i =a -b ia 2+b 2∈R ,则b =0且a ≠0⇒z =a +b i =a ∈R ,所以p 1为真命题.对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R ,则ab =0.当a =0,b ≠0时,z =a +b i =b i ∈/ R ,所以p 2为假命题.对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0⇒/a 1=a 2,b 1=-b 2,所以p 3为假命题.对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题.故选B.8.(2017·天津高考)已知a ∈R ,i 为虚数单位,若a -i2+i为实数,则a 的值为________.答案 -2解析 ∵a ∈R ,a -i2+i=a -i2-i 2+i 2-i =2a -1-a +2i 5=2a -15-a +25i 为实数,∴-a +25=0,∴a =-2.9.(2018·合肥模拟)设z 2=z 1-i z 1(其中z 1表示z 1的共轭复数),已知z 2的实部是-1,则z 2的虚部为________.答案 1解析 设z 1=a +b i ,z 2=-1+c i , 因为z 2=z 1-i z 1,所以-1+c i =(a +b i)-i(a -b i)=(a -b )+(b -a )i ,所以⎩⎨⎧a -b =-1,b -a =c ,所以c =1,所以z 2的虚部为1.10.已知复数z =i +i 2+i 3+…+i 20221+i ,则复数z 在复平面内对应点的坐标为________.答案 (0,1)解析 因为i 4n +1+i 4n +2+i 4n +3+i 4n +4=i +i 2+i 3+i 4=0, 而2022=4×505+2,所以z =i +i 2+i 3+…+i 20221+i =i +i 21+i =-1+i1+i=-1+i1-i 1+i1-i =2i2=i ,对应的点为(0,1).B 组 能力关1.(2018·华南师大附中模拟)欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,已知e a i 为纯虚数,则复数sin2a +i1+i在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 A解析 由题意得e a i=cos a +isin a 是纯虚数,所以⎩⎨⎧cos a =0,sin a ≠0,所以sin2a =2sin a cos a =0,sin2a +i 1+i =i 1+i =i 1-i 2=1+i 2,其在复平面内对应的点⎝ ⎛⎭⎪⎫12,12在第一象限. 2.对于复数z 1,z 2,若(z 1-i)z 2=1,则称z 1是z 2的“错位共轭”复数,则复数32-12i的“错位共轭”复数为( )A .-36-12iB .-32+32iC.36+12i D.32+32i 答案 D解析 由(z -i)⎝ ⎛⎭⎪⎫32-12i =1,可得z -i =132-12i =32+12i ,所以z =32+32i.故选D.3.(2019·西安模拟)已知方程x 2+(4+i)x +4+a i =0(a ∈R )有实根b ,且z =a +b i ,则复数z 等于( )A .2-2iB .2+2iC .-2+2iD .-2-2i答案 A解析 由题意得b 2+(4+i)b +4+a i =0, 整理得(b 2+4b +4)+(a +b )i =0,所以⎩⎨⎧ b +22=0,a +b =0,所以⎩⎨⎧a =2,b =-2,所以z =2-2i.4.已知复数z 在复平面内对应的点在第三象限,则z 1=z +|z |在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 令z =a +b i(a <0,b <0),则|z |=a 2+b 2>|a |,z 1=z +|z |=(a 2+b 2+a )-b i ,又a 2+b 2+a >0,-b >0,所以z 1在复平面内对应的点在第一象限.5.已知复数z =(a -2)+(a +1)i(a ∈R )的对应点在复平面的第二象限,则|1+a i|的取值范围是________.答案 [1,5)解析 复数z =(a -2)+(a +1)i 对应的点的坐标为(a -2,a +1),因为该点位于第二象限,所以⎩⎨⎧a -2<0,a +1>0,解得-1<a <2.所以|1+a i|=1+a 2∈[1,5).6.复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i(m ,λ,θ∈R ),并且z 1=z 2,则λ的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤-916,7解析 由复数相等的充要条件,可得⎩⎨⎧m =2cos θ,4-m 2=λ+3sin θ,化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝ ⎛⎭⎪⎫sin θ-382-916,因为sin θ∈[-1,1],所以λ∈⎣⎢⎡⎦⎥⎤-916,7.。
近年高考数学一轮复习第11章算法、复数、推理与证明11.5数学归纳法课后作业理(2021年整理)

2019版高考数学一轮复习第11章算法、复数、推理与证明11.5 数学归纳法课后作业理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第11章算法、复数、推理与证明11.5 数学归纳法课后作业理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第11章算法、复数、推理与证明11.5 数学归纳法课后作业理的全部内容。
11.5 数学归纳法[基础送分提速狂刷练]一、选择题1.(2016·安庆高三月考)用数学归纳法证明2n>n2(n≥5,n∈N*),第一步应验证( )A.n=4 B.n=5 C.n=6 D.n=7答案B解析根据数学归纳法的步骤,首先要验证n取第一个值时命题成立,又n≥5,故第一步验证n=5.故选B.2.用数学归纳法证明12+22+...+(n-1)2+n2+(n-1)2+ (22)12=错误!时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是( )A.(k+1)2+2k2B.(k+1)2+k2C.(k+1)2D。
错误!(k+1)[2(k+1)2+1]答案B解析由n=k到n=k+1时,左边增加(k+1)2+k2.故选B。
3.(2018·沈阳调研)用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,利用归纳法假设证明n=k+1时,只需展开()A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3答案A解析假设n=k时,原式k3+(k+1)3+(k+2)3能被9整除,当n=k +1时,(k+1)3+(k+2)3+(k+3)3为了能用上面的归纳假设,只须将(k+3)3展开,让其出现k3即可.故选A.4.已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N*,都能使m整除f(n),则最大的m的值为( )A.30 B.26 C.36 D.6答案C解析∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36,∴f(1),f(2),f(3)都能被36整除,猜想f(n)能被36整除.证明如下:当n=1,2时,由以上得证.假设当n=k(k≥2)时,f(k)=(2k+7)·3k+9能被36整除,则当n=k+1时,f(k+1)-f(k)=(2k+9)·3k+1-(2k+7)·3k=(6k +27)·3k-(2k+7)·3k=(4k+20)·3k=36(k+5)·3k-2(k≥2),∴f(k +1)能被36整除.∵f(1)不能被大于36的数整除,∴所求最大的m的值为36.5.(2017·泉州模拟)用数学归纳法证明n+(n+1)+(n+2)+…+(3n -2)=(2n-1)2(n∈N*)时,若记f(n)=n+(n+1)+(n+2)+…+(3n -2),则f(k+1)-f(k)等于( )A.3k-1 B.3k+1 C.8k D.9k答案C解析因为f(k)=k+(k+1)+(k+2)+…+(3k-2),f(k+1)=(k+1)+(k+2)+…+(3k-2)+(3k-1)+(3k)+(3k+1),则f(k+1)-f(k)=3k-1+3k+3k+1-k=8k.故选C.6.(2018·太原质检)平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为 ( )A.n+1 B.2nC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章计数原理、概率、随机变量及其分布第一节分类加法计数原理与分布乘法计数原理课后作业理
[全盘巩固]
一、选择题
1.已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为( ) A.16 B.13 C.12 D.10
2.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各选一个数作为点的坐标,则这样的坐标在直角坐标系中可表示第三、四象限内不同点的个数为( ) A.18个 B.10个 C.16个 D.14个
3.如图所示,在A、B间有四个焊接点1、2、3、4,若焊接点脱落导致断路,则电路不通.今发现A、B之间电路不通,则焊接点脱落的不同情况有( )
A.9种 B.11种 C.13种 D.15种
4.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为( )
A.40 B.16 C.13 D.10
5.(2016·临沂模拟)如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L型(每次旋转90°仍为L型图案),那么在由4×5个小方格组成的方格纸上可以画出不同位置的L型图案的个数是( )
A.16 B.32 C.48 D.64
二、填空题
6.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.
7.农科院小李在做某项试验时,计划从花生、大白菜、大豆、玉米、小麦、高粱这6种种子中选出4种,分别种植在4块不同的空地上(1块空地只能种1种作物),若小李已决定在第1块空地上种玉米或高粱,则不同的种植方案有________种.(用数字作答) 8.如图所示的几何体由一个正三棱锥PABC与正三棱柱ABCA1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.
三、解答题
9.一个袋子里装有10张不同的中国移动手机卡,另一个袋子里装有12张不同的中国联通手机卡.
(1)某人要从两个袋子中任取一张手机卡自己使用,共有多少种不同的取法?
(2)某人想得到一张中国移动卡和一张中国联通卡,供自己今后选择使用,问一共有多少种不同的取法?
10.设有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.
(1)从中任选一幅画布置房间,有几种不同的选法?
(2)从这些国画、油画、水彩画中各选一幅画布置房间,有几种不同的选法?
(3)从这些画中任选出两幅不同画种的画布置房间,有几种不同的选法?
[冲击名校]
1.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为( )
A.56 B.54 C.53 D.52
2.我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有( )
A.18个 B.15个 C.12个 D.9个
3.某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元.某人想从01至10中选3个连续的号,从
11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这人把这种特殊要求的号买全,至少要花( )
A.3 360元 B.6 720元 C.4 320元 D.8 640元
4.(2016·湖南十二校联考)用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.
5.若m,n均为非负整数,在做m(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对共有________个.
答案
[全盘巩固]
一、选择题
1. 解析:选C 由分步乘法计数原理可知,走法总数为4×3=1
2.
2. 解析:选B 第三、四象限内点的纵坐标为负值,分2种情况讨论.
①取M中的点作横坐标,取N中的点作纵坐标,
有3×2=6(种)情况;
②取N中的点作横坐标,取M中的点作纵坐标,
有4×1=4(种)情况.
综上共有6+4=10(种)情况.
3. 解析:选C 按照焊接点脱落的个数进行分类.
若脱落1个,则有(1),(4)共2种;
若脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3)共6种;
若脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4)共4种;
若脱落4个,有(1,2,3,4)共1种.综上共有2+6+4+1=13(种)焊接点脱落的情况.
4. 解析:选C 分两类情况讨论:
第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;
第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.
根据分类加法计数原理知,共可以确定8+5=13个不同的平面.
5. 解析:选C 每四个小方格(2×2型)中有“L”型图案4个,共有2×2型小方格12
个,所以共有“L”型图案4×12=48个.
二、填空题
6. 解析:分两类:①有一条公共边的三角形共有8×4=32个;②有两条公共边的三角形共有8个.故共有32+8=40个.
答案:40
7. 解析:当第1块空地种玉米时,其他地有5×4×3=60种不同的种法;
当第1块空地种高粱时,其他地也有5×4×3=60种不同的种法.
故共有60+60=120种不同的种植方案.
答案:120
8. 解析:先涂三棱锥PABC的三个侧面,然后涂三棱柱的三个侧面,共有3×2×1×2=12种不同的涂法.
答案:12
三、解答题
9. 解:(1)任取一张手机卡,可以从10张不同的中国移动卡中任取一张,或从12张不同的中国联通卡中任取一张,每一类办法都能完成这件事,故应用分类加法计数原理,有10+12=22种不同的取法.
(2)从移动、联通卡中各取一张,则要分两步完成:从移动卡中任取一张,再从联通卡中任取一张,故应用分步乘法计数原理,有10×12=120种不同的取法.
10. 解:(1)利用分类加法计数原理:5+2+7=14(种)不同的选法.
(2)国画有5种不同选法,油画有2种不同的选法,水彩画有7种不同的选法,利用分步乘法计数原理得到5×2×7=70(种)不同的选法.
(3)选法分三类,分别为选国画与油画、油画与水彩画、国画与水彩画,由分类加法计数原理和分步乘法计数原理知共有5×2+2×7+5×7=59(种)不同的选法.
[冲击名校]
1. 解析:选D 在8个数中任取2个不同的数共有8×7=56个对数值;但在这56个对数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56-4=52个.
2. 解析:选B 依题意知,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共计3+6+3+3=15个.
3. 解析:选D 从01至10中选3个连续的号共有8种选法;从11至20中选2个连续的号共有9种选法;从21至30中选1个号有10种选法;从31至36中选一个号有6种选法,由分步乘法计数原理知共有8×9×10×6=4 320(种)选法,故至少需花4 320×2=8
640(元).
4. 解析:把区域分为三部分,第一部分1,5,9,有3种涂法.第二部分4,7,8,当5,7同色时,4,8各有2种涂法,共4种涂法;当5,7异色时,7有2种涂法,4、8均只有1种涂法,故第二部分共4+2=6种涂法.第三部分与第二部分一样,共6种涂法.由分步乘法计数原理,可得共有3×6×6=108种涂法.
答案:108
5. 解析:第1步,1=1+0,1=0+1,共2种组合方式;
第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;
第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;
第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.
根据分步乘法计数原理,值为1 942的的“简单的”有序对的个数为2×10×5×3=300.
答案:300。