拉普拉斯变换的基本性质、变换及反变换
拉普拉斯变换及反变换

t
重要性质
( t ) f ( t ) dt f ( 0 )
( t ) dt ( t ) dt 1
0
0
L[ ( t )]
(t ) e
st
0
dt ( t ) e
st
dt 1
第7页
黄河科技学院
(5)指数函数
f (t )
控制工程基础
f (t )
(k =const)
0 2 f ( t ) kt 1( t ) 1 2 kt t 2 2 1
0
t0
t
t0
0
t
F ( s ) L [ f ( t )]
( b)
跃函数
坡 函 kt 斜 2 数
0
1
2
e
st
dt
k s
3
F s
的原函数;L是表示进行拉氏变换的 符号。
第2页
黄河科技学院
控制工程基础
F ( s ) L [ f ( t )]
f ( t ) L [ F ( s )]
拉氏变换是这样一种变换,即在一定的 条件下,它能把一实数域中的实变函数 f t 变换为一个在复数域内与之等价的 复变函数 F s 。
控制工程基础
2)当解出s有重根时,对F(s)作因式分解:
F (s) br ( s p1 )
r
b r 1 ( s p1 )
r 1
b1 ( s p1 )
r
a r 1 ( s p r 1 )
拉普拉斯变换及反变换

拉普拉斯变换及反变换
例 右图所示电路中,电压源为
ui (t ) ea t u(t ) ,
试用时域卷积定理求零状态响应电流i(t)。 ui (t ) 解(1)写出系统动力学方程 di (t ) i (t ) R L ui (t ) dt
(2)作Laplace变换得
R i(t) L h(t)
例3
1 1 I ( s ) ℒ [1 e ] s s1 1 1 i ( t ) t lims( )1 s0 s s1
-t
机械工程控制基础
1 例4:已知F(s)= ,求f(0)和f(∞) sa
拉普拉斯变换及反变换
解:由初值定理得
f (0) lim sF ( s) lim
拉普拉斯变换及反变换
机械工程控制基础
拉 普 拉 斯 变 换 的 基 本 性 质 表
拉普拉斯变换及反变换
机械工程控制基础
拉普拉斯变换的基本性质表
拉普拉斯变换及反变换
机械工程控制基础
本讲小结: 拉普拉斯变换定义 常用函数的拉普拉斯变换 拉普拉斯变换的基本性质
拉普拉斯变换及反变换
机械工程控制基础
拉普拉斯变换及反变换
=ℒ e a t (t )
(5)作Laplace反变换得
1 1 1 1 R Ls s a L s R
L
零状态响应电流 i(t)= ℒ-1[I(s)]
R t 1 at (e e L ) (t ) R L ( a) L
机械工程控制基础
八、S域卷积性
0
1 sa
机械工程控制基础
3. f (t ) (t ) (单位脉冲函数)
拉普拉斯变换及逆变换

第十二章 拉普拉斯变换及逆变换拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用。
我们经常应用拉普拉斯变换进行电路的复频域分析。
本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用。
第一节 拉普拉斯变换在代数中,直接计算328.957812028.6⨯⨯=N 53)164.1(⨯是很复杂的,而引用对数后,可先把上式变换为164.1lg 53)20lg 28.9lg 5781(lg 3128.6lg lg ++-+=N然后通过查常用对数表和反对数表,就可算得原来要求的数N 。
这是一种把复杂运算转化为简单运算的做法,而拉氏变换则是另一种化繁为简的做法。
一、拉氏变换的基本概念定义12.1 设函数()f t 当0t ≥时有定义,若广义积分()pt f t e dt +∞-⎰在P 的某一区域内收敛,则此积分就确定了一个参量为P 的函数,记作()F P ,即dte tf P F pt ⎰∞+-=0)()( (12.1)称(12.1)式为函数()f t 的拉氏变换式,用记号[()]()L f t F P =表示。
函数()F P 称为()f t 的拉氏变换(Laplace) (或称为()f t 的象函数)。
函数()f t 称为()F P 的拉氏逆变换(或称为()F P 象原函数),记作 )()]([1t f P F L =-,即)]([)(1P F L t f -=。
关于拉氏变换的定义,在这里做两点说明:(1)在定义中,只要求()f t 在0t ≥时有定义。
为了研究拉氏变换性质的方便,以后总假定在0t <时,()0f t =。
(2)在较为深入的讨论中,拉氏变换式中的参数P 是在复数范围内取值。
为了方便起见,本章我们把P 作为实数来讨论,这并不影响对拉氏变换性质的研究和应用。
拉氏变换及反变换

1 当n=1, ℒ [t ] 2 ; s 2 2 当n=2, ℒ [t ] 3 ; s
依次类推, 得 ℒ
机械工程控制基础
常 用 函 数 的 拉 普 拉 斯 变 换 表 δ(t) δ(n)(t) u(t) t tn e-at te-at tne-at e-jwt 1 sn 1/s 1/s2
1
t 0
区间的函数式
1 t ] e ( t 0) ℒ [ s
机械工程控制基础
2.3
一、线性性质
拉普拉斯变换及反变换
拉普拉斯变换的基本性质
若 ℒ [f1 (t )] F1 ( s ) , ℒ [f 2 (t )] F2 ( s )
则 ℒ [a f1 (t ) b f 2 (t )] aF1 ( s ) bF2 ( s )
at
] e e dt
at st 0
1 ( s a )t e sa
0
1 sa
j t
1 ] s j
机械工程控制基础
3. f (t ) (t ) (单位脉冲函数)
0 (t 0) (t ) (t 0)
δ(t)
s s
1 s 1 sa
由终值定理得
f () lim sF ( s) lim
s 0 s 0
1 s 0 sa
机械工程控制基础
七、时域卷积性 : 8时域卷积性
L 若f1 (t ) F1 ( s ), f 2 (t ) F2 ( s ) L 则f1 (t ) f 2 (t ) F1 ( s ) F2 ( s )
t
f () lim f (t ) lim sF ( s)
拉普拉斯变换的基本性质、变换及反变换

拉普拉斯变换的基本性质、变换及反变换t t8 卷积定理L[ [f i(t—l)f2&)dE] =L[ [f i(t)f2(t—l)dl] = F i(s)F2(s)用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设F(s)是s 的有理真分式A(s)二0有重根设A(s) = 0有r 重根s ,F(s)可写为F s-(s-s ,)r(s-s ri ) (s-s n )B(s)b m 「4 g b0A(s)n ,n 」a n S - a n 」s 山…“y s - a 。
式中系数a 0, a i ,..., a n J ,a n , b °,b i , b m 」,b m 都是实常数; 将F(s)展开为部分分式。
分以下两种情况讨论。
m,n 是正整数。
按代数定理可①A(s) = 0无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。
i C 2C jC nF(s) 121— s — s i s — S 2s — ss_s nC i(F-1)式中,q,s 2,…,s n 是特征方程 A(s) = 0的根。
C i 为待定常数,称为 可按下式计算:F(s)在S i 处的留数,式中,C =lim (s _sJF (s)S Tic _ B(s) iA(s)s zs iA (s)为A(s)对s 的一阶导数。
根据拉氏变换的性质,从式(4 I l j n C i =L !F (S )】=L 巨一—S — Sj 一 f(t)C in -s it=' Ci e ii =1(F-2)(F-3)F-1 )可求得原函数(F-4)B(s)式中, 其中,& r -(S —S i) (s—s)C if ,s〜) CriS —■S r iG •…©S - s S—S nS i为F(s)的r重根,S r审,…,s n为F(s)的n-r个单根;C r +,…,C n 仍按式(F-2)或(F-3)计算,C r,C rj,…, C i则按下式计算:f(t)为厂c r =lim (s — sj r F(s)T id rC ri =lim [(s -sj F(s)] dss :siC i原函数f (t)二L°〔F(s) I冷冗加(DEi d(7C i _____ . C r i ....(F-5)(s -S i)r 1(s—s i) S —S r*G *…+C nS — S j S —S nt r^ +…+c2t +G e Sit(r-2)! 2 5S i t°e iF-6)欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
拉普拉斯变换及逆变换

第十二章拉普拉斯变换及逆变换拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用。
我们经常应用拉普拉斯变换进行电路的复频域分析。
本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用。
第一节拉普拉斯变换(3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换。
一般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的。
例12.1求斜坡函数()f t at =(0t ≥,a 为常数)的拉氏变换。
解:0000[]()[]pt ptpt pt a a a L at ate dt td e e e dt p p p +∞+∞+∞---+∞-==-=-+⎰⎰⎰二、单位脉冲函数及其拉氏变换在研究线性电路在脉冲电动势作用后所产生的电流时,要涉及到我们要介绍的脉冲函数,在原来电流为零的电路中,某一瞬时(设为0t =)进入一单位电量的脉冲,现要确定电路上的电流()i t ,以()Q t 表示上述电路中的电量,则 由于电流强度是电量对时间的变化率,即t t Q t t Q dt t dQ t i t ∆∆∆)()(lim)()(0-+==→,所以,当0t ≠时,()0i t =;当0t =时,0000→→→→εεεε,即1)]([=t L δ。
例12.3现有一单位阶跃输入0,()1,t u t t <⎧=⎨≥⎩,求其拉氏变换。
解:00011[()]()1[]pt pt pt L u t u t e dt e dt e p p+∞+∞---+∞===-=⎰⎰,(0)p >。
例12.4求指数函数()at f t e =(a 为常数)的拉氏变换。
解:()001[]atat ptp a t L e e e dt e dt p a+∞+∞---===-⎰⎰,()p a >,即类似可得22[sin ](0)L t p p ωωω=>+;22[cos ](0)pL t p p ωω=>+。
第28讲 拉氏变换反变换和运算电路

f(t)=L-1[F(s)]
2、拉普拉斯变换的基本性质
(1)线性性质 (2)微分性质
L[A f1(t) + A f2(t)] = AF (s) + A F (s) 1 2 1 1 2 2
若 L[ f (t )] = F ( s)
S = pi
3、分母多项式具有共轭复根
一对共轭复根为
p1 = α + jω
p 2 = α − jω
K1 K2 F (s) = + S − α − jω S − α + jω
K1 = [( s − α − jω ) F ( s )]s =α + jω N ( s) = / D ( s ) s =α + jω
3 2 3
k11 = [( S − p1 ) F ( S )] S = p1
3
(14-8) 14-
d 3 k12 = [( S − p1 ) F ( S )]s = p1 ds 1 d2 3 k13 = [( S − p1 ) F ( S )]s = p1 2 2 ds
S+4 K1 K 21 K 22 例: + + 2 = S ( S + 1) ( S + 1)2 S ( S + 1)
(3)积分性质
则 L[ f (t)] = sF(s) − f (0− )
/
(4)延迟(平移)性质 延迟(平移) (5)卷积定理
t f (ξ)dξ = F(s) 若 L[ f (t )] = F ( s) 则 L∫ 0− s
若 L[ f (t )] = F ( s) 则 L[ f (t −t0 )] = e−st0 F(s) 若
拉普拉斯变换性质及反演

b p a
p f( ) a
数学物理方法
(7)卷积定理
若 f1 ( p) L[ f1 (t )] , f 2 ( p) L[ f 2 (t )]
t
则 L[ f1 (t )* f 2 (t )] f1 ( p) f 2 ( p) ,其中 积。 在傅里叶变换中我们定义了两个函数的卷积: f1 (t ) * f 2 (t ) f1 ( ) f 2 (t )d
a y ( p) y ( p) 2 2 p p 1
1 1 解得 y ( p ) a ( 2 4 ) p p
1 3 从而 y (t ) a (t t ) 6
数学物理方法
(三)黎曼-梅林反演公式* 在 上两种方 法都不能 求出原函 数 时 , 原 则 上 总 是 可 以 采 用
n
数学物理方法
(4)相似性定理
1 p L[ f (at )] f ( ) a a
(5)位移定理 L[ e t f( t) f ( ] p 请大家仿照傅里叶积分变换验证。
)
计算 eat cos t , e at sin t , eat cht , eat sht 的拉普拉斯变换函数。 解:略。 例 6.2.6
e ap 1 解:由于 的原函数为 H (t ) ,应用延迟定理有 p p 1 的原函数为 H (t a) ,又由位移定理有 的原函 pb bt 数为 e 。应用卷积定理,有
t e ap 1 L [ ] H ( a)e b (t ) d 0 p ( p b)
t 1 1 L [ 2 ] ( )et d t 1 et 0 p p 1 1
6.3 拉普拉斯变换的反演
数学物理方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉普拉斯变换的基本性质、变换及反变换
2.表A-2 常用函数的拉氏变换和z变换表
3. 用查表法进行拉氏反变换
用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设)(s F 是s 的有理真分式
11
10
111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。
按代数定理可将)(s F 展开为部分分式。
分以下两种情况讨论。
① 0)(=s A 无重根
这时,F(s)可展开为n 个简单的部分分式之和的形式。
∑=-=-++-++-+-=n
i i
i n n i i s s c s s c s s c s s c s s c s F 122
11)( (F-1)
式中,n s s s ,,,21 是特征方程A(s)=0的根。
i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i
-=→ (F-2)
或
i
s
s i s A s B c ='=
)()
( (F-3)
式中,)(s A '为)(s A 对s 的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数
[]⎥
⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 11
1
)()(=t
s n i i i
e c -=∑1
(F-4) ②
0)(=s A 有重根
设0)(=s A 有r 重根1s ,F(s)可写为
=
n
n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11
111
111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;
其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:
)()(lim !11)()
(1s F s s ds
d j c r j j s s j
r -=→- (F-5) 原函数)(t f 为
(F-6)。