广东省惠东县大岭镇谭公初级中学七年级数学下册 9.1.1 不等式及其解集导学案(无答案) 新人教版
七年级下册第九章不等式第一节9.1.1不等式及其解集导学案

9.1.1不等式及其解集导学案一、学习目标:1、了解不等式的概念,能用不等式表示简单的不等关系。
2、知道什么是不等式的解,并能判断一个数是否是一个不等式的解。
3、理解不等式的解集,能用数轴正确表示不等式的解集,对于一个较简单的不等式能直接说出它的解集。
4、了解一元一次不等式的概念。
二、学习重点:不等式解集的表示。
三、学习难点:不等式解集的确定。
四、学习过程:(一)预习交流(预习课本P114—115,完成下列问题)1、数量有大小之分,它们之间有相等关系,也有不等关系,请你用恰当的式子表示出下列数量关系:(1)a 是正数 ; (2)a 是负数 ; (3)a 与5的和小于7 ; (4)a 与2的差大于-1 ; 像上面那样,用符号“____”或“____”表示_______关系的式子叫做不等式; 用“____”表示不等关系的式子也是不等式。
2、当x=78时,不等式x ﹥50成立,那么78就是不等式x ﹥50的解。
与方程类似,我们把使不等式______的____________叫做不等式的解。
3、一个含有未知数的不等式的________的解,组成这个不等式的_________。
求不等式的_______的过程叫做解不等式。
4、类似于一元一次方程,含有___________,未知数的次数是____的不等式, 叫做一元一次不等式。
5、对于下列各式中:①3﹥2; ②x≠0; ③a ﹤0; ④x+2=5;⑤2x+xy+y ; ⑥2a +1﹥5; ⑦a+b ﹥0.不等式有______________,一元一次不等式有 __________。
(只填序号)(二)巩固练习(口答)1、下列哪些数值是不等式x+3﹥6的解?哪些不是? -4, 0, 1, 3, 3.2, 8, 12你还能找出这个不等式的其他解吗?这个不等式有多少个解? 2、直接说出不等式的解集(1) x+2>6 (2) 3x>9 (3) x -3>0 (三)合作探究1、认真阅读P115“小贴士”,说出下列数轴所表示解集的不同之处,并与你的同学交流:2、把不等式x>2的解集表示在数轴上,以下表示正确的是( )A B C D 3、直接写出下列不等式的解集,并把解集在数轴上表示出来: (1)x+2﹥6; (2)2x ﹤10; (3)x-2≥0.5.(四)达标测试1、下列数学表达式中,不等式有( )①-3﹤0; ②4x+3y ﹥0; ③x=3; ④x≠2; ⑤x+2﹥y+3 A 、1个. B 、2个. C 、3个. D 、4个. 2、用不等式表示:(1)a 的相反数是正数 ;(2)y 的2倍与1的和大于3 ; 3、直接写出下列不等式的解集,并把解集在数轴上表示出来:x-2≥0。
人教版七年级数学下册 教学设计 9.1.1 第1课时《不等式及其解集》

人教版七年级数学下册教学设计 9.1.1 第1课时《不等式及其解集》一. 教材分析人教版七年级数学下册第9.1.1节《不等式及其解集》是初中数学的基础知识,主要介绍了不等式的概念和如何求解不等式的解集。
通过这一节的学习,学生能够理解不等式的含义,掌握求解不等式解集的方法,并为后续的不等式应用打下基础。
二. 学情分析七年级的学生已经掌握了基本的算术运算和代数知识,具备一定的逻辑思维能力。
但是,对于不等式的概念和解集的求解方法可能较为陌生,需要通过实例和练习来逐步理解和掌握。
三. 教学目标1.了解不等式的概念,理解不等式的含义。
2.学会求解简单的不等式的解集。
3.能够运用不等式解决实际问题。
四. 教学重难点1.不等式的概念和含义。
2.求解不等式解集的方法。
五. 教学方法采用问题驱动法和案例教学法,通过实例和练习来引导学生理解和掌握不等式的概念和解集的求解方法。
同时,利用小组讨论和合作学习,提高学生的参与度和积极性。
六. 教学准备1.PPT课件。
2.练习题和案例。
七. 教学过程1.导入(5分钟)通过PPT展示一些实际问题,如判断两边是否相等,不等式的大小关系等,引导学生思考不等式的概念。
2.呈现(15分钟)介绍不等式的概念和含义,解释不等式的表示方法,如“a < b”表示a 小于b,“a ≥ b”表示a大于等于b。
通过实例和练习,让学生理解和掌握不等式的基本性质。
3.操练(15分钟)让学生分组进行练习,求解一些简单的不等式的解集。
教师巡回指导,解答学生的疑问,并给予反馈和评价。
4.巩固(10分钟)通过PPT展示一些不等式的解集案例,让学生判断和解释其解集的含义。
教师引导学生进行思考和讨论,巩固不等式解集的求解方法。
5.拓展(10分钟)引导学生思考不等式在实际问题中的应用,如判断物体的高度是否超过一定值,计算商品的打折价格等。
学生分组讨论,提出解决方案,并进行分享和交流。
6.小结(5分钟)教师引导学生总结本节课的主要内容和收获,强调不等式和解集的概念和解题方法。
人教版数学七年级下册教学设计9.1.1《 不等式及其解集》

人教版数学七年级下册教学设计9.1.1《不等式及其解集》一. 教材分析9.1.1《不等式及其解集》是人民教育出版社出版的初中数学七年级下册第9章第1节的内容。
本节课主要介绍了不等式的概念、不等式的解集以及不等式的性质。
不等式是数学中的基本概念,它在实际生活和工作中有着广泛的应用。
本节课的内容为学生以后学习代数方程、函数等知识打下基础。
二. 学情分析学生在小学阶段已经接触过一些简单的不等式,如大于、小于、等于等,但对不等式的概念和解集的理解还不够深入。
此外,学生对数学符号的认知程度不同,部分学生可能对不等号的理解有困难。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生逐步理解不等式的概念和解集,提高他们的数学思维能力。
三. 教学目标1.了解不等式的概念,掌握不等式的基本性质。
2.能够求解简单的不等式,理解不等式的解集。
3.培养学生的数学思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.重难点:不等式的概念、不等式的解集、不等式的性质。
2.重点:引导学生理解不等式的概念,掌握不等式的解集。
3.难点:不等式的性质的理解和运用。
五. 教学方法1.采用问题驱动法,引导学生通过思考和讨论,自主探索不等式的概念和解集。
2.运用实例讲解法,结合生活中的实际问题,让学生感受不等式的意义。
3.采用小组合作学习法,培养学生的团队协作能力和沟通能力。
4.运用归纳总结法,引导学生总结不等式的性质,提高学生的数学思维能力。
六. 教学准备1.准备相关的生活实例和数学素材,用于引导学生理解和运用不等式。
2.设计多媒体课件,展示不等式的概念和解集,提高学生的学习兴趣。
3.准备练习题和测试题,用于巩固所学知识,提高学生的应用能力。
七. 教学过程1.导入(5分钟)教师通过展示一些生活实例,如气温、身高等,引导学生思考这些实例中的数量关系,引出不等式的概念。
2.呈现(10分钟)教师通过多媒体课件,呈现不等式的概念和解集的定义,引导学生理解和掌握。
广东省东莞市樟木头中学七年级数学下册《9.1.1 不等式及其解集》教案 (新版)新人教版

《911 不等式及其解集》教案[教学目标]1. 了解不等式概念,理解不等式的解集,能正确表示不等式的解集2. 培养学生的数感,渗透数形结合的思想.[教学重点与难点]重点:不等式的解集的表示.难点:不等式解集的确定.[教学设计][设计说明]一.问题探知某班同学去植树,原计划每位同学植树4棵,但由于某组的10名同学另有任务,未能参加植树,其余同学每位植1树6棵,结果仍未能完成计划任务,若以该班同学的人数为x,此时的x应满足怎样的关系式?依题意得4x>6(x-10)二.不等式的解不等式的解:能使不等式成立的未知数的值,叫不等式的解.解析:不等式的解可能不止一个.例2 下列各数中,哪些是不等是x+1<3的解?哪些不是?-3,-1,0,1,1.5,2.5,3,3.5解:略.练习:1.判断数:-3,-2,-1,0,1,2,3,是不是不等式2x+3<5的解?再找出另外的小于0的解两个.2.下列各数:-5,-4,-3,-2,-1,0,1,2,3,4,5中,同时适合x+5<7和2x+2>0的有哪几个数?三.不等式的解集学生列出不等式,教师注意纠正错误明确验证解的方法,引入不等式的解集概念解析:解集是个范围例3 下列说法中正确的是( )A.x=3是不是不等式2x>1的解B.x=3是不是不等式2x>1的唯一解;C.x=3不是不等式2x>1的解;D.x=3是不等式2x>1的解集2.不等式解集的表示方法例4 在数轴上表示下列不等式的解集(1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1分析:按画数轴,定界点,走方向的步骤答解:注意:1.实心点表示包括这个点,空心点表示不包括这个点2.大于向右走,小于向左走.练习:如图,表示的是不等式的解集,其中错误的是( )。
人教版数学七年级下册9.1.1《不等式及其解集》教学设计1

人教版数学七年级下册9.1.1《不等式及其解集》教学设计1一. 教材分析《不等式及其解集》是人教版数学七年级下册第9.1.1节的内容,主要包括不等式的概念、不等式的解集及其表示方法。
本节内容是学生学习不等式的基础,对后续不等式变形、解不等式组等内容有重要影响。
教材通过例题和练习题,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
二. 学情分析学生在七年级上册已经学习了有理数的概念,对数轴有了一定的了解。
但他们对不等式的概念和解集的表示方法可能还比较陌生。
因此,在教学过程中,需要通过具体例子和实际操作,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
三. 教学目标1.了解不等式的概念,理解不等式解集的含义。
2.学会用数轴表示不等式的解集。
3.能够解简单的不等式。
四. 教学重难点1.不等式的概念及其与等式的区别。
2.不等式解集的含义及其表示方法。
3.解简单的不等式。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索。
2.利用数轴和实际例子,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
3.通过练习题和小组讨论,巩固所学知识,提高解题能力。
六. 教学准备1.教学PPT或黑板。
2.练习题和答案。
3.数轴和标记工具。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索不等式的概念。
例如:“在日常生活中,你遇到过哪些不等式?”让学生举例说明,并解释不等式的含义。
2.呈现(15分钟)讲解不等式的概念,介绍不等式与等式的区别。
通过数轴和实际例子,帮助学生理解和掌握不等式的基本概念和解集的表示方法。
例如,展示数轴,并在数轴上标出不同不等式的解集,让学生观察和理解。
3.操练(15分钟)让学生练习解简单的不等式。
给出一些具体的不等式,要求学生将其解集用数轴表示出来。
例如,解不等式3x > 6,将其解集用数轴表示出来。
4.巩固(10分钟)通过小组讨论和练习题,巩固所学知识。
人教版七年级数学下册《9.1.1不等式及其解集》教学设计导学案教案

人教版七年级数学下册《9.1.1不等式及其解集》教学设计导学案教案人教版七班级数学下册《9.1.1不等式及其解集》教学设计PPT课件导学案教案课题:9.1.1不等式及其解集教学目标1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简约的实际问题,使同学自发地查找不等式的解,会把不等式的解集正确地表示到数轴上;2、经受由详细实例建立不等模型的过程,经受探究不等式解与解集的不同意义的过程,渗透数形结合思想;3、通过对不等式、不等式解与解集的探究,引导同学在独立思索的基础上积极参加对数学问题的争论,培育他们的合作沟通意识;让同学充分体会到生活中到处有数学,并能将它们应用到生活的各个领域。
教学难点正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
知识重点建立方程解决实际问题,会解“a*+b=c*+d”类型的一元一次方程教学过程〔师生活动〕设计理念提出问题多媒体演示:1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么缘由呢?2、一辆匀速行驶的汽车在11:20时距离A地50千米。
要在12:00以前驶过A地,车速应当具备什么条件?假设设车速为每小时*千米,能用一个式子表示吗?通过实例创设情境,从“等”过渡到“不等”,培育同学的观测技能,激发他们的学习爱好.探究新知〔一〕不等式、一元一次不等式的概念1、在同学充分发表自己看法的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“并”表示不等关系的式子也是不等式。
2、以下式子中哪些是不等式?〔1〕a+b=b+a〔2〕-3>-5〔3〕*≠l〔4〕*十36〔5〕2mn〔6〕2*-3上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式.3、小组沟通:说说生活中的不等关系.分组活动.先独立思索,然后小组内相互沟通并做记录,最末各组选派代表发言,在此基础上引出不等号“≥”和“≤”.补充说明:用“≥”和“≤”表示不等关系的式子也是不等式.〔二〕不等式的解、不等式的解集问题1.要使汽车在12:00以前驶过A地,你认为车速应当为多少呢?问题2.车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢?问题3.我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解.刚才同学们所说的这些数,哪些是不等式50的解?问题4,数中哪些是不等式50的解:76,73,79,80,74.9,75.1,90,60你能找出这个不等式其他的解吗?它究竟有多少个解?你从中发觉了什么规律?争论后得出:当*75时,不等式50成立;当*75或*=75时,不等式50不成立。
人教版七年级数学下册9.1.1《不等式及其解集》教学设计

人教版七年级数学下册9.1.1《不等式及其解集》教学设计一. 教材分析《不等式及其解集》是人教版七年级数学下册第9.1.1节的内容,本节内容是在学生已经掌握了整数、分数、小数的基本运算的基础上,引入不等式的概念,让学生了解不等式的定义、性质和求解方法,为后续学习不等式的应用打下基础。
本节教材主要包括以下几个部分:1.不等式的定义:介绍不等式的概念,让学生了解不等式是由不等号连接的两个表达式构成的数学句子。
2.不等式的性质:讲解不等式的基本性质,包括同向不等式的相加、相减、乘除等运算规律。
3.不等式的解集:介绍不等式的解集的概念,讲解求解不等式解集的方法。
二. 学情分析七年级的学生已经具备了基本的数学运算能力,对于新知识有一定的接受能力,但是对不等式的概念和性质可能比较难以理解,需要通过具体的例子和实际操作来帮助学生理解和掌握。
三. 教学目标1.了解不等式的概念,能够正确书写不等式。
2.掌握不等式的基本性质,能够进行简单的同向不等式运算。
3.了解不等式的解集的概念,能够求解简单的不等式解集。
四. 教学重难点1.不等式的定义和性质。
2.不等式的解集的求解方法。
五. 教学方法采用问题驱动的教学方法,通过具体的例子和实际操作,引导学生主动探索和发现不等式的性质和求解方法,注重学生的参与和实践,提高学生的学习兴趣和能力。
六. 教学准备1.教学PPT或者黑板。
2.教学素材和例子。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入不等式的概念,例如:“小明比小红高,小华比小明高,请问谁最高?”让学生思考并回答,引导学生认识到不等式的概念。
2.呈现(10分钟)呈现不等式的定义和性质,通过具体的例子和实际操作,让学生理解和掌握不等式的概念和性质。
3.操练(10分钟)让学生进行不等式的书写和运算练习,老师进行指导和讲解,帮助学生巩固不等式的概念和性质。
4.巩固(10分钟)通过一些练习题,让学生自己独立解决不等式问题,巩固所学的不等式的概念和性质。
2020-2021学年七年级数学人教版下册 9.1.1不等式及其解集 学案

9.1.1 不等式——不等式及其解集班级:_____________ 姓名:_____________观察与思考:现实生活中,数量之间存在着相等与不相等的关系。
例如,1. 小明的身高为155cm,小聪的身高为156cm,则我们可以用不等号“>”或“<”来表示他们的身高之间的关系。
即______>______或______<_______2. 如图所示,处于平衡状态的托盘天平的右盘放上一质量为50g的砝码,左盘放上一个圆球后向左倾斜,问圆球的质量x g 与质量为50g的砝码之间具有怎样关系?归纳1:像156>155,155<156,x>50,这样,我们把用符号“>”或“<”连接而成的式子叫做_____。
像a≠2这样的式子也叫做不等式例题1 (1)判断下列式子是不是不等式:(1)-3>0; (2)4x+3y<0;(3)x=3;(4)x2+xy+y2;(5)x≠5; (6)x+2>y+5。
(2)用不等式表示下列数量关系:①x的5倍大于-7;②a与b的和的一半小于-1;③长、宽分别为xcm,ycm的长方形的面积小于边长为acm的正方形的面积。
变式1 用不等式表示(1)a是正数(2)a是负数(3)a与5的和小于7 (4)a与2的差大于-1(5)a的4倍大于8 (6)a的一半小于3变式2已知一支圆珠笔x元,签字笔与圆珠笔相比每支贵y元. 小华想要买3支圆珠笔和10支签字笔,若付50元仍找回若干元,则如何用含x,y的不等式来表示小华所需支付的金额与50元之间的关系?探究:下面给出的数中,能使不等式x>50成立吗?你还能找出其他的数吗?20,40,50, 100我们曾经学过“使方程两边相等的未知数的值就是方程的解”,与方程类似,归纳2:能使不等式成立的未知数的值叫____________。
代入法是检验某个值是否是不等式的解的简单、实用的方法。
x>50的解:60,73,74.9,75.1,76,79,80,90.你还能找出这个不等式的其他解吗?这个判断下列数中哪些是不等式23不等式有多少个解?(1)你发现了哪些数是这个不等式的解?(2)你从表格中发现了什么规律?归纳3:一般的,一个含有未知数的不等式的所有的解,组成这个不等式的_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式及其解集
学习目标:
1、了解不等式的概念,能用不等式表示简单的不等关系。
2、知道什么是不等式的解,什么是解不等式,并能判断一个数是否是一个不等式的解。
3、理解不等式的解集,能用数轴正确表示不等式的解集,对于一个较简单的不等式能直接说出它的解集。
4、了解一元一次不等式的概念。
学习重点与难点
重点:不等式的解集的表示.
难点:不等式解集的确定.
学习过程
一、课前预习部分
用圈、点、勾、划、记的方法有效预习P121—123,完成下列问题:
1、数量有大小之分,它们之间有相等关系,也有不等关系,请你用恰当的式子表示出下列数量关系:
(1)a与1的和是正数; (2)y的2倍与1的和大于3; (3)x的一半与x的2倍的和是非正数;
(4)c与4的和的30%不大于-2; (5)x除以2的商加上2,至多为5;
(6)a与b两数的和的平方不可能大于3.
解:(1)__________(2)___________(3)_____________(4)___________ (5)_____________(6)
像上面那样,用符号“____”或“____”表示________关系的式子叫做不等式;用“_____”表示不等关系的式子也是不等式。
2、当x=78时,不等式x﹥50成立,那么78就是不等式x﹥50的解。
与方程类似,我们把使不等式______的____________叫做不等式的解。
完成P122思考中提出的问题。
3、一个含有未知数的不等式的________的解,组成这个不等式的_________。
求不等式的_______的过程叫做解不等式。
4、认真阅读P122小贴士,说出下列两个数轴所表示解集的不同之处,并与你的同伴交流:
(1)
(2)
你能画出数轴并在数轴上表示出下列不等式的解集吗?
(1)x﹥ 3 (2)x﹤2 (3)y≥-1
5、类似于一元一次方程,含有___________,未知数的次数是____的不等式,叫做一元一次不等式。
二、课堂探究部分(先独立完成,再小组讨论完善答案)
1、对于下列各式中:①3﹥2;②x≠0;③a﹤0;④x+2=5;⑤2x+xy+y;⑥2a+1﹥5;
⑦a+b﹥0.不等式有______________(只填序号),一元一次不等式有 __________.
2、下列哪些数值是不等式x+3﹥6的解?那些不是?
-4, -2.5, 0, 1, 2.5, 3, 3.2, 4.8, 8, 12 .
你还能找出这个不等式的其他解吗?这个不等式有多少个解?
3、用不等式表示.
(1)a与5的和是正数;(2)b与15的和小于27;
(3)x的4倍大于或等于8;(4)d与e的和不大于0.
4、直接写出下列不等式的解集,并把解集在数轴上表示出来:
(1)x+2﹥6;(2)2x﹤10;(3)x-2≥0.5.
三、自我检测反馈部分(独立完成)
1、下列数学表达式中,不等式有()
①-3﹤0;②4x+3y﹥0;③x=3;④x≠2;⑤x+2﹥y+3
(A) 1个. (B)2个. (C)3个. (D)4个.
2、当x=-3时,下列不等式成立的是()
(A)x-5﹤-8. (B)2x+2﹥0. (C)3+x﹤0. (D)2(1-x)﹥7.
3、用不等式表示:
(1)a的相反数是正数;(2)y的2倍与1的和大于3;
(3)a的一半小于3;(4)d与5的积不小于0;
(5)x的2倍与1的和是非正数.
4、直接写出下列不等式的解集,并把解集在数轴上表示出来:
(1)x+3﹥5;(2)2x﹤8;(3)x-2≥0.
拓展延伸: (选做)
1、不等式x﹤4的非负整数解的个数有()
(A)4个. (B)3个.(C)2个. (D)1个.
2、已知(a-2) -5﹥3是关于x的一元一次不等式试求a的值.
四、小结与反思:
本节课我学会
了:;
我的困惑
是: .。