金属材料结构与组织与性能

合集下载

阐述金属材料组织和性能之间的关系

阐述金属材料组织和性能之间的关系

阐述金属材料组织和性能之间的关系金属材料和其性能在机械热处理加工中非常重要,我国关于这方面书籍很多,就说明了金属材料组织及其性能在机械行业非常重要。

金属材料和热处理主要的研究内容是通过了解和研究金属材料的具体成分含量;金属材料的组织结构和金属材料的性能等这三者之间的变化规律,找出改变金属内部组织的方式方法来改变金属材料的性能和结构的一种物理学理论,由于金属材料和性能是一项非常复杂的研究领域,通常使用和研究起来较为繁琐,文章针对金属材料组织和性能之间的关系,来详细的阐述在机械性能方面两者之间的关联,为我国的机械加工和热处理行业贡献自己的力量。

标签:金属材料;组织性能;机械热处理我们在进行生产过程中,一个非常重要的前提就是生产中应用的原料。

因此现在的机械行工业中很多企业都会在经济条件允许的前提下,准备大量的生产材料,以备不时之需。

金属材料在机械加工行业是非常普遍和重要的生产材料,在很多的行业中都能应用到,例如机械制造业,电力行业等。

金属材料可以在生产过程中提供必要的加工,改良基础。

需要指出的是由于金属材料存在很多性能和类别之间的差异,在机械加工的过程中,要仔细的区分和选择生产过程中的金属材料。

详细的掌握金属材料的各种性能和组织在加工生产过程中有很好的指导意义。

1 金属材料的具体分类和实际应用在机械加工过程中,金属材料是其加工生产的保障,机械加工成品的质量优劣和金属材料有着非常重要的关联。

近些年,我国在金属材料的性能和组织方面的研究已经取得了一定的研究成果,这些成果中有的已经应用到了我国的金属材料加工过程中,为我国的金属材料的加工起到了重要的指导作用。

从我国的金属材料的种类来分析,我国的金属材料主要分为三种,文章针对这三种金属材料的不同进行三方面的分析。

第一个方面是黑色金属材料的具体组成和应用。

第二个方面是有色金属材料的具体组成和应用。

第三个方面是特种金属材料的具体组成和应用。

下面进行详细的分析和论述。

金属材料的微观结构与力学性能

金属材料的微观结构与力学性能

金属材料的微观结构与力学性能金属材料是我们日常生活中经常使用到的一种重要材料,它的力学性能直接决定着其使用价值。

然而,金属材料的微观结构是影响其力学性能的重要因素之一。

因此,了解金属材料的微观结构对于挖掘其潜力具有重要意义。

一、金属材料的组织结构金属材料的组织结构分为三个层次:微观结构、中观结构和宏观结构。

微观结构是由晶体组成的,晶体是由不同的结构单元组成的,包括晶粒、晶界、孪晶等。

中观结构是由晶粒的排列和分布组成的,如晶粒大小、晶粒形状、晶粒取向等。

宏观结构是由各种中观结构构成的,如晶体的尺寸、形状和排列方式等。

晶体是金属材料微观结构的最基本单位,在晶体内部原子是有规律地排列的。

金属材料中晶体是以多面体、圆柱体或板状的形式存在,晶体的大小和形状不同会对金属材料的力学性能产生影响。

晶体的组成通常是由多个原子经过排列形成的,晶体中的原子排列方式和结构不同会影响其力学性能。

此外,晶粒的界面处被称为晶界,晶界的稳定性及其形态对整个材料的力学性能有很大的影响。

二、微观结构对金属材料力学性能的影响1. 晶界影响材料力学性能的强度和韧性,晶界处的塑性变形是材料发生塑性时的一种重要机制,晶界出现裂纹和断裂是材料出现断裂的重要原因之一。

因此,优化金属材料晶界的形态和结构,提高其稳定性,有利于提高材料的整体机械性能。

2. 晶体取向对金属材料力学性能的影响很大。

晶体的取向是指对于某一个方向而言晶体内排列原子的方向性质。

晶体取向的不同会对力学性能产生不同的影响,大多数材料具有各向同性,但某些材料的微观结构有规则地定向排列,称为各向异性。

所有具有各向异性的材料都有一定的单向性质,也就是在某一个方向有更大的强度或韧性。

3. 晶粒的大小和形状对材料的力学性能产生重要影响。

晶粒尺寸大,晶体脆性相对较强,而晶粒尺寸小,其塑性会相对增强。

晶粒形状也会影响晶体的塑性变形,如晶粒呈多面体形状的金属材料相对具有更好的塑性特性。

4. 孪晶结构是一种经常出现在晶体中的微观结构,孪晶结构对于金属材料的塑性行为和断裂行为有重要影响。

长期在高温条件下金属材料组织结构与性能的变化

长期在高温条件下金属材料组织结构与性能的变化

长期在高温条件下金属材料组织结构与性能的变化
首先,金属材料的晶粒会发生长大。

在高温条件下,晶体的原子具有
较高的活动性,原子迁移速度加快,导致晶粒的尺寸逐渐增大。

晶粒的长
大会导致材料的晶界长度减少,晶界的总能量减小,从而提高材料的强度
和韧性。

其次,金属材料的晶界和晶界相会发生变化。

晶界是相邻晶粒之间的
界面,由于晶粒的长大,晶界的总面积减小,这有助于提高材料的力学性能。

同时,在高温条件下,晶界相可能会出现形变和相变。

形变晶界会导
致晶界的变脆和断裂,而相变会导致晶界相在晶界周围形成固相润滑层,
从而减小晶界摩擦,提高材料的抗磨性能。

此外,金属材料的相组成也会有所变化。

在高温条件下,固溶体中的
合金元素可能会发生扩散,从而改变材料的化学组成。

这些化学组成变化
会影响材料的力学性能,如硬度、强度和韧性等。

最后,金属材料的力学性能会发生变化。

在高温条件下,材料的热膨
胀系数增大,导致热膨胀变形增加。

另外,高温会降低材料的强度和硬度,但提高了材料的塑性和韧性。

因此,在高温条件下,金属材料更容易发生
塑性变形和热蠕变。

综上所述,在高温条件下,金属材料的组织结构和性能会发生一系列
变化,主要涉及晶粒、晶界、相组成和力学性能等方面。

这些变化对材料
的性能有着重要影响,了解和研究这些变化对工程应用具有重要意义。

金属材料与合金材料的结构与性能

金属材料与合金材料的结构与性能

金属材料与合金材料的结构与性能金属材料和合金材料是工业中常用的材料类型,它们具有广泛的应用领域和优良的性能。

本文将探讨金属材料和合金材料的结构与性能,以及它们的应用。

一、金属材料的结构与性能金属材料的结构主要由金属原子的排列方式决定。

金属原子由金属键连接在一起,形成晶体结构。

常见的金属结构有面心立方、体心立方和密排六方等。

这些结构都具有较高的结晶度和金属键的强度,使金属材料具有以下性能:1. 优良的导电导热性能:金属材料中的自由电子在外电场或温度梯度下能够自由移动,因此金属具有良好的导电导热性能,可广泛用于电子、电力等领域。

2. 良好的塑性和可加工性:金属材料的晶体结构中存在晶界和位错,使其具有良好的塑性和可加工性,可通过冷、热变形进行塑性变形加工,如拉伸、压缩、锻造等。

3. 高强度和韧性:金属材料的晶界和位错可以阻碍原子滑移,增加其强度和韧性。

此外,金属材料还可以通过热处理等方法增强其强度和韧性。

4. 耐磨蚀和耐腐蚀性:金属材料在一定条件下具有一定的耐磨蚀和耐腐蚀性能,可用于制造机械零部件、化工设备等耐久性要求较高的领域。

二、合金材料的结构与性能合金材料是由两种或更多金属元素形成的固溶体或化合物。

合金材料的结构与性能由原子的尺寸、电子结构和金属间的相互作用等因素决定。

1. 固溶体型合金:固溶体型合金中,多种金属原子在晶格中均匀混合。

这种合金通常具有以下性能:a. 良好的强度和韧性:不同种类的金属原子能够阻碍位错的移动,增加合金的强度和韧性。

b. 改变金属特性:合金中不同金属原子的化学性质和晶体结构的差异,使合金的硬度、磁性、导电性等特性得到改变。

2. 化合物型合金:化合物型合金由两种或多种金属元素形成的化合物组成。

这种合金通常具有以下性能:a. 高硬度和高强度:化合物型合金的晶格中存在复杂的离子键和共价键,使其具有较高的硬度和强度。

b. 特殊的物理特性:由于化合物型合金的晶体结构具有特殊的性质,如形状记忆效应、超导等。

金属材料的结构、组织与性能

金属材料的结构、组织与性能

1. 晶体和金属的特 性
原子在空间呈 规则排列的固体物 质称为“晶体”, 如图1-1a所示。晶 体具有固定的熔点。
图1-1 晶体中原子排列示意图
32
金属原子结合方式-----金属键
金属晶体中,金属原子失去最外层电子变成正离子,每一个正 离子按一定规则排列并在固定位置上作热振动,自由电子在各 正离子间自由运动,并为整个金属所共有,形成带负电的电子 云。正离子与自由电子的相互吸引,将所有的金属原子结合起 来,使金属处于稳定的晶体状态。金属原子的这种结合方式称 为“金属键”。
非晶体的原子则是无规律、无次序地堆积在一起的。
34
2. 晶格、晶胞和晶格常数
为了便于分析晶体中原子排列规律及几何形状,将每一个 原子假设成一个几何点,忽略其尺寸和重量,再用假想线把这 些点连接起来,得到一个表示金属内部原子排列规律的抽象的 空间格子,称为“晶格”,如图1-1b所示。
晶格中各种方位的原子面称为“晶面”,构成晶格的最基 本几何单元称为“晶胞”,如图1-1c所示。晶胞的大小以其各边 尺寸a、b、c表示,称为“晶格常数”,以(A埃 )为单位。 (1埃A =1×10-8 cm)
图1-7 立方晶系的一些晶向指数
36
(2)立方晶系的晶面指数 晶体中各种方位的原子面称为晶面。立方晶系的晶面指数 通常采用密勒指数法确定,即晶面指数是根据晶面与3个坐标 轴的截距来决定。晶面指数形式为(h k l),按如下步骤确定:
1)建坐标;
2)求截距;
3)取倒数并化整,放圆括号
( )内,即得。
图1-11 晶界和亚晶界
44
(2)晶格缺陷
实际金属晶体中,由于结晶条件或加工等的影响,使原子的排列规则受 到破坏,这种不规则的区域称为晶格缺陷。根据其几何特点,可分为三类。

谈谈金属材料的组织与性能的关系

谈谈金属材料的组织与性能的关系

法改变金属材料的 内部组织 ,从而改变性 能的 剂的 晶格里 ,溶 质的原子 ,只不过影响 了原子 基础 理论 。由于理 论性 很 强、抽 象 、内容 又 的排列 ,产生 了歪扭 ,所以它的性能与纯金 属 杂 ,相当一部分 同学难 以理解 。我认 为在这部 相似 。多相合金—— 机械混合物 ,是 由二种以 分教学中 ,应牢牢抓住组织 与性 能 ( 主要指机 上 的相混 合而 成的 ,如铁碳合金中的珠光体 ,
高材 料的强度和硬度。这是提高纯金 属和单 相 等金属材料的牌号 、成分、性能和使用大好基
属 ,其晶格 类型和 品格 常数均不相同 ,其性能 I 纤维化,使品格发生歪扭,产生加工硬化,提
形状以及晶体的缺 陷有关 。细 晶粒金属的强度 组织 强度、硬度的重要途径 。例如钢器皿的加 础 , 金属学 基础和热处 理是 《 属材料与热处 金 比粗晶粒高 ,韧性也好 。冷热 加工后 ,金属材 工 ,就 经常采用这种工艺方法。 料组织结构发生很大变化 ,晶格 歪扭 ,产生纤 维组织 , 从而对机械性能产生较大的影响 。 理 课的 教学难点 , 论性强 、概 念 多。掌握 理
又如,含碳0 7% .7 的珠光体,渗碳体以片状存 细状的粒状渗碳体组成的 回火托氏体 ,得到高 中均 会标 明。因此 ,必须充分理解各机械性能 I
指标 的含义 ,在工作中正确 、合理地选择使用 J 在,但细片状的 ( 索氏体)就比粒状的性能好 强度 、高弹性极限的性能 ;通过淬火—— 高温 I 得多。 回火—— “ 质 “ 调 ,获得细小而均匀的粒状渗 金属材料 。 机 械性 能 与金 属材料 的组 织结 构有 着密 f
热 处理 是 通 过 加 热 、保 温 、冷 却 的 方 组 织结构 , 成分与性 能之间关系的一般规律, 可

金属材料的微观结构与性能

金属材料的微观结构与性能

金属材料的微观结构与性能金属材料是一类常见的构件材料,其具有硬度高、强度大、延展性好等特性,因此得到了广泛应用。

然而,这些特性并非凭空而来,而是由金属材料的微观结构和性能相互关联而成。

本文将探讨金属材料的微观结构与性能之间的关系。

一、金属的结晶结构金属材料是由某些金属元素按照一定比例混合而成的,其晶体结构是由多个原子按照特定规律有序排列而成的。

一般情况下,金属的晶体结构可以分为面心立方体结构、体心立方体结构、六方最密堆积结构等多种类型。

在这些结构中,原子之间的键强度以及原子排列的方式决定了金属材料的硬度、强度等性能特征。

二、晶体缺陷对金属性能的影响微观结构中存在着多种晶体缺陷,如位错、晶界、空洞等,这些缺陷不仅在生产过程中产生,也会在使用过程中逐渐形成。

晶体缺陷的存在常常会影响金属材料的性能。

以位错为例,它是由于晶体中形成了一条断裂层,破坏了晶体原本的完整性,使得位于位错周围的晶体处于应变状态。

当外力作用时,在位错处就容易产生塑性变形。

因此,在晶体缺陷的存在下,金属材料的塑性和韧性能得到了提高。

三、相变与金属材料性能的变化金属材料的微观结构是可以随着温度的变化而发生相应的变化,此时金属材料也会表现出不同的性能特征。

例如在加热过程中,当温度达到一定值,原本的晶体结构会产生相变,晶体结构变得更加有序,同时也伴随着性能的改变。

举个例子,铝被加热到一定温度后,会从面心立方晶体结构相变成为体心立方晶体结构,此时铝材料的硬度和强度会有所提高。

四、微观结构的控制正如上述所示,金属材料的微观结构直接影响着其性能特征。

因此,金属材料的性能控制通常也是对其微观结构的控制。

其中最重要的手段是热处理工艺,通过热加工来改变材料的组织结构和化学成分,以期达到理想的性能目标。

在热处理过程中,对于金属材料中的晶界、位错等缺陷也可通过特定手段进行控制和改善。

总之,金属材料的微观结构与性能的关联是密不可分的。

在日常应用中,我们需注意微观结构的变化,以期最大程度地发挥金属材料的性能。

金属材料的组织结构与性能关系研究

金属材料的组织结构与性能关系研究

金属材料的组织结构与性能关系研究引言:金属材料是工程领域中最为常用的材料之一,其广泛应用于汽车制造、航空航天、电子设备等多个行业。

为了更好地理解金属材料的性能,研究其组织结构与性能关系显得至关重要。

本文将从晶格结构、晶界、晶粒大小、晶体缺陷和相变等方面探讨金属材料的组织结构与性能关系。

一、晶格结构与性能晶格结构是金属材料的基本组织,主要通过晶格常数和晶胞的几何形状来描述。

晶格结构对金属材料的性能有着重要影响。

以钢铁材料为例,不同的晶格结构会导致不同的机械性能。

例如,面心立方结构的钢材具有较好的韧性和可塑性,而体心立方结构的钢材则具有较高的强度和硬度。

二、晶界对性能的影响晶界是相邻晶体之间的界面,其特性对金属材料的性能有着显著影响。

晶界能量高于晶内能量,会导致金属的应力集中,因而减弱其力学性能。

此外,晶界还会引起晶体的变形和断裂,从而影响金属材料的强度和韧性。

因此,控制晶界的形成和特性对于提高金属材料的性能至关重要。

三、晶粒大小对性能的影响晶粒是由大量原子或离子紧密堆积而成的,其大小对金属材料的性能有着重要影响。

晶粒尺寸较大时,金属材料的韧性和可塑性较好,力学性能较弱。

而当晶粒尺寸较小时,金属材料的强度和硬度增加,但韧性和可塑性会降低。

因此,在不同应用需求下,通过调控晶粒大小可以实现对金属材料性能的有效控制。

四、晶体缺陷与性能晶体缺陷是指在晶体中存在的一些结构上的不完整或缺失,如位错、孔洞等。

晶体缺陷会对金属材料的性能产生显著影响。

位错是晶体中常见的晶体缺陷,可以增加金属的塑性和松弛特性。

孔洞则会导致疲劳寿命降低和裂纹扩展加剧。

因此,了解和控制晶体缺陷对于提高金属材料的性能是至关重要的。

五、相变及其对性能的影响相变是金属材料中晶体结构发生变化的过程,会导致材料性能的显著改变。

在相变过程中,晶体的晶格结构、晶粒大小、晶界及缺陷分布都会发生变化,从而影响金属材料的性能。

例如,固溶体的相变可以改变材料的硬度和强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体和非晶体的熔化曲线
金属晶体具有各向异性
非晶体在各个方向上性能完全相同, 这种 性质叫非晶体的各向同性。
在晶体中, 不同晶面和晶向上原子排列的 方式和密度不同, 它们之间的结合力的大小 也不相同, 因而金属晶体不同方向上的性能 不同。这种性质叫做晶体的各向异性。
说明
对于实际使用的金属, 由于其内部有许 许多多个晶粒组成, 每个晶粒在空间分布的 位向不同, 因而在宏观上沿各个方向上的性 能趋于相同, 晶体的各向异性就显示不出来 了。
晶向:通过原子中心的直线为原子列,其代表的方向叫做晶向。
Y
(1)晶面和晶向的表示方法
X
1>立方晶系的晶面表示方法及步骤:
1。规定一空间坐标,使待标定的晶面在 三条坐标轴上有截距或者无穷大。 注意:原点不能选择在欲定晶面上
2。以晶格长度a为长度单位,写出欲 定晶面在三条坐标轴上的截距。
4。截距的倒数化为最小整数。
实际金属中的晶体缺陷
crystal defect
① 点缺陷 ② 线缺陷 ③ 面缺陷 ④ 体缺陷
1)点缺陷( point defect )
• 空位( vacancy ) • 间隙原子( gap atom ) • 置换原子( substitutional
金属材料的结构与 组织和性能
金属材料的结构与组织和性能
本章内容
本章介绍,包括纯金属的晶体结构,晶体 缺陷和合金的结构,金属材料的组织。介 绍金属材料的工艺性能、机械性能和理化 性能。还介绍高分子材料和陶瓷材料的结 构与性能。
学习目标:
本章重点掌握金属材料的晶体结构、晶体 缺陷和合金的结构,了解金属材料的组织 及性能。
十 四 种 空 间 点 阵
三种常见的金属晶体结构(B.C.C、F.C.C、H.C.P) 一、体心立方晶体结构(Body-Centered Cubic) A2
1)具有此结构的典型金属:
钠(Na)、钾(K)、铬(Cr)、钼(Mo)、钨(W)、钒(V) α-Fe等。
1
8
2)主要特征:
➢ 晶胞的特征参3 a数: a = b = c ,α = β = γ = 90 ➢ 晶胞中的原子4 数: n= 8 ×1/8+1= 2个
学习建议:
1.晶体结构部分应弄清三种常见金 属的晶体结构及其特点,应充分发挥空 间想象力。
2.晶面指数及晶向指数的确定在学 习时会感到困难。应掌握常见的晶面和 晶向的表示方法,需要多练多画。
1.金属的晶体结构
化学成分 内部组织
决定
材料的性能
固态物质
聚集状态
晶体 非晶体
1).晶体 ( crystal ) : 物体内部的原子 ( 或分
➢ 晶 胞( unit cell ):能反映晶格特征的最小组成单元。
晶胞的几何特征参数
1×10-10m~ 7×10-10m
c
三棱边长(晶格常数 lattice constant )β α
a、 b、 c 棱边夹角:α、β、γ
γ
a
b
晶系与布拉菲点阵
1855年,法国学者布拉菲(Bravais) 用数学方法证明了空间点阵共有且只能 有十四种,并归纳为七个晶系:
子 ) 在三维空间中 , 按一定 规律作周期性排列的固体。 性质: 固定的熔点; 各向异 性等。 例如 , 所有的金属、 食盐等。
2).非晶体 ( non- crystal ) :
物体内部的原子呈散乱分布,其 物理和力学性能各向同性。例如, 普通玻璃、松香等。
晶态
非晶态
金属的结构
晶态
非晶态
SiO2的结构
3。截距取倒数。
5。将三整数写在圆括号内。
晶面族:在立方晶系中,由于原子的排列具有高度的对称性,往往存在 有许多原子排列完全相同但在空间的位向不同,这些晶面总称为晶面 族。
例如: 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2>立方晶系的晶向表示方法及步骤:
1。规定一空间坐标 注意:原点要选择在欲定晶向的结点上
2。写出该晶向另一结点的空间坐标值
4。将化好的整数记在方括号内
3。将坐标值按比例化为最小整数
晶向族:在立方晶系中,原子排列情况相同但在空间的位向不同,这些晶向总称 为晶面 族。
例如: 100[10]0[01]0[00] 1
密排面和密排方向
不同晶体结构中不同晶面、不同晶向上 原子排列方式和排列密度不一样。
2)主要特征: a=b=c, α=β=γ=90o;
晶胞原子数:8×1/8+6×1/2=4;
原子半径
2a 4
致密度 0.74
空隙半径r4=o.225r;r8=0.414r
配位数12
三、密排六方晶体结构(Hexagonal Close-Packed) A3
1)具有此结构的典型金属:
镁(Mg)、镉(Cd)、锌(Zn)、铍(Be)。
1.1 纯金属的晶体结构
可用X射线结构分析技术进行测定
几个重要定义Leabharlann ➢ 晶体结构(Crystal Structure ):晶体中原子(离子或分子)规 则排列的方式。
➢ 晶 格(crystal lattice):为了研究的方便,假设通过金属原子 (离子)的中心划出许多空间直线,这些直线形成的空间框架。
在体心立方晶格中,原子密度最大的晶 面为{110}, 称为密排面;
原子密度最大的晶向为<111>, 称为密 排方向。
在面心立方晶格中, 密排面为{111}, 密 排方向为<110>。
金属晶体的特性
(1) 金属晶体具有确定的熔点
纯金属进行缓慢加热时, 达到一定的温度, 固态金属会熔化成为液态金属。在熔化过 程中, 温度保持不变。其熔化温度(T0)称为 熔点。而非晶体材料在加热时, 由固态转变 为液态时, 其温度逐渐变化。
➢ 原子半径 3 a 4
3a
➢ 致密度 0.68
4
➢ 空隙半径 r4=0.29r原子;r8=0.15r原子 ➢ 配位数8
二、面心立方晶体结构(face-Centered Cubic) A1
1)具有此结构的典型金属: 铝(Al)、铜(Cu)、铂(Pt)、镍(Ni)、金(Au)、银 (Ag)、γ-Fe等。
2)主要特征:
晶格常数:正六边形边长a,高为c,侧面之间夹角120o,
侧底面间夹角90o。 c/a = 1.633
晶胞原子数:2×1/2+12×1/6+3=6;
原子半径 致密度 0.74
2 4
a
空隙半径r4=o.225r;r8=0.414r
配位数12
金属晶体中的晶面和晶向
Z
晶面:通过晶体中原子中心的平面。
相关文档
最新文档