线性代数重点难点
线性代数各章节内容重点难点(大一第一学期)

线性代数各章节内容重点难点(大一第一
学期)
教学难点:向量空间、子空间、基、维数等概念的理解和应用,向量的内积和正交矩阵的性质的证明。
第一章:行列式
本章主要介绍了行列式的定义、性质和运算,以及克莱姆法则的应用。
学生需要了解行列式的基本概念和性质,掌握二、三、四阶行列式的计算方法,以及简单的n阶行列式的计算方法。
此外,学生还需要理解克莱姆法则的结论,并会应用于实际问题中。
本章教学难点在于行列式性质的证明。
第二章:矩阵
本章主要介绍了矩阵的概念和各种运算及其规律,包括单位矩阵、对角矩阵、三角矩阵、对称矩阵等的性质,矩阵的线性运算、乘法、转置等,以及逆矩阵、伴随矩阵、初等变换、矩阵等价、矩阵秩等概念和方法。
学生需要掌握这些概念和方法,并能够灵活运用于实际问题中。
本章教学难点在于矩阵可
逆的充分必要条件的证明,初等矩阵及其性质,以及分块矩阵及其运算。
第三章:向量
本章主要介绍了向量的概念和相关性质,包括向量组的线性相关与线性无关的概念和性质,向量组的极大线性无关组的概念,向量组的等价和向量组的秩的概念,向量组的秩与矩阵的秩之间的关系,以及向量空间、子空间、基、维数等概念和向量的内积、正交矩阵等性质。
学生需要掌握这些概念和方法,并能够灵活运用于实际问题中。
本章教学难点在于向量空间、子空间、基、维数等概念的理解和应用,以及向量的内积和正交矩阵的性质的证明。
《线性代数》教案

《线性代数》教案一、引言1. 课程目标:使学生理解线性代数的基本概念,掌握线性方程组的求解方法,了解矩阵和行列式的基本性质,培养学生的数学思维能力和解决问题的能力。
2. 教学内容:本章主要介绍线性代数的基本概念、线性方程组的求解方法、矩阵和行列式的基本性质。
3. 教学方法:采用讲授法、案例分析法、讨论法等多种教学方法,引导学生主动探究、积极思考。
二、线性方程组1. 教学目标:使学生理解线性方程组的含义,掌握线性方程组的求解方法,能够运用线性方程组解决实际问题。
2. 教学内容:(1)线性方程组的概念及其解的含义;(2)线性方程组的求解方法(高斯消元法、矩阵法等);(3)线性方程组在实际问题中的应用。
3. 教学方法:通过具体案例分析,引导学生理解线性方程组的概念,运用高斯消元法和矩阵法求解线性方程组,并讨论线性方程组在实际问题中的应用。
三、矩阵及其运算1. 教学目标:使学生理解矩阵的概念,掌握矩阵的运算方法,了解矩阵在数学和实际中的应用。
2. 教学内容:(1)矩阵的概念及其表示方法;(2)矩阵的运算(加法、数乘、乘法);(3)矩阵的其他相关概念(逆矩阵、转置矩阵等);(4)矩阵在数学和实际中的应用。
3. 教学方法:通过具体的例子,引导学生理解矩阵的概念,掌握矩阵的运算方法,探讨矩阵在其他相关概念中的应用,并了解矩阵在数学和实际中的重要作用。
四、行列式1. 教学目标:使学生理解行列式的概念,掌握行列式的计算方法,了解行列式在线性方程组求解中的应用。
2. 教学内容:(1)行列式的概念及其表示方法;(2)行列式的计算方法(按行(列)展开、性质的应用等);(3)行列式在线性方程组求解中的应用。
3. 教学方法:通过具体的例子,引导学生理解行列式的概念,掌握行列式的计算方法,并了解行列式在线性方程组求解中的应用。
五、线性空间与线性变换1. 教学目标:使学生了解线性空间的概念,掌握线性变换的定义和性质,了解线性变换在数学和实际中的应用。
线性代数教案全(同济大学第六版)

线性代数教案第(1)次课授课时间()1.教学内容: 二、三阶行列式的定义;全排列及其逆序数;阶行列式的定义2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.基本内容备注第一节 二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。
设二元线性方程组 ⎩⎨⎧=+=+22222211212111b x a x a b x a x a用消元法,当021122211≠-a a a a 时,解得211222111212112211222112121221,a a a a b a b a x a a a a b a b a x --=--=令2112221122211211a a a a a a a a -=,称为二阶行列式 ,则如果将D 中第一列的元素11a ,21a 换成常数项1b ,2b ,则可得到另一个行列式,用字母1D 表示,于是有2221211a b a b D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。
同理将 中第二列的元素a 12,a 22 换成常数项b1,b2 ,可得到另一个行列式,用字母 表示,于是有2121112b a b a D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。
于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==D D x D D x 2211 其中0≠D例1. 解线性方程组 .1212232121⎪⎩⎪⎨⎧=+=-x x x x 同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a用消元法解得定义 设有9个数排成3行3列的数表333231232221131211a a a a a a a a a 记 333231232221131211a a a a a a a a a D =322113312312332211a a a a a a a a a ++=332112322311312213a a a a a a a a a ---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆: 从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即例2.计算三阶行列式 .(-14) 例3.求解方程 ( ) 例4.解线性方程组 解 先计算系数行列式573411112--=D 069556371210≠-=----+-= 再计算 321,,D D D515754101121-=--=D ,315534011222=--=D ,55730112123=---=D得 23171==D D x ,69312-==D D y ,6953-==D D z第( 2 )次课授课时间()第( 3 )次课授课时间()1.教学内容: 行列式按行(列)展开;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;教学手段: 黑板讲解与多媒体演示.基本内容备注第5节 行列式按行(列)展开定义 在 阶行列式中, 把元素 所处的第 行、第 列划去, 剩下的元素按原排列构成的 阶行列式, 称为 的余子式, 记为;而 称为 的代数余子式.引理 如果 阶行列式中的第 行除 外其余元素均为零, 即: .则: .证 先证简单情形:再证一般情形:定理 行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和, 即按行: 按列: 证:(此定理称为行列式按行(列)展开定理)nnn n ini i n a a a a a a a a a D212111211000000+++++++++=nnn n in n nnn n i n nn n n i n a a a a a a a a a a a a a a a a a a a a a 21112112121121121111211000000+++=).,2,1(2211n i A a A a A a in in i i i i =+++=例1 : . 解:例2: 21122112----=n D解: 21122112----=n D 211221100121---=+++nr r)()()()()()21331122213311n n n n n n n x x x x x x x x x x x -----, 并提出因子 )()2321111--n n n x x x x x x()1-n 阶范德蒙行列式(1n x x -行列式一行(列)的各元素与另一行(列)对应各元素的代数余子式乘积之和为零第( 4 )次课授课时间()1.教学内容: 克拉默法则;2.时间安排: 2学时;教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.4.教学手段:黑板讲解与多媒体演示.基本内容备注第(5)次课授课时间()1.教学内容: 矩阵;矩阵的运算;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示。
《线性代数》教案

《线性代数》教案一、教学目标1. 知识与技能:(1)理解线性代数的基本概念,如向量、矩阵、行列式等;(2)掌握线性方程组的求解方法,如高斯消元法、矩阵的逆等;(3)熟悉线性代数在实际问题中的应用。
2. 过程与方法:(1)通过实例讲解,培养学生的空间想象能力;(2)运用数学软件或工具,提高学生解决实际问题的能力;(3)引导学生运用线性代数的知识,分析、解决身边的数学问题。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)感受数学在生活中的重要性,培养学生的应用意识;(3)引导学生树立正确的数学观念,克服对数学的恐惧心理。
二、教学内容1. 第一章:向量(1)向量的概念及几何表示;(2)向量的线性运算;(3)向量的数量积与向量垂直;(4)向量的坐标表示与运算。
2. 第二章:矩阵(1)矩阵的概念与运算;(2)矩阵的行列式;(3)矩阵的逆;(4)矩阵的应用。
3. 第三章:线性方程组(1)线性方程组的解法;(2)高斯消元法;(3)矩阵的逆与线性方程组的解;(4)线性方程组的应用。
4. 第四章:矩阵的特征值与特征向量(1)特征值与特征向量的概念;(2)矩阵的特征值与特征向量的求解;(3)矩阵的对角化;(4)矩阵的特征值与特征向量的应用。
5. 第五章:二次型(1)二次型的概念;(2)二次型的标准形;(3)二次型的判定;(4)二次型的应用。
三、教学方法1. 采用启发式教学,引导学生主动探索、思考;2. 结合实例讲解,培养学生的空间想象能力;3. 利用数学软件或工具,提高学生解决实际问题的能力;4. 组织课堂讨论,促进学生交流与合作;5. 注重练习与反馈,巩固所学知识。
四、教学评价1. 平时成绩:课堂表现、作业、小测验等;2. 期中考试:检测学生对线性代数知识的掌握程度;3. 期末考试:全面考察学生的线性代数知识、技能及应用能力。
五、教学资源1. 教材:《线性代数》;2. 辅助教材:《线性代数学习指导》;3. 数学软件:如MATLAB、Mathematica等;4. 网络资源:相关在线课程、教学视频、练习题等。
大学数学说课稿线性代数基础教学

大学数学说课稿线性代数基础教学大学数学说课稿:线性代数基础教学一、引言数学作为一门基础学科,对于大学生的综合素质培养具有重要作用。
而线性代数作为数学的重要分支之一,是理工科专业以及计算机科学等领域的基础课程,对学生培养抽象思维、逻辑思维和问题解决能力有着重要意义。
本次说课将结合大学线性代数教学的特点,着重介绍线性代数基础教学的流程和方法。
二、教学目标1. 知识目标:使学生掌握线性代数基础知识,包括向量、矩阵、行列式等内容;2. 能力目标:培养学生抽象思维、逻辑思维和问题解决能力;3. 情感目标:激发学生对数学的兴趣,培养学生的数学思维能力。
三、教学重点与难点1. 教学重点:向量空间的定义与性质、线性方程组的求解方法;2. 教学难点:线性空间的概念理解、线性变换的理解与应用。
四、教学内容与教学方法1. 教学内容:(1) 向量空间的定义与性质:向量的线性组合、线性相关性与线性无关性等;(2) 线性方程组的求解方法:高斯消元法、矩阵的初等变换等;2. 教学方法:(1) 讲授法:结合具体例子和图示,介绍向量空间的定义与性质;(2) 实例演练法:通过解决一些实际问题,巩固学生对线性方程组求解方法的理解与应用能力。
五、教学流程1. 导入:通过提问或引用实例,引发学生对线性代数的兴趣,了解线性代数在现实生活中的应用;2. 知识点讲解:(1) 向量空间的定义与性质:通过讲解向量的线性组合、线性相关性与线性无关性等概念,引导学生理解向量空间的概念;(2) 线性方程组的求解方法:通过讲解高斯消元法、初等变换等方法,指导学生掌握线性方程组的求解过程;3. 实例演练:(1) 向量空间实例:通过具体的向量空间实例,引导学生应用向量空间的定义与性质,进行相关练习;(2) 线性方程组实例:选择一些简单的线性方程组实例,与学生一起进行高斯消元法和初等变换的演练;4. 总结与拓展:(1) 总结本节课的教学内容,强调学生应掌握的重要概念和解题技巧;(2) 拓展教学内容,提出一些相关的数学问题,激发学生的思考和求解能力。
No.1 线性代数重点难点考点 矩阵与行列式

A 可逆的充要条件 A ≠ 0 凡
5
求逆矩
的方法 矩 ,且 A ≠ 0 ,则 A
−1
伴随矩
法 设 A是n
=
1 * A , A
中伴随矩
A* 定
A11 A * A = 12 ⋮ A1n
6 克拉默法则
A21 ⋯ A22 ⋮ A2 n
An1 ⋯ An 2 ⋱ ⋮ ⋯ Ann
对 矩
, 则满足
aij = a ji
(i, j = 1, 2,⋯ , n) .
n
方 ,
元素以 对角线 对 轴对应元素 互 相反数, 则
A
反对
a11 a21 矩 ,即若 A = ⋮ an1
若A
⋯ a1n ⋯ a2 n ⋱ ⋮ ⋯ ann ⋯ a1n ⋯ a2n ⋱ ⋮ ⋯ a nn
0
⋯
0
det A =
a21 a22 ⋯ 0 = a11a22 ⋯ ann ⋮ ⋮ ⋱ ⋮ an1 an 2 ⋯ ann a11 a12 ⋯ a1n a22 ⋯ a2 n = a11a22 ⋯ ann ⋮ ⋱ ⋮ 0 ⋯ ann
角形行列式
det A =
0 ⋮ 0
工
行列式的性质
性质 1凡1 行列式 它的转置行列式相等,即 (det A) T = det A 性质 1凡工 n 行列式对任意一行按 式展开, 值相等,即
k =1
矩 记 方
的转置
设矩
A = (aij ) m×n ,把 A 的行 列互换所得到的矩
满足 A = A 的矩 方 ,则 A 的 m 次幂 A
m m −1 m
A 的转置矩 ,
线性代数课程教学总结8篇

线性代数课程教学总结8篇篇1一、引言线性代数是高等教育中非常重要的数学课程,对于培养学生的逻辑思维、空间想象和计算能力具有不可替代的作用。
本学期线性代数课程的教学工作已经圆满结束,为了更好地提高教学质量和效果,现对本学期的教学工作进行全面的总结和反思。
二、教学内容与方法本学期线性代数课程的教学内容包括矩阵与行列式、向量与空间解析几何、线性方程组、特征值与矩阵对角化等章节。
1. 教学内容在教学内容上,我们严格按照教学大纲的要求,注重基础知识的讲解和巩固。
同时,根据学生的学习情况,适度调整教学进度和难度,确保大多数学生能够跟上课程的进度。
2. 教学方法在教学方法上,我们采用了讲授、讨论、练习相结合的方法。
课堂上,老师通过讲解、演示和互动,帮助学生理解和掌握基本概念和方法。
课后,学生通过完成作业和参加讨论,加深对所学知识的理解和运用。
三、教学效果与反思1. 教学效果通过本学期的教学,大多数学生对线性代数的基本概念和方法有了较为深刻的理解,能够熟练掌握矩阵运算、向量运算、线性方程组求解等基本技能。
同时,学生的逻辑思维能力和空间想象力也得到了较好的培养。
2. 反思在教学过程中,我们也发现了一些问题。
首先,部分学生对线性代数的概念和方法的掌握不够扎实,需要加强对基础知识的巩固和练习。
其次,部分学生的学习态度不够积极,需要加强对学生的学习引导和激励。
最后,教师的教学方法和手段还需要不断改进和创新,以适应学生的学习需求和特点。
四、改进措施与建议针对以上问题,我们提出以下改进措施与建议:1. 加强基础知识的巩固和练习。
可以通过增加课堂互动、布置适量的课后作业、组织定期的复习和测试等方式,帮助学生巩固所学知识。
2. 加强对学生的学习引导和激励。
可以通过组织小组讨论、开展课外科技活动、设置奖学金等方式,激发学生的学习兴趣和动力。
3. 改进教学方法和手段。
可以采用线上教学与线下教学相结合的方式,利用现代化的教学手段,提高教学效果和效率。
《线性代数》 线性方程组

A 2
5
3
③+①(-3) 0
1
1
3 8
0 1 6
③+②(-1)
1
0
3 1
2
1
0 0 5
对于齐次线性方程组,要使其有非零解,
则要求: 秩r(A)n 3
故 5 = , 0 , = 5 时 当 即 r A 2 , 3
此时方程组有非零解。 这时系数矩阵变为:
1 3 2
如果常数项 b1,b2,,bm不全为0,则 称为:非齐次线性方程组。
5、方程组的解:
方程组的解是满足方程组的未知量的
一组取值: x 1 c 1 ,x 2 c 2 , ,x n c n .
也可记c1为 ,c2,: ,cn) (
例如:
显然,
5x1 x2 2x3 0 2x1 x2 x3 0 9x1 2x2 5x3 0
经济数学基础
《线性代数》
第三章 线性方程组
本章重点:
•线性方程组的解的判定和求法
本章难点:
•解的判定定理
一、线性方程组的有关概念
1、n元线性方程组为:
a11x1 a12x2 a1nxn b1,
a21x1 a12x2 a1nxn b2,
am1x1 am2x2 amnxn bm.
ai: j 第 i个方,第 程 j个未知 xj的量 系数;
1 1 0 x1 1
1
0
2x2
2
0 3 4 x3 3
由线性方程组可惟一确定增广矩阵;反之 由增广矩阵,也可以惟一确定线性方程组。
【例2】已知方程组的增广矩阵如下,试写出
它的线性方程组
1 1 0 1
A 1 0 2 2
【解】:x1x2 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自考《线性代数》重难点解析2011-02-17 11:09:49 | 作者: min | 来源: 考试大 | 查看:第一章行列式一、重点1、理解:行列式的定义,余子式,代数余子式。
2、掌握:行列式的基本性质及推论。
3、运用:运用行列式的性质及计算方法计算行列式,用克莱姆法则求解方程组。
二、难点行列式在解线性方程组、矩阵求逆、向量组的线性相关性、求矩阵的特征值等方面的应用。
三、重要公式1、若A为n阶方阵,则│kA│= kn│A│2、若A、B均为n阶方阵,则│AB│=│A│。
│B│3、若A为n阶方阵,则│A*│=│A│n-1若A为n阶可逆阵,则│A-1│=│A│-14、若A为n阶方阵,λi(i=1,2,…,n)是A的特征值,│A│=∏λi四、题型及解题思路1、有关行列式概念与性质的命题2、行列式的计算(方法)1)利用定义2)按某行(列)展开使行列式降阶3)利用行列式的性质①各行(列)加到同一行(列)上去,适用于各列(行)诸元素之和相等的情况。
②各行(列)加或减同一行(列)的倍数,化简行列式或化为上(下)三角行列式。
③逐次行(列)相加减,化简行列式。
④把行列式拆成几个行列式的和差。
4)递推法,适用于规律性强且零元素较多的行列式5)数学归纳法,多用于证明3、运用克莱姆法则求解线性方程组若D =│A│≠0,则Ax=b有唯一解,即x1=D1/D,x2= D2/D,…,xn= Dn/D其中Dj是把D中xj的系数换成常数项。
注意:克莱姆法则仅适用于方程个数与未知数个数相等的方程组。
4、运用系数行列式│A│判别方程组解的问题1)当│A│=0时,齐次方程组Ax=0有非零解;非齐次方程组Ax=b不是唯一解(可能无解,也可能有无穷多解)2)当│A│≠0时,齐次方程组Ax=0仅有零解;非齐次方程组Ax=b有唯一解,此解可由克莱姆法一、重点1、理解:矩阵的定义、性质,几种特殊的矩阵(零矩阵,上(下)三角矩阵,对称矩阵,对角矩阵,逆矩阵,正交矩阵,伴随矩阵,分块矩阵)2、掌握:1)矩阵的各种运算及运算规律2)矩阵可逆的判定及求逆矩阵的各种方法3)矩阵的初等变换方法二、难点1、矩阵的求逆矩阵的初等变换2、初等变换与初等矩阵的关系三、重要公式及难点解析1、线性运算1)交换律一般不成立,即AB≠BA2)一些代数恒等式不能直接套用,如设A,B,C均为n阶矩阵(A+B)2=A2+AB+BA+B2≠A2+2AB+B2(AB)2=(AB)(AB)≠A2B2(AB)k≠AkBk(A+B)(A-B)≠A2-B2以上各式当且仅当A与B可交换,即AB=BA时才成立。
3)由AB=0不能得出A=0或B=04)由AB=AC不能得出B=C5)由A2=A不能得出A=I或A=06)由A2=0不能得出A=07)数乘矩阵与数乘行列式的区别2、逆矩阵1)(A-1)-1=A2)(kA)-1=(1/k)A-1,(k≠0)3)(AB)-1=B-1A-14)(A-1)T=(AT)-15)│A-1│=│A│-13、矩阵转置1)(AT)T=A2)(kA)T=kAT,(k为任意实数)3)(AB)T=BTAT4)(A+B)T=AT+BT4、伴随矩阵1)A*A=A A*=│A│I (AB)*=B*A*2)(A*)*=│A│n-2 │A*│=│A│n-1 ,(n≥2)3)(kA)*=kn-1A* (A*)T=(AT)*4)若r(A)=n,则r (A*)=n若r(A)=n-1,则r (A*)=1若r(A)<n-1,则r (A*)=05)若A可逆,则(A*)-1=(1/│A│)A,(A*)-1=(A-1)*,A*=│A│A-15、初等变换(三种)1)对调二行(列)2)用k(k≠0)乘以某行(列)中所有元素3)把某行(列)的元素的k倍加至另一行(列)的对应元素注意:用初等变换①求秩,行、列变换可混用②求逆阵,只能用行或列变换③求线性方程组的解,只能用行变换6、初等矩阵1)由单位阵经过一次初等变换所得的矩阵2)初等阵P左(右)乘A,所得PA(AP)就是A作了一次与P同样的行(列)变换3)初等阵均可逆,且其逆为同类型的初等阵E-1ij=Eij,E(-1)i(k)=Ei(1/k),E(-1)ij(k)=Eij(-k)7、矩阵方程1)含有未知矩阵的等式2)矩阵方程有解的充要条件AX=B有解<==>B的每列可由A的列向量线性表示<==>r(A)=r(A┆B)四、题型及解题思路1、有关矩阵的概念及性质的命题2、矩阵的运算(加法、数乘、乘法、转置)3、矩阵可逆的判定n阶方阵A可逆<==>存在n阶方阵B,有AB=BA=I <==>│A│≠0<==>r(A)=n<==>A的列(行)向量组线性无关<==>Ax=0只有零解<==>任意b,使得Ax=b总有唯一解<==>A的特征值全不为零4、矩阵求逆1)定义法:找出B使AB=I或BA=I2)伴随阵法:A-1=(1/│A│)A*注意:用该方法求逆时,行的代数余子式应竖着写在A*中,计算Aij时不要遗漏(-1)i+j,当n>3时,通常用初等变换法。
3)初等变换法:对(A┆I)只用行变换化为(I┆A-1)4)分块矩阵法5、解矩阵方程AX=B1)若A可逆,则X=A-1B,可先求出A-1,再作乘法A-1B求出X2)若A可逆,可用初等变换法直接求出X(A┆B)初等行变换(I┆X)3)若A不可逆,则可设未知数列方程用高斯消元法化为阶梯型方程组,然后对每列常数项分别求解。
一、重点1、理解:向量、向量运算以及向量的线性组合与线性表出,极大线性无关组的概念,线性相关与线性无关的概念,向量组的秩的概念,矩阵的秩的概念及性质,基础解系的概念。
2、掌握:向量的运算及运算规律,矩阵秩的计算,齐次、非齐次线性方程组解的结构。
3、运用:线性相关、线性无关的判定,线性方程组解的判断,齐次、非齐次线性方程组的解法。
二、难点线性相关、线性无关的判定。
向量组的秩与矩阵的秩的关系。
方程组与向量组线性表示及秩之间的联系。
三、重点难点解析1、n维向量的概念与运算1)概念2)运算若α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T①加法:α+β=(a1+b1 ,a2+b2 ,…,an+bn)T②数乘:kα=(ka1,ka2,…,kan)T③内积:(α。
β)=a1b1+a2b2+,…,+anbn=αTβ=βTα2、线性组合与线性表出3、线性相关与线性无关1)概念2)线性相关与线性无关的充要条件①线性相关α1,α2,…,αs线性相关<==>齐次方程组(α1,α2,…,αs)(x1,x2,…,xs)T=0有非零解<==>向量组的秩r(α1,α2,…,αs)<s (向量的个数)<==>存在某αi(i=1,2,…,s)可由其余s-1个向量线性表出特别的:n个n维向量线性相关<==>│α1α2…αn│=0n+1个n维向量一定线性相关②线性无关α1,α2,…,αs线性无关<==>齐次方程组(α1,α2,…,αs)(x1,x2,…,xs)T=0只有零解<==>向量组的秩r(α1,α2,…,αs)=s (向量的个数)<==>每一个向量αi(i=1,2,…,s)都不能用其余s-1个向量线性表出③重要结论A、阶梯形向量组一定线性无关B、若α1,α2,…,αs线性无关,则它的任一个部分组αi1,αi2,…,αi t必线性无关,它的任一延伸组必线性无关。
C、两两正交,非零的向量组必线性无关。
4、向量组的秩与矩阵的秩1)极大线性无关组的概念2)向量组的秩3)矩阵的秩①r(A)=r(AT)②r(A+B)≤r(A)+r(B)③r(kA)=r(A),k≠0④r(AB)≤min(r(A),r(B))⑤如A可逆,则r(AB)=r(B);如B可逆,则r(AB)=r(A)⑥A是m×n阵,B是n×p阵,如AB=0,则r(A)+r(B)≤n4)向量组的秩与矩阵的秩的关系①r(A)=A的行秩(矩阵A的行向量组的秩)=A的列秩(矩阵A的列向量组的秩)②经初等变换矩阵、向量组的秩均不变③若向量组(Ⅰ)可由(Ⅱ)线性表出,则r(Ⅰ)≤r(Ⅱ)。
特别的,等价的向量组有相同的秩,但秩相同的向量组不一定等价。
5、基础解系的概念及求法1)概念2)求法对A作初等行变换化为阶梯形矩阵,称每个非零行中第一个非零系数所代表的未知数是主元(共有r(A)个主元),那么剩于的其他未知数就是自由变量(共有n- r(A)个),对自由变量按阶梯形赋值后,再带入求解就可得基础解系。
6、齐次方程组有非零解的判定1)设A是m×n矩阵,Ax=0有非零解的充要条件是r(A)<n,亦即A的列向量线性相关。
2)若A为n阶矩阵,Ax=0有非零解的充要条件是│A│=03)Ax=0有非零解的充分条件是m<n,即方程个数<未知数个数7、非齐次线性方程组有解的判定1)设A是m×n矩阵,Ax=b有解的充要条件是系数矩阵A的秩等于增广矩阵(A 增)的秩,即r(A)=r(A增)2)设A是m×n矩阵,方程组Ax=b①有唯一解<==> r(A)=r(A增)=n②有无穷多解<==> r(A)=r(A增)<n③无解<==> r(A)+1=r(A增)8、非齐次线性方程组解的结构如n元线性方程组Ax=b有解,设,η2,…,ηt是相应齐次方程组Ax=0的基础解系,ξ是Ax=b的一个解,则k1η1+k2η2+…+ktηt+ξ是Ax=b的通解。
1)若ξ1,ξ2是Ax=b的解,则ξ1-ξ2是Ax=0的解2)若ξ是Ax=b的解,η是Ax=0的解,则ξ+kη仍是Ax=b的解3)若Ax=b有唯一解,则Ax=0只有零解;反之,当Ax=0只有零解时,Ax=b 没有无穷多解(可能无解,也可能只有唯一解)四、题型及解题思路1、有关n维向量概念与性质的命题2、向量的加法与数乘运算3、线性相关与线性无关的证明1)定义法设k1α1+k2α2+…+ksαs=0,然后对上式做恒等变形(要向已知条件靠拢)①由B=C可得AB=AC,因此,可按已知条件的信息对上式乘上某个A②展开整理上式,直接用已知条件转化为齐次线性方程组,最后通过分析论证k1,k2,…,ks的取值,得出所需结论。
2)用秩(等于向量个数)3)齐次方程组只有零解4)反证法4、求给定向量组的秩和极大线性无关组多用初等变换法,将向量组化为矩阵,通过初等变换来求解。
5、求矩阵的秩常用初等变换法。
6、求解齐次线性方程组与非齐次线性方程组。