GPS单点定位实验报告
gps实验报告

gps实验报告GPS实验报告。
一、实验目的。
本实验旨在通过对GPS(全球定位系统)的原理和使用进行深入研究,掌握GPS的工作原理、定位原理和精度控制方法,以及GPS在实际应用中的一些特点和限制。
二、实验原理。
GPS是由24颗卫星组成的卫星导航系统,其中包括21颗工作卫星和3颗备用卫星。
这些卫星以6个轨道面,每个面上有4颗卫星的方式分布在大气层之外的轨道上,以提供全球范围的导航服务。
GPS接收机接收来自卫星的信号,并计算信号传播时间来确定自身的位置。
通过同时接收多颗卫星的信号,可以实现三维定位和速度测量。
三、实验内容。
1. GPS接收机的基本使用,打开GPS接收机,等待接收卫星信号并进行定位,观察定位结果的精度和稳定性。
2. GPS定位精度的影响因素,在不同环境条件下进行GPS定位实验,观察信号强度、遮挡物、大气层等因素对定位精度的影响。
3. GPS定位的实际应用,通过实际场景模拟,测试GPS在城市、山区、森林等不同环境下的定位效果,并对比不同场景下的定位精度和稳定性。
四、实验结果与分析。
经过一系列实验,我们得出以下结论:1. GPS定位精度受到环境因素的影响较大,如建筑物、树木等遮挡物会导致信号弱或者反射,从而影响定位精度。
2. 在城市环境中,由于高楼大厦的遮挡和信号反射,GPS定位精度可能会受到较大影响,定位结果可能出现偏移。
3. 在山区和森林等复杂环境中,GPS定位精度也会受到影响,但相对于城市环境,精度可能会更高一些。
五、实验总结。
通过本次实验,我们对GPS的工作原理和定位精度有了更深入的了解。
在实际应用中,我们需要注意环境因素对定位精度的影响,合理选择使用场景,以获得更准确的定位结果。
同时,GPS在城市环境下的定位精度仍然存在一定的局限性,需要结合其他定位技术进行辅助,以提高定位精度和稳定性。
六、参考文献。
[1] 赵云. GPS定位精度分析及影响因素研究[J]. 测绘工程, 2015(2): 15-21.[2] 李明. GPS技术在城市环境下的应用研究[J]. 地理信息科学, 2016, 18(3): 45-52.[3] 王强. GPS定位技术及其在森林环境中的应用[J]. 林业科学, 2017, 29(5): 78-84。
gps定位实验报告

gps定位实验报告GPS定位实验报告引言:GPS(全球定位系统)是一种基于卫星导航的定位技术,它利用地球上的卫星系统来确定特定位置的方法。
本实验旨在探究GPS定位的原理和精度,并通过实际操作来验证其可靠性和准确性。
一、GPS定位原理GPS定位原理是基于三角测量的原理。
GPS接收机接收到来自卫星的信号后,通过测量信号的传播时间来计算出距离。
通过同时接收多颗卫星的信号,GPS接收机可以计算出自身与卫星之间的距离差,并根据这些距离差进行三角测量,从而确定自身的位置。
二、实验设备与方法本实验使用了一台GPS接收机和一台笔记本电脑。
首先,将GPS接收机与笔记本电脑通过USB线连接,确保接收机与电脑之间的通信畅通。
然后,打开接收机的电源,并在电脑上打开相应的GPS定位软件。
接下来,等待接收机与卫星建立连接,并获取到足够的卫星信号。
最后,记录下接收机显示的经纬度信息,并与实际位置进行对比。
三、实验结果与分析在进行实验过程中,我们发现GPS接收机的定位速度相对较快,一般在几秒钟内就能够获取到足够的卫星信号进行定位。
通过与实际位置进行对比,我们发现GPS定位的准确性非常高,误差一般在几米以内。
这证明了GPS定位技术的可靠性和精度。
然而,我们也注意到GPS定位的准确性可能会受到一些因素的影响。
例如,高楼大厦、山脉和树木等物体可能会阻碍卫星信号的传播,从而导致定位的不准确。
此外,天气条件也可能对GPS定位的精度产生影响。
在恶劣的天气条件下,如大雨或大雪,卫星信号的传播可能会受到干扰,从而影响定位的准确性。
四、GPS定位的应用GPS定位技术在现代社会中有着广泛的应用。
首先,GPS定位技术在导航领域被广泛使用。
无论是在汽车导航系统中还是在手机导航应用中,GPS定位都能够帮助人们准确地找到目的地。
其次,GPS定位技术在物流和运输领域也发挥着重要作用。
通过实时监控车辆的位置,物流公司可以更好地管理和调度运输车辆,提高物流效率。
GPS标准实习报告3篇

GPS标准实习报告GPS标准实习报告精选3篇(一)实习报告实习单位:XYZ科技有限公司实习日期:2022年1月1日至2022年1月31日一、实习背景和目的:我作为一名电子信息工程专业的学生,在大学期间学习了很多关于GPS(全球定位系统)的知识。
我选择在XYZ科技有限公司进行实习,是希望能够将课堂上学到的理论知识与实际工作相结合,提升自己在GPS领域的实践能力。
二、实习任务和工作内容:在实习期间,我主要参与了XYZ科技有限公司的GPS标准化工作。
具体工作内容如下:1.学习和熟悉GPS的基本原理和工作原理。
2.调研和分析国内外GPS标准和规范。
3.参与制定GPS标准的技术方案和规范。
4.与相关部门进行配合,收集并整理GPS标准的资料和文档。
5.参与GPS标准化工作的会议和讨论,提出自己的建议和意见。
三、实习收获和体会:通过这次实习,我对GPS标准化工作有了更深入的了解,并且提升了自己的实践能力。
在参与制定GPS标准的过程中,我发现了自己在理论知识上的不足,并且学会了如何通过调研和分析来解决问题。
同时,在与团队成员的合作中我也学到了团队合作的重要性和沟通的技巧。
四、实习总结和建议:通过这次实习,我收获了很多,并且对自己的职业规划也有了更明确的目标。
我觉得在未来的工作中,我应该继续加强自己的理论知识,并且注重实践能力的培养。
同时,我也建议公司在GPS标准化工作中加强与国内外相关部门的合作,提高GPS标准的制定水平。
以上就是我的实习报告,感谢公司给予我这次宝贵的实习机会,希望我能够在未来的工作中发挥自己的专业知识和能力。
GPS标准实习报告精选3篇(二)根据我在GPS测量实习中的经验,我总结出以下几个关键点:1. 准备工作:在实习开始前,我需要熟悉GPS测量的基本原理和使用方法。
这包括了对GPS仪器的了解,熟悉GPS测量的误差来源和影响因素,以及对测区的了解和准备。
2. 测量准确性:在实习过程中,我学会了如何提高测量的准确性。
GPS实习总结4篇

GPS实习总结GPS实习总结4篇GPS实习总结1为期两周的GPS实习结束了,这次实习的目的在于熟悉GPS的定位原理、数据采集与处理,能独立完成从选点到提交内业数据成果的所有技术要领。
这次实训的场地覆盖黄河水院整个校区,实训内容有:测区勘探、实地选点、GPS控制网布设、星历预报、制定观测计划、GPS接收机检验、静态外业观测及记录、数据传输及处理。
GPS定位的基本原理是根据高速运动的卫星瞬间位置作为已知的起算数据,采用空间距离后方交会的方法,确定待测点的位置。
按定位方式,GPS 定位分为单点定位和相对定位(差分定位)。
单点定位就是根据一台接收机的观测数据来确定接收机位置的方式,它只能采用伪距观测量,可用于车船等的概略导航定位。
相对定位(差分定位)是根据两台以上接收机的观测数据来确定观测点之间的相对位置的方法,它既可采用伪距观测量也可采用相位观测量,大地测量或工程测量均应采用相位观测值进行相对定位。
日常生活中所用的GPS导航系统的基本工作原理也正是如此,它根据测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。
要达到这一目的,卫星的位置可以根据星载时钟所记录的时间在卫星星历中查出。
而用户到卫星的距离则通过记录卫星信号传播到用户所经历的时间,再将其乘以光速得到(由于大气层电离层的干扰,这一距离并不是用户与卫星之间的真实距离,而是伪距(PR):当GPS卫星正常工作时,会不断地用1和0二进制码元组成的伪随机码(简称伪码)发射导航电文。
GPS系统使用的伪码一共有两种,分别是民用的C/A码和军用的P(Y)码。
C/A码频率1.023MHz,重复周期一毫秒,码间距1微秒,相当于300m;P码频率10.23MHz,重复周期266.4天,码间距0.1微秒,相当于30m。
而Y码是在P码的基础上形成的,保密性能更佳。
导航电文包括卫星星历、工作状况、时钟改正、电离层时延修正、大气折射修正等信息。
GPS卫星定位实践报告

GPS卫星定位实践报告GPS(全球定位系统)是一种利用卫星信号进行定位的技术,通过接收来自多颗卫星的信号,可以精确确定接收器的位置、速度和时间。
在现代社会,GPS技术已经广泛应用于汽车导航、航空航海、地图绘制、军事作战等领域,为人们的生活和工作提供了便利。
本文将介绍GPS卫星定位的原理、应用及实践经验,并结合个人的使用体验进行分析。
首先,GPS卫星定位技术的原理是利用距地球的数十万公里外的卫星发射的无线电信号,通过地面接收器接收这些信号,计算出接收器与卫星之间的距离,从而确定接收器的位置。
GPS系统由27颗卫星组成,它们分布在地球轨道上,每颗卫星绕地球运行两次,每天发送两次信号,确保人们在任何时候都能接收到至少四颗卫星的信号,从而完成定位。
其次,GPS技术在各个领域都有着广泛的应用。
在汽车导航系统中,GPS可以帮助司机准确地找到目的地并规划最佳路线;在航空航海领域,GPS可以帮助飞行员和船长确保航线的准确性和安全性;在地图绘制领域,GPS可以帮助制作地图的人员迅速获取地理位置信息。
此外,GPS技术还被广泛用于军事作战、紧急救援、资源勘探等领域,为人们的生活和工作提供了极大的便利。
在实际使用中,我经常使用手机上的GPS功能进行导航。
无论是出门旅行还是去陌生的地方办事,GPS都可以帮助我准确地找到目的地,避免迷路和浪费时间。
在使用GPS导航的过程中,我也积累了一些实践经验。
首先,要及时更新地图数据,保持导航的准确性;其次,要注意信号的稳定性,避免信号不好导致导航错误;最后,要根据实际情况调整导航路线,避免堵车或错过转弯。
总的来说,GPS卫星定位技术是一种十分实用和方便的定位技术,已经成为人们生活和工作中不可或缺的一部分。
通过不断地实践和探索,我们可以更好地利用GPS技术,为自己的生活带来更多的便利和乐趣。
相信随着科技的不断发展,GPS技术将会变得更加智能化和精准化,为人们的生活带来更多的便利和惊喜。
gps实习报告4篇

gps实习报告4篇本文是关于gps实习报告4篇,仅供参考,希望对您有所帮助,感谢阅读。
一、实习目的gps静态测量本次gps静态观测实习的目的是巩固、扩大和加深我们从课堂上所学理论知识,获得测量工作的初步经验和基本技能,着重培养我们的独立工作能力,进一步熟练掌握测量仪器的操作技能,提高运用理论及计算能力,并对gps静态观测全过程有一个全面和系统的认识。
熟悉gps静态相对定位原理、sounth、trimble、ashtech三种gps接收机的使用掌握gps网的网形设计。
熟悉gps静态测量的步骤。
学会南方测绘gps数据处理软件的简单使用。
1.1实习安排准备好理论知识,掌握控制测量的技术要求,以及仪器的使用规范及过程,协调好分组的搭配。
仪器调度表(略)第三组组长:第三组组员:1.2实习任务以各个班为单位建立测量实习队,10人一组(第三组为11人),分3组。
每组领取gps一套(包括主机、脚架、基座、连接线等)、记录板一块、对讲机、记录表。
根据中华人民共和国测绘行业标准《全球定位系统城市测量技术规程》和石桥子经济开发区的具体情况,建立e级gps网。
e级gps网的精度要求如下表:级别固定误差(mm)平均边长(km)比例误差系数(mm)e≤100.2~5≤20每小组利用各组领取到的接收机对两个控制点进行观测,观测时段为一小时,观测3个时段。
1.3测量规范1、《全球定位系统(gps)测量规范》(gb/t18314-XX)。
2、《全球定位系统城市测量技术规范》(cjj73-97)。
3、ch1002-95《测绘产品检查验收规定》。
4、ch1003-95《测绘产品质量评定标准》。
1.4测区概况本测区为本溪市石桥子经济开发区辽宁科技学院周边地区,测区内大部分为丘陵,公路,测区开阔高侧建筑少,选点都在路边或者山顶,多路径效应相对较小。
点位远离大功率无线电发射源(基本没有),远离高压输电线和微波无线电传送通道,其距离不得小于50m。
GPS实习报告

GPS实习报告
一、实习单位及实习内容。
我在一家专业的GPS定位服务公司进行了为期两个月的实习。
在实习期间,我主要负责协助工程师进行GPS定位系统的测试和维
护工作。
具体包括参与GPS设备的安装、调试和维护,协助进行
GPS信号的测试和分析,以及参与GPS定位系统的数据处理和分析
工作。
二、实习收获。
通过这次实习,我对GPS定位系统有了更深入的了解。
我学会
了如何正确安装和调试GPS设备,以及如何进行GPS信号的测试和
分析。
在实习期间,我还学习了GPS定位系统的数据处理和分析方法,对于如何利用GPS数据进行定位和导航有了更清晰的认识。
三、实习心得。
在实习期间,我深刻感受到了GPS技术在现代社会中的重要性。
GPS定位系统不仅在军事领域有着广泛的应用,同时也在民用领域
有着诸多应用,如车载导航、无人机导航、航海定位等。
通过这次
实习,我对GPS技术的前景和发展有了更清晰的认识,也对自己未
来的职业发展方向有了更明确的规划。
四、实习总结。
通过这次实习,我不仅学到了很多关于GPS技术的知识和技能,同时也提升了自己的实际操作能力和团队合作能力。
我深知在未来
的工作中,这些经验和能力都将对我有着重要的帮助。
感谢实习单
位给予我这次宝贵的实习机会,我会继续努力学习,为自己的职业
发展打下坚实的基础。
GPS手持机单点定位精度分析

GPS手持机单点定位精度分析一、实验目的:(1).进一步熟悉Juno SB手持GPS接收机的使用。
(2).熟悉数据字典的创建与使用。
(3).实际体验并分析单点定位的精度,分析点与线数据采集的精度。
二、实验设备:Juno SB手持GPS接收机三、实验内容与步骤:(一)、创建并上传数据字典,并熟悉属性的记录。
(二)、进行点要素的采集在一个开阔地方(同一个点)进行连续数据采集,GPS接收机收到4颗以上卫星时开始存点,每隔10秒存一个点,存7分钟的点位坐标(约采集42个点),记住存的点号。
(三)、进行线要素的采集在一个开阔地方对同一条直线进行连续数据采集,利用皮尺测量45m,作为已知边长。
对同一条线采集起点坐标后暂停,然后走到末端点,采集一个坐标作为端点坐标,输入属性数据,结束该直线的采集。
对这条直线,采用相同的采集方法,连续采集10次。
(四)、精度分析1、点要素精度分析A、将点要素的数据导入到arcview中,如下图:图一该数据如下:表一B、将数据导入Excel中,并计算横、纵坐标的平均值、最大值、最小值、方差。
2、线要素精度分析A、将线要素的数据导入到arcview中,如下图:图二数据如下图:表二B、将数据导入Excel中,计算直线长度的平均值、最大值、最小值、与已知长度的绝对误差、相对误差。
绝对误差与相对误差公式如下:a、绝对误差=观测值-真实值b、相对误差=(观测值-真实值)/真实C、由于在测量的过程中,出现操作失误,选取的有效线条进行计算。
四、实验结果分析1.点要素的平均值、最大值、最小值及方差如下表格:2.点要素的结果分析:在做实验的过程中有好几个点与实际测量点的距离差了很多(如图一),横纵坐标的最大值与最小值的差别比较大,同时方差也比较大。
这是由于在实验过程中不同时间卫星定位的数据之间有所偏差,每次操作时记录的点位之间有所偏差。
对实验产生了误差。
3.线要素的实验结果如下:线要素的数据如表二,但由于操作上的失误,选取六条比较接近实际测量的线进行分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GPS原理与应用实验题目:GPS单点定位专业:测绘工程班级:12-01学号:***********名:**指导教师:***时间:2014.11目录一、实验目的 (3)二、实验原理 (3)三、实验内容 (3)四、实验效果图 (9)五、实验总结 (9)一.实验目的1.深入了解单点定位的计算过程;2.加强单点定位基本公式和误差方程式,法线方程式的记忆;3.通过上机调试程序加强动手能力的培养。
二.实验原理一个接收机接受三个火三个以上卫星信号,得出卫星坐标和伪距,利用间接平差计算接收机的坐标。
三.实验内容1.程序流程图2、实验数据3、实验程序代码Private Sub Command1_Click()CommonDialog1.Filter = "TXT files|*.txt|" CommonDialog1.FilterIndex = 1CommonDialog1.ShowOpenOpen monDialog1.FileName For Input As #1 Do While Not EOF(1)Line Input #1, Texttextbuff = textbuff + Text + vbCrLfLoopClose #1kk = MSFlexGrid1.Rows - 1Dim aReDim a(kk - 1)a = Split(textbuff, vbCrLf)For j = 1 To kkFor i = 1 To 5MSFlexGrid1.TextMatrix(j, i) = a(j - 1 + 5 * (i - 1)) Next iNext jFor k = 1 To kkMSFlexGrid1.TextMatrix(k, 0) = "第" & k & "个点" Next kMSFlexGrid1.TextMatrix(0, 1) = "X"MSFlexGrid1.TextMatrix(0, 2) = "Y"MSFlexGrid1.TextMatrix(0, 3) = "Z"MSFlexGrid1.TextMatrix(0, 4) = "伪距" MSFlexGrid1.TextMatrix(0, 5) = "钟差"End SubPrivate Sub Command2_Click()kk = MSFlexGrid1.Rows - 1X0 = 0: Y0 = 0: Z0 = 0c = 299792458Dim a()ReDim a(kk - 1, 3)Dim ll()ReDim ll(kk - 1, 0)For ii = 1 To 100For i = 1 To kkl = (MSFlexGrid1.TextMatrix(i, 1) - X0) / Sqr((MSFlexGrid1.TextMatrix(i, 1) - X0) ^ 2 + (MSFlexGrid1.TextMatrix(i, 2) - Y0) ^ 2 + (MSFlexGrid1.TextMatrix(i, 3) - Z0) ^ 2)m = (MSFlexGrid1.TextMatrix(i, 2) - Y0) / Sqr((MSFlexGrid1.TextMatrix(i, 1) - X0) ^ 2 + (MSFlexGrid1.TextMatrix(i, 2) - Y0) ^ 2 + (MSFlexGrid1.TextMatrix(i, 3) - Z0) ^ 2)n = (MSFlexGrid1.TextMatrix(i, 3) - Z0) / Sqr((MSFlexGrid1.TextMatrix(i, 1) - X0) ^ 2 + (MSFlexGrid1.TextMatrix(i, 2) - Y0) ^ 2 + (MSFlexGrid1.TextMatrix(i, 3) - Z0) ^ 2)a(i - 1, 0) = la(i - 1, 1) = ma(i - 1, 2) = na(i - 1, 3) = -1lk = MSFlexGrid1.TextMatrix(i, 4) - Sqr((MSFlexGrid1.TextMatrix(i, 1) - X0) ^ 2 + (MSFlexGrid1.TextMatrix(i, 2) - Y0) ^ 2 + (MSFlexGrid1.TextMatrix(i, 3) - Z0) ^ 2) + c * MSFlexGrid1.TextMatrix(i, 5)ll(i - 1, 0) = lkNext igzs = xc(qiuni(xc(zz(a), a)), xc(zz(a), ll))X0 = X0 - gzs(0, 0)Y0 = Y0 - gzs(1, 0)Z0 = Z0 - gzs(2, 0)j = j + 1Next iiText2.Text = "X=" & X0 & vbCrLf & vbCrLf & "Y=" & Y0 & vbCrLf & vbCrLf & "Z=" & Z0V = jian(ll, xc(a, gzs))zjl = xc(zz(V), V)σ0 = Sqr(zjl(0, 0)) / (kk - 3)Qx = qiuni(xc(zz(a), a))Text3.Text = "σX=" & σ0 * Sqr(Qx(0, 0)) & vbCrLf & vbCrLf & "σY=" & σ0 * Sqr(Qx(1, 1)) & vbCrLf & vbCrLf & "σZ=" & σ0 * Sqr(Qx(2, 2))End SubPrivate Sub Form_Load()MSFlexGrid1.ColWidth(1) = 1300MSFlexGrid1.ColWidth(2) = 1300MSFlexGrid1.ColWidth(3) = 1300MSFlexGrid1.ColWidth(4) = 1300Text2.Text = ""Text3.Text = ""End Sub'矩阵相减Public Function jian(m, n)Dim i, j As IntegerIf UBound(m, 1) <> UBound(n, 1) Or UBound(m, 2) <> UBound(n, 2) Then MsgBox ("请确认输入数组是否可以相减!")ElseDim c()ReDim c(UBound(m, 1), UBound(n, 2))For i = 0 To UBound(c, 1)For j = 0 To UBound(c, 2)c(i, j) = m(i, j) - n(i, j)Next jNext ijian = cEnd IfEnd Function'矩阵的转置Public Function zz(a)Dim i As Integer, j As Integer, t As Integer, b()If UBound(a, 1) = UBound(a, 2) ThenFor i = 0 To UBound(a, 1)For j = 0 To UBound(a, 2)If i < j Thent = a(i, j)a(i, j) = a(j, i)a(j, i) = tEnd IfNext jNext izz = aElseReDim b(UBound(a, 2), UBound(a, 1))For i = 0 To UBound(a, 2)For j = 0 To UBound(a, 1)b(i, j) = a(j, i)Next jzz = bEnd IfEnd Function'两矩阵相乘Public Function xc(a, b)Dim i As Integer, j As Integer, k As Integer If UBound(a, 2) <> UBound(b, 1) Then MsgBox ("这两个矩阵不能够相乘") Exit FunctionEnd IfReDim sd(UBound(a, 1), UBound(b, 2)) For i = 0 To UBound(a, 1)For j = 0 To UBound(b, 2)For k = 0 To UBound(b, 1)sd(i, j) = sd(i, j) + a(i, k) * b(k, j)Next kNext jNext ixc = sdEnd FunctionPublic Function qiuni(a)Dim c, m%, n%, p#, l%, i%, j%, ab#m = UBound(a, 1)n = UBound(a, 2)If m <> n ThenMsgBox ("该矩阵不可逆!!!")Exit FunctionEnd IfReDim c(m, 2 * n + 1)For i = 0 To mFor j = 0 To nc(i, j) = a(i, j)Next jNext iFor i = 0 To mFor j = m + 1 To 2 * m + 1c(i, j) = 0Next jNext ii = 0For j = m + 1 To 2 * m + 1c(i, j) = 1i = i + 1For k = 0 To nIf c(k, k) = 0 ThenFor i = k + 1 To nIf c(i, k) <> 0 ThenGoTo thisEnd IfNext iIf i = n + 1 ThenMsgBox ("该矩阵不可逆") Exit FunctionEnd Ifthis:For j = 0 To 2 * m + 1p = c(k, j)c(k, j) = c(i, j)c(i, j) = pNext jEnd Ifab = 1# / c(k, k)For j = 0 To 2 * m + 1c(k, j) = c(k, j) * abNext jFor i = 0 To nIf i <> k ThenFor j = 0 To 2 * m + 1If j <> k Thenc(i, j) = c(i, j) - c(i, k) * c(k, j)End IfNext jc(i, k) = 0End IfNext iNext kFor i = 0 To mFor j = 0 To ma(i, j) = c(i, j + n + 1)a(i, j) = Round(a(i, j), 4)Next jNext iqiuni = aEnd Function四.实验结果图五.实验总结此次实验让我深入了解单点定位的计算过程,加强了对单点定位基本公式和误差方程式,法线方程式的记忆。