江苏省高三数学 复习之三角函数复习教案 苏教版选修4-1

合集下载

三角函数复习教案

三角函数复习教案

三角函数复习教案整理一、教学目标1. 知识与技能:(1)掌握三角函数的定义及性质;(2)了解三角函数在实际问题中的应用;(3)熟练运用三角函数公式进行计算。

2. 过程与方法:(1)通过复习,巩固三角函数的基本概念;(2)通过例题解析,提高学生解决实际问题的能力;(3)培养学生运用三角函数解决几何问题的技巧。

3. 情感态度与价值观:(1)激发学生对三角函数的学习兴趣;(2)培养学生的团队合作精神;(3)鼓励学生勇于探索,提高自主学习能力。

二、教学内容1. 三角函数的定义及性质(1)正弦函数、余弦函数、正切函数的定义;(2)三角函数的周期性;(3)三角函数的奇偶性;(4)三角函数的单调性。

2. 三角函数的图像与性质(1)正弦函数、余弦函数、正切函数的图像;(2)三角函数的值域;(3)三角函数的零点与极值。

三、教学重点与难点1. 教学重点:(1)三角函数的定义及性质;(2)三角函数的图像与性质;(3)三角函数在实际问题中的应用。

2. 教学难点:(1)三角函数的图像分析;(2)三角函数在实际问题中的运用;(3)复杂三角函数计算。

四、教学方法1. 采用讲解法,引导学生复习三角函数的基本概念;2. 利用多媒体展示三角函数的图像,帮助学生直观理解;3. 通过例题解析,培养学生解决实际问题的能力;4. 组织小组讨论,促进学生团队合作,共同探索;5. 鼓励学生提问,及时解答学生疑惑。

五、教学过程1. 导入:回顾三角函数的基本概念,引导学生进入复习状态;2. 讲解:讲解三角函数的定义及性质,引导学生理解和记忆;3. 展示:利用多媒体展示三角函数的图像,让学生直观感受;4. 例题解析:分析实际问题,运用三角函数解决问题;5. 小组讨论:学生分组讨论,共同探索三角函数的应用;6. 提问与解答:学生提问,教师解答,及时巩固知识点;7. 总结:对本节课复习内容进行总结,强调重点知识点;8. 作业布置:布置适量作业,巩固复习成果。

高中数学第1章三角函数1.3.1三角函数的周期性教案苏教版必修4(2021学年)

高中数学第1章三角函数1.3.1三角函数的周期性教案苏教版必修4(2021学年)

江苏省徐州市高中数学第1章三角函数1.3.1 三角函数的周期性教案苏教版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省徐州市高中数学第1章三角函数1.3.1 三角函数的周期性教案苏教版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省徐州市高中数学第1章三角函数1.3.1 三角函数的周期性教案苏教版必修4的全部内容。

1。

3。

1三角函数的周期性以上就是本文的全部内容,可以编辑修改。

高尔基说过:“书是人类进步的阶梯。

”我希望各位朋友能借助这个阶梯不断进步。

物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。

很多人已经不再如饥似渴地追逐一篇文档了,但只要你依然有着这样一份小小的坚持,你就会不断成长进步,当纷繁复杂的世界牵引着我们疲于向外追逐的时候,阅读一文或者做一道题却让我们静下心来,回归自我。

用学习来激活我们的想象力和思维,建立我们的信仰,从而保有我们纯粹的精神世界,抵御外部世界的袭扰。

The aboveis the whole content of this article, Gorky said: "the book is the ladder ofhuman progress." I hope you canmake progress with the help ofthis ladder. Material life is ex tremely rich, science and technology are developingrapidly, all of which gradually change the way ofpeople's study and leisure. Many people are no longer eager to pursue adocument, but as long as you still have such asmall persist ence, you will continue to grow and progress.When the c omplex world leads us to chase out, reading an article or doing a problem makes us calm down and return to ourselves. With learning, we can activate our imagination and thinking, esta blish our belief, keep our pure spiritual world and resist the a ttack of the external world.。

高中数学 第1章 三角函数章末复习课讲义 苏教版必修4-苏教版高一必修4数学教案

高中数学 第1章 三角函数章末复习课讲义 苏教版必修4-苏教版高一必修4数学教案

第1章 三角函数任意角的三角函数概念(1)已知角α的终边过点P (-4m,3m )(m ≠0),则2sin α+cos α的值是________. (2)函数y =sin x +2cos x -1的定义域是________. 思路点拨:(1)根据三角函数的定义求解,注意讨论m 的正负. (2)利用三角函数线求解.(1)25或-25 (2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π≤x ≤2k π+π3,k ∈Z[(1)r =|OP |=(-4m )2+(3m )2=5|m |.当m >0时,sin α=y r =3m 5m =35,cos α=x r =-4m 5m =-45,∴2sin α+cos α=25.当m <0时,sin α=y r =3m -5m =-35,cos α=x r =-4m -5m =45,∴2sin α+cos α=-25.故2sin α+cos α的值是25或-25.(2)由⎩⎪⎨⎪⎧sin x ≥0,2cos x -1≥0,得⎩⎪⎨⎪⎧sin x ≥0,cos x ≥12,如图,结合三角函数线知:⎩⎪⎨⎪⎧2k π≤x ≤2k π+π(k ∈Z ),2k π-π3≤x ≤2k π+π3(k ∈Z ),解得2k π≤x ≤2k π+π3(k ∈Z ),∴函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π≤x ≤2k π+π3,k ∈Z.]三角函数的概念所涉及的内容主要有以下两方面:(1)任意角和弧度制.理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算. (2)任意角的三角函数.掌握任意角的正弦、余弦、正切的定义及三角函数线,能够利用三角函数线判断三角函数的符号,借助三角函数线求三角函数的定义域.1.(1)已知角α的顶点在原点,始边为x 轴的非负半轴.若角α的终边经过点P (-3,y ),且sin α=34y (y ≠0),判断角α所在的象限,并求cos α和tan α的值; (2)若角α的终边在直线y =-3x 上,求10sin α+3cos α的值. [解] (1)依题意,点P 到原点O 的距离为|PO |=(-3)2+y 2,∴sin α=y r=y3+y2=34y . ∵y ≠0,∴9+3y 2=16,∴y 2=73,∴y =±213. ∴点P 在第二或第三象限. 当点P 在第二象限时,y =213,cos α=x r =-34,tan α=-73.当点P 在第三象限时,y =-213,cos α=x r =-34, tan α=73. (2)设角α终边上任一点为P (k ,-3k )(k ≠0), 则r =x 2+y 2=k 2+(-3k )2=10|k |. 当k >0时,r =10k . ∴sin α=-3k10k=-310,1cos α=10k k =10.∴10s in α+3cos α=-310+310=0.当k <0时,r =-10k .∴sin α=-3k -10k =310,1cos α=-10kk =-10.∴10sin α+3cos α=310-310=0.综上,10sin α+3cos α=0.同角三角函数的基本关系与诱导公式已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ,cos θ,θ∈(0,2π).求:(1)cos 2⎝⎛⎭⎪⎫3π2-θcos ⎝ ⎛⎭⎪⎫π2-θ+cos (-π-θ)+sin ⎝ ⎛⎭⎪⎫π2+θ1+tan (π-θ);(2)m 的值;(3)方程的两根及此时θ的值.思路点拨:先利用根与系数的关系得到sin θ+cos θ与sin θcos θ,再利用诱导公式和三角函数的基本关系式求解.[解] 由根与系数的关系,得 sin θ+cos θ=3+12,sin θcos θ=m2. (1)原式=sin 2θsin θ-cos θ+cos θ1-tan θ=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ-cos 2θsin θ-cos θ=sin θ+cos θ=3+12.(2)由sin θ+cos θ=3+12,两边平方可得1+2sin θcos θ=4+234,1+2×m2=1+32,m =32. (3)由m =32可解方程2x 2-(3+1)x +32=0, 得两根12和32.∴⎩⎪⎨⎪⎧sin θ=12,cos θ=32或⎩⎪⎨⎪⎧sin θ=32,cos θ=12.∵θ∈(0,2π), ∴θ=π6或π3.同角三角函数的基本关系和诱导公式是三角恒等变换的主要依据,主要应用方向是三角函数式的化简、求值和证明.常用以下方法技巧:(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再化简变形.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将1代换为三角函数式.2.已知f (α)=sin 2(π-α)·cos (2π-α)·tan (-π+α)sin (-π+α)·tan (-α+3π).(1)化简f (α);(2)若f (α)=18,且π4<α<π2,求cos α-sin α的值;(3)若α=-47π4,求f (α)的值.[解] (1)f (α)=sin 2α·cos α·tan α(-sin α)(-tan α)=sin α·cos α.(2)由f (α)=sin α·cos α=18可知,(cos α-sin α)2=cos 2α-2sin α·cos α+sin 2α=1-2sin α·cos α=1-2×18=34.又∵π4<α<π2,∴cos α<sin α,即cos α-sin α<0,∴cos α-sin α=-32. (3)∵α=-47π4=-6×2π+π4,∴f ⎝ ⎛⎭⎪⎫-47π4=cos ⎝ ⎛⎭⎪⎫-47π4·sin ⎝⎛⎭⎪⎫-47π4 =cos ⎝ ⎛⎭⎪⎫-6×2π+π4·sin ⎝ ⎛⎭⎪⎫-6×2π+π4=cos π4·sin π4=22×22=12.三角函数的图象与性质已知函数f (x )=A sin(ωx +φ)+1ω>0,A >0,0<φ<π2的周期为π,f ⎝ ⎛⎭⎪⎫π4=3+1,且f (x )的最大值为3.(1)写出f (x )的表达式;(2)写出函数f (x )的对称中心,对称轴方程及单调区间;(3)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.思路点拨:(1)由T =2πω求ω,由f (x )的最大值为3求A ,由f ⎝ ⎛⎭⎪⎫π4=3+1,求φ. (2)把ωx +φ看作一个整体,结合y =sin x 的单调区间与对称性求解.(3)由x ∈⎣⎢⎡⎦⎥⎤0,π2求出ωx +φ的X 围,利用单调性求最值.[解] (1)∵T =π,∴ω=2πT=2.∵f (x )的最大值为3,∴A =2. ∴f (x )=2sin(2x +φ)+1.∵f ⎝ ⎛⎭⎪⎫π4=3+1, ∴2sin ⎝⎛⎭⎪⎫π2+φ+1=3+1,∴cos φ=32. ∵0<φ<π2,∴φ=π6.∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+1. (2)由f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+1,令2x +π6=k π,得x =k π2-π12(k ∈Z ),∴对称中心为⎝⎛⎭⎪⎫k π2-π12,1(k ∈Z ).由2x +π6=k π+π2,得x =k π2+π6(k ∈Z ),∴对称轴方程为x =k π2+π6(k ∈Z ).由2k π-π2≤2x +π6≤2k π+π2,得k π-π3≤x ≤k π+π6(k ∈Z ),∴f (x )的单调增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).由2k π+π2≤2x +π6≤2k π+3π2,得k π+π6≤x ≤k π+2π3(k ∈Z ),∴f (x )的单调减区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ).(3)当0≤x ≤π2时,π6≤2x +π6≤7π6,∴-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1,∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值为3,最小值为0.三角函数的图象是研究三角函数性质的基础,又是三角函数性质的具体体现.在平时的考查中,主要体现在三角函数图象的变换和解析式的确定,以及通过对图象的描绘、观察来讨论函数的有关性质.具体要求:(1)用“五点法”作y =A sin (ωx +φ)的图象时,确定五个关键点的方法是分别令ωx +φ=0,π2,π,3π2,2π. (2)对于y =A sin (ωx +φ)的图象变换,应注意先“平移”后“伸缩”与先“伸缩”后“平移”的区别.(3)已知函数图象求函数y =A sin (ωx +φ)(A >0,ω>0)的解析式时,常用的解题方法是待定系数法.3.函数f (x )=cos(πx +φ)0<φ<π2的部分图象如图所示.(1)求φ及图中x 0的值;(2)设g (x )=f (x )+fx +13,求函数g (x )在区间⎣⎢⎡⎦⎥⎤-12,13上的最大值和最小值.[解] (1)由题图得f (0)=32,所以cos φ=32, 因为0<φ<π2,故φ=π6.由于f (x )的最小正周期等于2,所以由题图可知1<x 0<2. 故7π6<πx 0+π6<13π6,由f (x 0)=32得cos ⎝⎛⎭⎪⎫πx 0+π6=32,所以πx 0+π6=11π6,x 0=53. (2)因为f ⎝ ⎛⎭⎪⎫x +13=cos ⎣⎢⎡⎦⎥⎤π⎝ ⎛⎭⎪⎫x +13+π6=cos ⎝⎛⎭⎪⎫πx +π2=-sin πx , 所以g (x )=f (x )+f ⎝ ⎛⎭⎪⎫x +13=cos ⎝ ⎛⎭⎪⎫πx +π6-sin πx =cos πx cos π6-sin πx sin π6-sin πx =32cos πx -12sin πx -sin πx =32cos πx -32sin πx =3sin ⎝ ⎛⎭⎪⎫π6-πx .当x ∈⎣⎢⎡⎦⎥⎤-12,13时,-π6≤π6-πx ≤2π3.所以-12≤sin ⎝ ⎛⎭⎪⎫π6-πx ≤1,故π6-πx =π2,即x =-13时,g (x )取得最大值3; 当π6-πx =-π6,即x =13时,g (x )取得最小值-32. 数形结合思想【例4】 已知函数f (x )=A sin(ωx +φ),x ∈R 其中A >0,ω>0,|φ|<π2在一个周期内的简图如图所示,求函数g (x )=f (x )-lg x 零点的个数.思路点拨:识图→求A ,ω,φ→ 画出f (x )及y =lg x 的图象→下结论 [解] 显然A =2.由图象过(0,1)点,则f (0)=1,即sin φ=12,又|φ|<π2,则φ=π6.又⎝⎛⎭⎪⎫11π12,0是图象上的点,则f ⎝ ⎛⎭⎪⎫11π12=0, 即sin ⎝ ⎛⎭⎪⎫11π12ω+π6=0,由图象可知,⎝ ⎛⎭⎪⎫11π12,0是图象在y 轴右侧部分与x 轴的第二个交点.∴11π12ω+π6=2π,∴ω=2,因此所求函数的解析式为f (x )=2sin ⎝⎛⎭⎪⎫2x +π6.在同一坐标系中作函数y =2sin ⎝⎛⎭⎪⎫2x +π6和函数y =lg x 的示意图如图所示:∵f (x )的最大值为2,令lg x =2,得x =100,令1112π+k π<100(k ∈Z ),得k ≤30(k ∈Z ),而1112π+31π>100,∴在区间(0,100]内有31个形如⎣⎢⎡⎦⎥⎤1112π+k π,1712π+k π(k ∈Z,0≤k ≤30)的区间,在每个区间上y =f (x )与y =lg x 的图象都有2个交点,故这两个函数图象在⎣⎢⎡⎦⎥⎤11π12,100上有2×31=62个交点,另外在⎝ ⎛⎭⎪⎫0,1112π上还有1个交点,∴方程f (x )-lg x =0共有实根63个, ∴函数g (x )=f (x )-lg x 共有63个零点.数形结合常用于解方程、解不等式、求函数的值域、判断图象交点的个数、求参数X 围等题目中.本章中,常常利用单位圆中的三角函数线或三角函数的图象解答三角问题,是典型的“以形助数”的方法,而利用三角公式证明三角函数中的几何性质问题,又是典型的“以数助形”的解题策略.4.若集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪sin θ≥12,0≤θ≤π,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪cos θ≤12,0≤θ≤π,求M ∩N .[解] 首先作出正弦函数与余弦函数以及直线y =12的图象,如图①②.结合图象得集合M ,N 分别为:M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪π6≤θ≤5π6,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪π3≤θ≤π. 得M ∩N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫θ⎪⎪⎪π3≤θ≤56π.。

「精品」高中数学第一章三角函数本章复习教案苏教版必修4

「精品」高中数学第一章三角函数本章复习教案苏教版必修4

第一章三角函数本章复习整体设计知识网络1.任意角的概念是本章的基础,推广了角,扩大了研究的范围.在此基础上,为了计算中的简单,引入了两种度量制度:角度制与弧度制,但是其本质是一样的.其最基本的一个应用就是简化了弧长与扇形面积公式.同时也为定义任意角的三角函数作了前期工作,也就得到了本章的核心问题——任意角的三角函数定义.从这个核心出发,分成四条路线走,研究最基本的比例,就可以得到同角三角函数的基本关系式,同时根据定义就可以推导出诱导公式.知道了核心的本质意义在坐标系里面,可以定义点的坐标,为推导第三章和角公式作了应有的准备.而和角公式的两个特殊方面只是本身的一个推广,由此就得来了复杂多变的三角函数公式,而这些复杂的公式(第三章的倍角公式,差角公式)的本质又是和角公式.抛开比例的式子,应用弧度制的度量作为基础,就有了三角函数的图象和性质,这是三角与函数结合的产物,既有函数的特征,因此可以用函数的知识来解,又具有三角的特性,因此还可以用这一特点进行一些特殊的运算.所有的推导可以应用在计算与化简、证明恒等式上.2.数学的魅力在于系统、严密,学习的兴趣在于环环相扣.本章最为理想的复习方法就是引导学生打通本章中的这张知识网络图,这是进行具体问题具体分析的理论依据,也是解决问题最基本的方法.教师指导学生步步为营,将其引入数学王国,畅游科学殿堂.《三角函数》一章知识网络图三维目标1.通过全章复习,让学生切实掌握三角函数的基本性质,会判定三角函数的奇偶性,确定单调区间及求周期的方法.熟练掌握同角三角函数的基本关系式及六组诱导公式,弄清公式的推导关系和互相联系,让学生做到记准、用熟.2.要求学生会用“五点法”作正、余弦函数的简图,掌握应用基本三角变换公式的求值、化简、证明.3.本章的最终目标是让学生熟练掌握三角函数基础知识、基本技能、基本运算能力,以及数形结合思想、转化与化规思想,激发学生学习兴趣,培养他们善于总结、善于合作、善于创新以及应用数学解决实际问题的能力.重点难点教学重点:三角函数的定义,诱导公式,以及三角函数的图象与性质.教学难点:三角恒等变形及三角函数的图象与性质的综合运用.课时安排1课时教学过程导入新课思路1.(复习导入)了解一下全章的知识网络结构,并回顾思考本章学习了哪些具体内容:首先,我们给出了三角函数的定义,包括任意角的三角函数的符号,同角三角函数的关系式,诱导公式.又共同学习了正弦函数、余弦函数、正切函数的图象和性质.接下来,我们又共同探讨了它们的应用,并能运用上述公式和性质进行三角函数式的化简、求值、证明以及它们的综合运用.由此展开全章的系统复习.思路2.(问题导入)你现在已经会求任意角的三角函数值,会画三角函数的图象,会用三角函数模型来解释现实生活中具有周期性变换规律的一些现象.你是如何学习到这些知识的?又是如何提高自己能力的?由此引导学生回顾全章知识的形成过程,进而展开全面复习.推进新课知识巩固①我们是怎样推广任意角的?又是怎样得到任意角的三角函数定义的?②本章学习了哪些同角三角函数的基本关系式?怎样推导的?③本章都学习了哪些诱导公式?各有什么用途?怎样记忆?④你是如何得到正弦曲线、余弦曲线和正切曲线的?⑤你能从图象上说出三角函数的哪些性质?活动:问题①,为了使学生了解知识的形成顺序与过程,教师可引导学生回忆从前的学习情景,让学生感悟数学是在什么样的背景下向前推进的,同时也加强系统数学知识的记忆,居高临下地来掌握全章知识.问题②,教师引导学生回忆三角函数定义,回忆同角三角函数的基本关系式的推导,并回忆这些公式的作用和应用方法技巧.利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,也就是要就角所在象限进行分类讨论.同角三角函数的基本关系式揭示了同一个角的三角函数间的相互关系,利用它可以使解题更方便,但要注意公式成立的前提是角对应的三角函数有意义.sin 2α+cos 2α=1,sin αcos α=tan α.问题③,教师引导学生回顾的同时,最好能利用多媒体或幻灯片来展示这些公式.以前学习的都是孤立的、零碎的,现在是放在一起记忆提高.幻灯片如下:问题④,三角函数性质是通过图象来研究的,而且画图、识图、用图也是对学生的基本要求.教师要让学生亲自动手画一画,以加深学生对三角函数性质的进一步理解提升.让学生明了:利用平移正弦线,可以比较精确地画出正弦函数的图象,利用正弦函数的图象和诱导公式,可以画出余弦函数的图象,可以看出在长度为一个周期的闭区间上有五个点(即函数值最大和最小的点以及函数值为0的点).这五个点在确定正弦函数、余弦函数图象的形状时起着关键的作用.因此,在精确度不太高时,我们常用“五点法”画正弦、余弦函数以及与它们类似的一些函数〔特别是函数y =Asin(ωx +φ)〕的简图.教师同时打出幻灯(如图1、图2、图3):图1图2图3问题⑤,让学生由图象说性质,教师可引导学生从函数的定义域、值域、奇偶性、单调性、最值、周期性、对称性等方面叙述.教师要强调,正弦、余弦、正切函数的图象以及它们的主要性质非常重要,要牢固掌握,但不要死记硬背.讨论结果:①~⑤略.应用示例例1已知角α终边上一点P 与x 轴的距离和与y 轴的距离之比为3∶4(且均不为零),求2sin α+cos α的值.活动:本例属于较为简单的题目,目的是要学生熟悉任意角的三角函数定义,也要明确解题中的一种很重要的方法是回归定义.教师引导学生思考距离与坐标的不同、是否需要对点的坐标进行分类讨论,然后让学生独立完成此题.解:由题意,需对角α终边的位置进行讨论:①若角α终边过点P(4,3),则2sin α+cos α=2×35+45=2;②若角α终边过点P(-4,3),则2sin α+cos α=2×35+-45=25;③若角α终边过点P(-4,-3),则2sin α+cos α=2×-35+-45=-2;④若角α终边过点P(4,-3),则2sin α+cos α=2×-35+45=-25.点拨:任意角的三角函数定义不仅是本章的核心,也是整个三角函数的中心问题.要指导学生深刻理解三角函数定义的内涵,它只是一个比值,只与角的大小有关,而与点P 在角的终边上的位置无关.例2已知sin α+3cos α=0,求: (1)3cos α-sin α3cos α+sin α;(2)2sin 2α-3sin αcos α+2的值.活动:教师引导学生观察本题的条件与结论,关键是求sin α与cos α的值,由sin α+3cos α=0及sin 2α+cos 2α=1联立方程组即得sin α与cos α的值.教师进一步点拨:根据同角三角函数的基本关系,不直接求sin α与cos α的值,需作怎样的变形即可?对看出本题由已知可得tan α=-3的同学教师给予鼓励并作进一步探究,对看不出这一步的学生再给予进一步引导,直至其独立解出此题.解:(1)3cos α-sin α3cos α+sin α=3-tan α3+tan α=3+33-3=-2- 3.(2)2sin 2α-3sin αcos α+2=4sin 2α-3sin αcos α+2cos 2α=cos 2α(4tan 2α-3tan α+2)=11+tan 2α(4tan 2α-3tan α+2)=11+-2(4×9+3×3+2)=4710.点拨:本题主要考查利用同角三角函数关系式求值.对于只含有正弦、余弦函数的齐次式,在求解时常常转化为只含有正切的式子,这种变形技巧十分重要,也称为“1”的代换,在今后的学习中经常用到,应要求学生仔细体会并熟悉掌握.变式训练1.已知α是三角形的内角,且sin α+cos α=15,求tan α的值.解:由sin α+cos α=15平方整理,得sin αcos α=-1225<0.∵α为三角形的内角,∴0<α<π,sin α>0,cos α<0. ∴sin α-cos α>0.∵(sin α-cos α)2=1-2sin αcos α=4925,∴sin α-cos α=75.由⎩⎪⎨⎪⎧sin α+cos α=15sin α-cos α=75⇒⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴tan α=-43.点拨:本题主要考查同角三角函数的基本关系式.对于三角求值题目,一定要注意角的范围,有时要根据所给三角函数值的大小,适当缩小所给角的范围,才能求出准确的值.教师要抓住时机就此进一步挖掘,以激起学生的探究兴趣.2.已知sin θ=m -3m +5,cos θ=4-2m m +5,π2<θ<π,则m 的取值范围是… ( )A .3≤m≤9B .m≤-5或m≥3C .m =0或m =8D .m =8 答案:D例3已知函数y =Asin(ωx +φ),x∈R (其中A>0,ω>0)的图象在y 轴右侧的第一个最高点(函数取最大值的点)为M(2,22),与x 轴正半轴的第一个交点为N(6,0),求这个函数的解析式.活动:本例是一道经典例题,主要考查三角函数模型的应用及训练学生的分析思维能力,对数形结合的思维要求也较高.教师可引导学生展开思考讨论,怎样根据题目中给出的条件找到思维的切入点.题目中虽然没有直接给出图象,实质是已知图象求解析式问题.指导学生画出草图,利用数形结合来深化题意的理解,事实上,学生很容易看出A 的值.如果学生没找出周期问题,教师可进一步点拨:题目中告诉的x 轴的横坐标2与6表示图象的哪段.根据题意,知道点M 、N 恰是函数y =Asin(ωx +φ),x∈R (其中A>0,ω>0)在对应于包含0的周期的那段图象的五个关键点中的两个.由此可知A 、T ,但要注意指导φ的求法.解:方法一:根据题意,可知T4=6-2=4,所以T =16.于是ω=2πT =π8.又A =22,将点M 的坐标(2,22)代入y =22sin(π8x +φ),得22=22sin(π8×2+φ),即sin(π4+φ)=1.所以满足π4+φ=π2的φ为最小正数解.所以φ=π4.从而所求的函数解析式是y =22sin(π8x +π4),x∈R .方法二:由题意可得A =22,将两个点M(2,22),N(6,0)的坐标分别代入y =22sin(ωx +φ)并化简,得⎩⎪⎨⎪⎧ω+φ=1,ω+φ=0,故在长度为一个周期且包含原点的闭区间上, 有⎩⎪⎨⎪⎧2ω+φ=π2,6ω+φ=π,从而所求的函数解析式是y =22sin(π8x +π4),x∈R .点拨:由三角函数图象求解析式确定φ时,答案可能不只一个,这里可提醒学生注意,习惯上一般取离x 轴最近的一个,这样的解析式简洁.本例对学生有着很高的训练价值,特别是数形结合思想、转化与化归思想的运用.数形结合是数学中重要的思想方法,对各类函数的研究都离不开图象,在中学阶段,几乎所有函数的性质都是通过观察图象而得到的.例4已知函数f(x)=12log (sinx -cosx).(1)求它的定义域;(2)判断它的奇偶性;(3)判断它的周期性.图4活动:这是一组知识性很强的基础题,要求学生全面掌握有关三角函数的定义和性质.教师可先让学生自己动手操作,必要的时候给予点拨帮助.本题的关键是熟悉三角函数线或三角函数图象,利用数形结合直观性训练学生快速解题.如图4、图5.图5解:(1)x 必须满足sinx -cosx>0,利用图4或图5,知2k π+π4<x<2k π+5π4(k∈Z ),∴函数定义域为(2k π+π4,2k π+5π4),k∈Z .(2)∵f(x)定义域在数轴上对应的点关于原点不对称, ∴f(x)不具备奇偶性.(3)函数f(x)的最小正周期为T =2π.点评:利用单位圆中的三角函数线或正、余弦线可知:以第Ⅰ、Ⅱ象限角平分线为标准,可区分sinx -cosx 的符号;以第Ⅱ、Ⅲ象限角平分线为标准,可区分sinx +cosx 的符号.要让学生在深刻理解的基础上记忆这点,因函数的定义域是函数的核心,故研究函数的性质都必须以函数的定义域为前提. 变式训练1.如图6,⊙O 与x 轴的正半轴的交点为A ,点C 、B 在⊙O 上,且点C 位于第一象限,点B 的坐标为(45,-35),∠AOC=α(α为锐角).图6(1)求⊙O 的半径,并用α的三角函数表示C 点的坐标; (2)若|BC|=2,求tan α的值. 解:(1)⊙O 的半径r =452+-352=1,点C(cos α,sin α).(2)在△BOC 中,由于|OB|=|OC|=1,|BC|=2, ∴∠COB 是直角. 由三角函数的定义,知cos(α-90°)=sin α=45,且α为锐角,故cos α=35,tan α=43.2.已知函数f(x)=sin(ωx +π3)(ω>0)的最小正周期为π,则该函数的图象( )A .关于点(π3,0)对称B .关于直线x =π4对称C .关于点(π4,0)对称D .关于直线x =π3对称答案:A知能训练教科书复习题1~18.课堂小结提出问题让学生回顾总结,通过本节复习,系统掌握三角函数有关知识,你对三角函数有什么新的认识?三角函数与以前所学函数有什么异同之处?在灵活应用本章知识进行三角函数式的化简、求值、证明方面你都有哪些提高?我们都解决了哪些实际问题?教师与学生一起归纳总结,共同完成本节小结.作业已知函数f(x)=sin πx 图象的一部分如图7(1),则图7(2)的函数图象所对应的函数解析式可以为( )图7A .y =f(2x -12) B .y =f(2x -1)C .y =f(12x -1)D .y =f(12x -12)答案:B设计感想1.本章复习课只安排了1课时,课堂设计的容量较大,指导思想是充分利用多媒体,放手让学生根据教师提供的知识网络自己进行归纳总结,教师在知识的交汇处、在思维的提高上给予指导、点拨.建议教师课堂上不要把自己的思路、提前归纳的方法直接告诉学生.2.加强学生的学法指导,因为“在不断变动的世界上,没有任何一门或一套课程可供在可见的未来使用,或可供你终身受用.现在需要的最重要的技能是如何学习”.因此数学课的学习过程,不仅是传授知识、技能的过程,更是教会学生如何学习数学的过程.也就是说,学习数学的过程实际上就是学生获取、整合、储存、运用数学知识和获得学习能力的过程.在本章复习课设计中,就体现了学生如何学习的问题.3.复习不是简单的重复,不是练习堆积的习题课,而是成为学生再发现、再提高、再创造的氛围场所,是学生对所学知识居高临下的掌握和学生身心健康成长的愉悦体验.备课资料一、备用习题1.已知集合A ={α|α=60°+k·360°,k∈Z },B ={β|β=60°+k·720°,k∈Z },C ={γ|γ=60°+k·180°,k∈Z },那么集合A ,B ,C 之间的关系是( )A .B AC B .A B CC .B C AD .C B A2.若α是第四象限角,则π-α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3.一扇形的半径与弧长之比是3∶π,则该扇形所含弓形的面积与该扇形的面积之比是A .(2π-33)∶2πB .(6π-33)∶6πC .(4π-33)∶4πD .(8π-33)∶8π4.把函数y =4cos(x +π3)的图象向左平移m 个单位,所得图象关于y 轴对称,则m 的最小值是( )A.π6B.π3C.2π3D.5π65.如果|x|≤π4,设函数f(x)=cos 2x +sinx 的最大值为M ,最小值为m ,则M m的值为… ( ) A .-54B .-3-2 2C .3+2 2D .-52+526.已知函数y =Asin(ωx +φ)(A>0,ω>0)的周期为1,最大值与最小值之差是3,且函数图象过点(18,34),则函数表达式为( ) A .y =3sin(2x +7π12) B .y =3sin(2x -π12) C .y =32sin(2πx +π12) D .y =32sin(2πx -π12) 7.函数f(x)=tan ωx(ω>0)的图象的相邻两支截直线y =π4所得线段的长为π4,则f(π4)=__________.8.已知α、β∈(0,π2),且α+β>π2,求证:对于x∈(0,π),有f(x)=(cos αsin β)x +(cos βsin α)x <2. 参考答案:1.A 2.C 3.A 4.C 5.D 6.D 7.08.由α+β>π2,知α>π2-β. 又由α、β∈(0,π2),知π2-β∈(0,π2). ∵y=sinx 在(0,π2)内为增函数,y =cosx 在(0,π2)内为减函数, ∴sin α>sin(π2-β)=cos β,cos α<cos(π2-β)=sin β.∴0<cos βsin α<1,0<cos αsin β<1. 又∵x∈(0,π),∴(cos βsin α)x <1,(cos αsin β)x <1.∴f(x)=(cos αsin β)x +(cos βsin α)x <2. 二、三角函数的拓展1.关于三角函数的发展史三角函数亦称圆函数,是正弦、余弦、正切、余切、正割、余割等函数的总称.在平面直角坐标系xOy 中,在与x 轴正向夹角为α的动径上取点P ,P 的坐标是(x ,y),OP =r ,则正弦函数sin α=y r ,余弦函数cos α=x r ,正切函数tan α=y x ,余切函数cot α=x y ,正割函数sec α=r x,余割函数csc α=r y. 这6种函数在1631年徐光启等人编译的《大测》中已齐备.正弦最早被看作圆内圆心角所对的弦长,公元前2世纪古希腊天文学家希帕霍斯就制造过这种正弦表,公元2世纪托勒密又制造了0°~90°每隔半度的正弦表.公元5世纪时印度最早引入正弦概念,还给出正弦函数表,记载于《苏利耶历数书》(约400年)中.该书中还出现了正矢函数,现在已很少使用它了.约510年印度数学家阿那波多考虑了余弦概念,传到欧洲后有多种名称,17世纪后才统一.正切和余切函数是由日影的测量而引起的,9世纪的阿拉伯计算家哈巴什首次编制了一个正切、余切表.10世纪的艾布·瓦法又单独编制了第一个正切表.哈巴什还首先提出正割和余割概念,艾布·瓦法正式使用.到1551年奥地利数学家、天文学家雷蒂库斯在《三角学准则》中收入正弦、余弦、正切、余切、正割、余割6种函数,并附有正割表.他还首次用直角三角形的边长之比定义三角函数.1748年欧拉第一次以函数线与半径的比值定义三角函数,令圆半径为1,并创用许多三角函数符号.至此现代形式的三角函数开始通行,并不断发展至今.现在的许多教辅资料中,有关三角函数的运算都是6种函数的综合运算.2.关于三角函数的定义法三角函数定义是三角函数的核心内容.关于三角函数定义法,总的说来就两种:“单位圆定义法”与“终边定义法”,这两种方法本质上是一致的.正因为此,各种数学出版物中,两种定义方法都有采用,采用哪一种定义方法是一个取舍问题,没有对错之分,并不存在商榷的问题.因此,“单位圆上的点毕竟是特殊点,用它定义三角函数有失一般性”的认识是不正确的.由上述三角函数发展史已经表明,任意角的三角函数是因研究圆周运动的需要而产生的,数学史上,三角函数曾经被称为“圆函数”,所以,采用“单位圆定义法”能更真实地反映三角函数的发展进程.在老师们熟悉的“终边定义法”中,给出定义后有如下说明:“根据相似三角形的知识,对于确定的角α,这三个比值(如果有的话)都不会随点P在α的终边上的位置的改变而改变等,对于确定的角α,上面三个比值都是惟一确定的.这就是说,正弦、余弦、正切都是以角为自变量,以比值为函数值的函数.”这恰恰说明了“以角α的终边与单位圆的交点坐标为‘比值’”是不失一般性的.另外,用“单位圆定义法”直截了当、简洁易懂,不需要这样的说明,就更显出其好处了.3.关于《新课程》中的三角函数种类《高中数学课程标准(实验)》只要求正弦、余弦和正切三个函数,其目的是削枝强干,是非常正确的.进一步地,三角函数中正弦、余弦函数是“基本三角函数”,其余都是通过这两个函数的运算(相除、取倒数等)而得到的,或者说是从这两个函数“派生”出来的,因此教师在教学中没有必要对其他的三角函数再作补充.。

三角函数复习教学设计

三角函数复习教学设计

三角函数复习教学设计教学设计:三角函数复习一、教学目标1.知识与能力目标:复习三角函数的基本概念、性质和公式,掌握解三角函数方程、不等式的方法与技巧。

2.过程与方法目标:通过复习,培养学生对三角函数计算问题的分析能力和解决能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生对数学学习的自信心和探索精神。

二、教学准备1.教材:教师备好中学数学教材的三角函数章节相关内容。

2.教具:黑板、白板、彩色粉笔、挂图、计算器等。

3.学具:直角三角形模型、三角函数表格、复数计算器等。

三、教学过程1.复习三角函数的基本知识(1)师呈示问题:“请回忆一下三角函数的定义及其基本关系。

”(2)学生回答问题,教师予以适当引导和点拨,并将关键步骤写在黑板上。

(3)教师答案:- 正弦函数:在直角三角形中,对于给定角度θ,正弦函数的值等于对边的比率,sin(θ) = a / c。

- 余弦函数:在直角三角形中,对于给定角度θ,余弦函数的值等于邻边的比率,cos(θ) = b / c。

- 正切函数:在直角三角形中,对于给定角度θ,正切函数的值等于对边的比率,tan(θ) = a / b。

- 余切函数:在直角三角形中,对于给定角度θ,余切函数的值等于邻边的比率,cot(θ) = b / a。

- 正割函数:在直角三角形中,对于给定角度θ,正割函数的值等于斜边的比率,sec(θ) = c / a。

- 余割函数:在直角三角形中,对于给定角度θ,余割函数的值等于斜边的比率,csc(θ) = c / b。

2.复习三角函数的性质与公式(1)师呈示问题:“请回忆一下三角函数的周期性、奇偶性以及基本变换公式。

”(2)学生回答问题,教师予以适当引导和点拨,并将关键步骤写在黑板上。

(3)教师答案:-正弦函数和余弦函数的周期均为2π。

-正弦函数是奇函数,余弦函数是偶函数。

-基本变换公式:- sin(-θ) = -sin(θ)- sin(π + θ) = -sin(θ)- sin(2π - θ) = sin(θ)- sin(π - θ) = sin(θ)- sin(2π + θ) = sin(θ)-余切函数是奇函数,其他三角函数均是偶函数。

高中数学选修4教案

高中数学选修4教案

高中数学选修4教案第一课:三角函数的概念教学目标:了解三角函数的定义及相关概念教学内容:1. 三角函数的定义2. 常用三角函数及其性质3. 三角函数在直角三角形中的应用教学步骤:1. 引入三角函数的概念,让学生了解三角函数是描述角和边之间关系的函数2. 讲解常用的正弦、余弦、正切函数及其定义3. 通过实例让学生理解三角函数的性质,如周期性、奇偶性等4. 教学三角函数在直角三角形中的应用,如三角函数的计算和解三角形5. 练习相关题目,巩固学生对三角函数的理解和运用教学方式:讲解、实例演练、课堂练习教学时间:1课时第二课:三角函数的图像和性质教学目标:掌握三角函数的图像和性质教学内容:1. 三角函数的图像特征2. 三角函数的周期和幅度3. 三角函数的性质教学步骤:1. 展示正弦、余弦、正切函数的图像,引导学生观察和总结其特征2. 讲解三角函数的周期和幅度,让学生掌握计算周期和幅度的方法3. 教学三角函数的性质,如奇偶性、增减性等4. 练习相关题目,巩固学生对三角函数图像和性质的理解和掌握教学方式:展示、讲解、练习教学时间:1课时第三课:三角函数的应用教学目标:学习三角函数在实际问题中的应用教学内容:1. 三角函数在直角三角形中的应用2. 三角函数在三角形面积问题中的应用3. 三角函数在物理问题中的应用教学步骤:1. 讲解三角函数在直角三角形中的应用,如解决高度、距离等问题2. 教学三角函数在三角形面积问题中的应用,如解决角和边之间的关系3. 引导学生学习三角函数在物理问题中的应用,如解决力的合成、谐振等问题4. 练习相关题目,让学生熟练运用三角函数解决实际问题教学方式:讲解、练习、举例教学时间:1课时以上是高中数学选修4的三角函数部分教案范本,希望对您的教学有所帮助。

【教育专用】高中数学第一章三角函数本章复习教案苏教版必修4

【教育专用】高中数学第一章三角函数本章复习教案苏教版必修4

第一章三角函数本章复习整体设计知识网络1.任意角的概念是本章的基础,推广了角,扩大了研究的范围.在此基础上,为了计算中的简单,引入了两种度量制度:角度制与弧度制,但是其本质是一样的.其最基本的一个应用就是简化了弧长与扇形面积公式.同时也为定义任意角的三角函数作了前期工作,也就得到了本章的核心问题——任意角的三角函数定义.从这个核心出发,分成四条路线走,研究最基本的比例,就可以得到同角三角函数的基本关系式,同时根据定义就可以推导出诱导公式.知道了核心的本质意义在坐标系里面,可以定义点的坐标,为推导第三章和角公式作了应有的准备.而和角公式的两个特殊方面只是本身的一个推广,由此就得来了复杂多变的三角函数公式,而这些复杂的公式(第三章的倍角公式,差角公式)的本质又是和角公式.抛开比例的式子,应用弧度制的度量作为基础,就有了三角函数的图象和性质,这是三角与函数结合的产物,既有函数的特征,因此可以用函数的知识来解,又具有三角的特性,因此还可以用这一特点进行一些特殊的运算.所有的推导可以应用在计算与化简、证明恒等式上.2.数学的魅力在于系统、严密,学习的兴趣在于环环相扣.本章最为理想的复习方法就是引导学生打通本章中的这张知识网络图,这是进行具体问题具体分析的理论依据,也是解决问题最基本的方法.教师指导学生步步为营,将其引入数学王国,畅游科学殿堂.《三角函数》一章知识网络图三维目标1.通过全章复习,让学生切实掌握三角函数的基本性质,会判定三角函数的奇偶性,确定单调区间及求周期的方法.熟练掌握同角三角函数的基本关系式及六组诱导公式,弄清公式的推导关系和互相联系,让学生做到记准、用熟.2.要求学生会用“五点法”作正、余弦函数的简图,掌握应用基本三角变换公式的求值、化简、证明.3.本章的最终目标是让学生熟练掌握三角函数基础知识、基本技能、基本运算能力,以及数形结合思想、转化与化规思想,激发学生学习兴趣,培养他们善于总结、善于合作、善于创新以及应用数学解决实际问题的能力.重点难点教学重点:三角函数的定义,诱导公式,以及三角函数的图象与性质.教学难点:三角恒等变形及三角函数的图象与性质的综合运用.课时安排1课时教学过程导入新课思路1.(复习导入)了解一下全章的知识网络结构,并回顾思考本章学习了哪些具体内容:首先,我们给出了三角函数的定义,包括任意角的三角函数的符号,同角三角函数的关系式,诱导公式.又共同学习了正弦函数、余弦函数、正切函数的图象和性质.接下来,我们又共同探讨了它们的应用,并能运用上述公式和性质进行三角函数式的化简、求值、证明以及它们的综合运用.由此展开全章的系统复习.思路2.(问题导入)你现在已经会求任意角的三角函数值,会画三角函数的图象,会用三角函数模型来解释现实生活中具有周期性变换规律的一些现象.你是如何学习到这些知识的?又是如何提高自己能力的?由此引导学生回顾全章知识的形成过程,进而展开全面复习.推进新课知识巩固①我们是怎样推广任意角的?又是怎样得到任意角的三角函数定义的?②本章学习了哪些同角三角函数的基本关系式?怎样推导的?③本章都学习了哪些诱导公式?各有什么用途?怎样记忆?④你是如何得到正弦曲线、余弦曲线和正切曲线的?⑤你能从图象上说出三角函数的哪些性质?活动:问题①,为了使学生了解知识的形成顺序与过程,教师可引导学生回忆从前的学习情景,让学生感悟数学是在什么样的背景下向前推进的,同时也加强系统数学知识的记忆,居高临下地来掌握全章知识.问题②,教师引导学生回忆三角函数定义,回忆同角三角函数的基本关系式的推导,并回忆这些公式的作用和应用方法技巧.利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,也就是要就角所在象限进行分类讨论.同角三角函数的基本关系式揭示了同一个角的三角函数间的相互关系,利用它可以使解题更方便,但要注意公式成立的前提是角对应的三角函数有意义.sin 2α+cos 2α=1,sin αcos α=tan α. 问题③,教师引导学生回顾的同时,最好能利用多媒体或幻灯片来展示这些公式.以前学习的都是孤立的、零碎的,现在是放在一起记忆提高.幻灯片如下:问题④,三角函数性质是通过图象来研究的,而且画图、识图、用图也是对学生的基本要求.教师要让学生亲自动手画一画,以加深学生对三角函数性质的进一步理解提升.让学生明了:利用平移正弦线,可以比较精确地画出正弦函数的图象,利用正弦函数的图象和诱导公式,可以画出余弦函数的图象,可以看出在长度为一个周期的闭区间上有五个点(即函数值最大和最小的点以及函数值为0的点).这五个点在确定正弦函数、余弦函数图象的形状时起着关键的作用.因此,在精确度不太高时,我们常用“五点法”画正弦、余弦函数以及与它们类似的一些函数〔特别是函数y =Asin(ωx +φ)〕的简图.教师同时打出幻灯(如图1、图2、图3):图1图2图3问题⑤,让学生由图象说性质,教师可引导学生从函数的定义域、值域、奇偶性、单调性、最值、周期性、对称性等方面叙述.教师要强调,正弦、余弦、正切函数的图象以及它们的主要性质非常重要,要牢固掌握,但不要死记硬背.讨论结果:①~⑤略.应用示例例1已知角α终边上一点P与x轴的距离和与y轴的距离之比为3∶4(且均不为零),求2sinα+cosα的值.活动:本例属于较为简单的题目,目的是要学生熟悉任意角的三角函数定义,也要明确解题中的一种很重要的方法是回归定义.教师引导学生思考距离与坐标的不同、是否需要对点的坐标进行分类讨论,然后让学生独立完成此题.解:由题意,需对角α终边的位置进行讨论:①若角α终边过点P(4,3),则2sin α+cos α=2×35+45=2; ②若角α终边过点P(-4,3),则2sin α+cos α=2×35+-45=25; ③若角α终边过点P(-4,-3),则2sin α+cos α=2×-35+-45=-2; ④若角α终边过点P(4,-3),则2sin α+cos α=2×-35+45=-25. 点拨:任意角的三角函数定义不仅是本章的核心,也是整个三角函数的中心问题.要指导学生深刻理解三角函数定义的内涵,它只是一个比值,只与角的大小有关,而与点P 在角的终边上的位置无关.例2已知sin α+3cos α=0,求:(1)3cos α-sin α3cos α+sin α;(2)2sin 2α-3sin αcos α+2的值. 活动:教师引导学生观察本题的条件与结论,关键是求sin α与cos α的值,由sin α+3cos α=0及sin 2α+cos 2α=1联立方程组即得sin α与cos α的值.教师进一步点拨:根据同角三角函数的基本关系,不直接求sin α与cos α的值,需作怎样的变形即可?对看出本题由已知可得tan α=-3的同学教师给予鼓励并作进一步探究,对看不出这一步的学生再给予进一步引导,直至其独立解出此题.解:(1)3cos α-sin α3cos α+sin α=3-tan α3+tan α=3+33-3=-2- 3.(2)2sin 2α-3sin αcos α+2=4sin 2α-3sin αcos α+2cos 2α=cos 2α(4tan 2α-3tan α+2)=11+tan 2α(4tan 2α-3tan α+2)=11+-2(4×9+3×3+2)=4710. 点拨:本题主要考查利用同角三角函数关系式求值.对于只含有正弦、余弦函数的齐次式,在求解时常常转化为只含有正切的式子,这种变形技巧十分重要,也称为“1”的代换,在今后的学习中经常用到,应要求学生仔细体会并熟悉掌握.变式训练1.已知α是三角形的内角,且sin α+cos α=15,求tan α的值. 解:由sin α+cos α=15平方整理,得sin αcos α=-1225<0. ∵α为三角形的内角,∴0<α<π,sin α>0,cos α<0.∴sin α-cos α>0.∵(sin α-cos α)2=1-2sin αcos α=4925, ∴sin α-cos α=75. 由⎩⎪⎨⎪⎧ sin α+cos α=15sin α-cos α=75 ⇒⎩⎪⎨⎪⎧ sin α=45,cos α=-35,∴tan α=-43. 点拨:本题主要考查同角三角函数的基本关系式.对于三角求值题目,一定要注意角的范围,有时要根据所给三角函数值的大小,适当缩小所给角的范围,才能求出准确的值.教师要抓住时机就此进一步挖掘,以激起学生的探究兴趣.2.已知sin θ=m -3m +5,cos θ=4-2m m +5,π2<θ<π,则m 的取值范围是… ( ) A .3≤m≤9 B .m≤-5或m≥3C .m =0或m =8D .m =8答案:D例3已知函数y =Asin(ωx +φ),x∈R (其中A>0,ω>0)的图象在y 轴右侧的第一个最高点(函数取最大值的点)为M(2,22),与x 轴正半轴的第一个交点为N(6,0),求这个函数的解析式.活动:本例是一道经典例题,主要考查三角函数模型的应用及训练学生的分析思维能力,对数形结合的思维要求也较高.教师可引导学生展开思考讨论,怎样根据题目中给出的条件找到思维的切入点.题目中虽然没有直接给出图象,实质是已知图象求解析式问题.指导学生画出草图,利用数形结合来深化题意的理解,事实上,学生很容易看出A 的值.如果学生没找出周期问题,教师可进一步点拨:题目中告诉的x 轴的横坐标2与6表示图象的哪段.根据题意,知道点M 、N 恰是函数y =Asin(ωx +φ),x∈R (其中A>0,ω>0)在对应于包含0的周期的那段图象的五个关键点中的两个.由此可知A 、T ,但要注意指导φ的求法.解:方法一:根据题意,可知T 4=6-2=4,所以T =16. 于是ω=2πT =π8.又A =22, 将点M 的坐标(2,22)代入y =22sin(π8x +φ), 得22=22sin(π8×2+φ), 即sin(π4+φ)=1. 所以满足π4+φ=π2的φ为最小正数解.所以φ=π4. 从而所求的函数解析式是y =22sin(π8x +π4),x∈R . 方法二:由题意可得A =22,将两个点M(2,22),N(6,0)的坐标分别代入y =22sin(ωx +φ)并化简,得⎩⎪⎨⎪⎧ ω+φ=1,ω+φ=0,故在长度为一个周期且包含原点的闭区间上,有⎩⎪⎨⎪⎧ 2ω+φ=π2,6ω+φ=π,从而所求的函数解析式是y =22sin(π8x +π4),x∈R . 点拨:由三角函数图象求解析式确定φ时,答案可能不只一个,这里可提醒学生注意,习惯上一般取离x 轴最近的一个,这样的解析式简洁.本例对学生有着很高的训练价值,特别是数形结合思想、转化与化归思想的运用.数形结合是数学中重要的思想方法,对各类函数的研究都离不开图象,在中学阶段,几乎所有函数的性质都是通过观察图象而得到的.log(sinx-cosx).例4已知函数f(x)=12(1)求它的定义域;(2)判断它的奇偶性;(3)判断它的周期性.图4活动:这是一组知识性很强的基础题,要求学生全面掌握有关三角函数的定义和性质.教师可先让学生自己动手操作,必要的时候给予点拨帮助.本题的关键是熟悉三角函数线或三角函数图象,利用数形结合直观性训练学生快速解题.如图4、图5.图5解:(1)x 必须满足sinx -cosx>0,利用图4或图5,知2k π+π4<x<2k π+5π4(k∈Z ), ∴函数定义域为(2k π+π4,2k π+5π4),k∈Z . (2)∵f(x)定义域在数轴上对应的点关于原点不对称,∴f(x)不具备奇偶性.(3)函数f(x)的最小正周期为T =2π.点评:利用单位圆中的三角函数线或正、余弦线可知:以第Ⅰ、Ⅱ象限角平分线为标准,可区分sinx -cosx 的符号;以第Ⅱ、Ⅲ象限角平分线为标准,可区分sinx +cosx 的符号.要让学生在深刻理解的基础上记忆这点,因函数的定义域是函数的核心,故研究函数的性质都必须以函数的定义域为前提.变式训练1.如图6,⊙O 与x 轴的正半轴的交点为A ,点C 、B 在⊙O 上,且点C 位于第一象限,点B 的坐标为(45,-35),∠AOC=α(α为锐角).图6(1)求⊙O 的半径,并用α的三角函数表示C 点的坐标;(2)若|BC|=2,求tan α的值.解:(1)⊙O 的半径r =452+-352=1,点C(cos α,sin α).(2)在△BOC 中,由于|OB|=|OC|=1,|BC|=2,∴∠COB 是直角. 由三角函数的定义,知cos(α-90°)=sin α=45,且α为锐角, 故cos α=35,tan α=43. 2.已知函数f(x)=sin(ωx +π3)(ω>0)的最小正周期为π,则该函数的图象( ) A .关于点(π3,0)对称 B .关于直线x =π4对称C .关于点(π4,0)对称D .关于直线x =π3对称 答案:A知能训练教科书复习题1~18.课堂小结提出问题让学生回顾总结,通过本节复习,系统掌握三角函数有关知识,你对三角函数有什么新的认识?三角函数与以前所学函数有什么异同之处?在灵活应用本章知识进行三角函数式的化简、求值、证明方面你都有哪些提高?我们都解决了哪些实际问题?教师与学生一起归纳总结,共同完成本节小结.作业已知函数f(x)=sin πx 图象的一部分如图7(1),则图7(2)的函数图象所对应的函数解析式可以为( )图7A .y =f(2x -12) B .y =f(2x -1) C .y =f(12x -1) D .y =f(12x -12) 答案:B设计感想1.本章复习课只安排了1课时,课堂设计的容量较大,指导思想是充分利用多媒体,放手让学生根据教师提供的知识网络自己进行归纳总结,教师在知识的交汇处、在思维的提高上给予指导、点拨.建议教师课堂上不要把自己的思路、提前归纳的方法直接告诉学生.2.加强学生的学法指导,因为“在不断变动的世界上,没有任何一门或一套课程可供在可见的未来使用,或可供你终身受用.现在需要的最重要的技能是如何学习”.因此数学课的学习过程,不仅是传授知识、技能的过程,更是教会学生如何学习数学的过程.也就是说,学习数学的过程实际上就是学生获取、整合、储存、运用数学知识和获得学习能力的过程.在本章复习课设计中,就体现了学生如何学习的问题.3.复习不是简单的重复,不是练习堆积的习题课,而是成为学生再发现、再提高、再创造的氛围场所,是学生对所学知识居高临下的掌握和学生身心健康成长的愉悦体验.备课资料一、备用习题1.已知集合A ={α|α=60°+k·360°,k∈Z },B ={β|β=60°+k·720°,k∈Z },C ={γ|γ=60°+k·180°,k∈Z },那么集合A ,B ,C 之间的关系是( )A .B AC B .A B C C .B C AD .C B A2.若α是第四象限角,则π-α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角3.一扇形的半径与弧长之比是3∶π,则该扇形所含弓形的面积与该扇形的面积之比是A .(2π-33)∶2πB .(6π-33)∶6πC .(4π-33)∶4πD .(8π-33)∶8π4.把函数y =4cos(x +π3)的图象向左平移m 个单位,所得图象关于y 轴对称,则m 的最小值是( )A.π6B.π3C.2π3D.5π65.如果|x|≤π4,设函数f(x)=cos 2x +sinx 的最大值为M ,最小值为m ,则M m的值为… ( )A .-54B .-3-2 2C .3+2 2D .-52+526.已知函数y =Asin(ωx +φ)(A>0,ω>0)的周期为1,最大值与最小值之差是3,且函数图象过点(18,34),则函数表达式为( )A .y =3sin(2x +7π12)B .y =3sin(2x -π12) C .y =32sin(2πx +π12) D .y =32sin(2πx -π12) 7.函数f(x)=tan ωx(ω>0)的图象的相邻两支截直线y =π4所得线段的长为π4,则f(π4)=__________.8.已知α、β∈(0,π2),且α+β>π2,求证:对于x∈(0,π),有f(x)=(cos αsin β)x +(cos βsin α)x <2. 参考答案:1.A 2.C 3.A 4.C 5.D 6.D 7.08.由α+β>π2,知α>π2-β. 又由α、β∈(0,π2),知π2-β∈(0,π2). ∵y=sinx 在(0,π2)内为增函数,y =cosx 在(0,π2)内为减函数, ∴sin α>sin(π2-β)=cos β,cos α<cos(π2-β)=sin β.∴0<cos βsin α<1,0<cos αsin β<1. 又∵x∈(0,π),∴(cos βsin α)x <1,(cos αsin β)x <1.∴f(x)=(cos αsin β)x +(cos βsin α)x <2. 二、三角函数的拓展1.关于三角函数的发展史三角函数亦称圆函数,是正弦、余弦、正切、余切、正割、余割等函数的总称.在平面直角坐标系xOy 中,在与x 轴正向夹角为α的动径上取点P ,P 的坐标是(x ,y),OP =r ,则正弦函数sin α=y r ,余弦函数cos α=x r ,正切函数tan α=y x ,余切函数cot α=x y,正割函数sec α=r x ,余割函数csc α=r y. 这6种函数在1631年徐光启等人编译的《大测》中已齐备.正弦最早被看作圆内圆心角所对的弦长,公元前2世纪古希腊天文学家希帕霍斯就制造过这种正弦表,公元2世纪托勒密又制造了0°~90°每隔半度的正弦表.公元5世纪时印度最早引入正弦概念,还给出正弦函数表,记载于《苏利耶历数书》(约400年)中.该书中还出现了正矢函数,现在已很少使用它了.约510年印度数学家阿那波多考虑了余弦概念,传到欧洲后有多种名称,17世纪后才统一.正切和余切函数是由日影的测量而引起的,9世纪的阿拉伯计算家哈巴什首次编制了一个正切、余切表.10世纪的艾布·瓦法又单独编制了第一个正切表.哈巴什还首先提出正割和余割概念,艾布·瓦法正式使用.到1551年奥地利数学家、天文学家雷蒂库斯在《三角学准则》中收入正弦、余弦、正切、余切、正割、余割6种函数,并附有正割表.他还首次用直角三角形的边长之比定义三角函数.1748年欧拉第一次以函数线与半径的比值定义三角函数,令圆半径为1,并创用许多三角函数符号.至此现代形式的三角函数开始通行,并不断发展至今.现在的许多教辅资料中,有关三角函数的运算都是6种函数的综合运算.2.关于三角函数的定义法三角函数定义是三角函数的核心内容.关于三角函数定义法,总的说来就两种:“单位圆定义法”与“终边定义法”,这两种方法本质上是一致的.正因为此,各种数学出版物中,两种定义方法都有采用,采用哪一种定义方法是一个取舍问题,没有对错之分,并不存在商榷的问题.因此,“单位圆上的点毕竟是特殊点,用它定义三角函数有失一般性”的认识是不正确的.由上述三角函数发展史已经表明,任意角的三角函数是因研究圆周运动的需要而产生的,数学史上,三角函数曾经被称为“圆函数”,所以,采用“单位圆定义法”能更真实地反映三角函数的发展进程.在老师们熟悉的“终边定义法”中,给出定义后有如下说明:“根据相似三角形的知识,对于确定的角α,这三个比值(如果有的话)都不会随点P在α的终边上的位置的改变而改变等,对于确定的角α,上面三个比值都是惟一确定的.这就是说,正弦、余弦、正切都是以角为自变量,以比值为函数值的函数.”这恰恰说明了“以角α的终边与单位圆的交点坐标为‘比值’”是不失一般性的.另外,用“单位圆定义法”直截了当、简洁易懂,不需要这样的说明,就更显出其好处了.3.关于《新课程》中的三角函数种类《高中数学课程标准(实验)》只要求正弦、余弦和正切三个函数,其目的是削枝强干,是非常正确的.进一步地,三角函数中正弦、余弦函数是“基本三角函数”,其余都是通过这两个函数的运算(相除、取倒数等)而得到的,或者说是从这两个函数“派生”出来的,因此教师在教学中没有必要对其他的三角函数再作补充.。

高中数学三角函数复习与小结教案苏教版必修4

高中数学三角函数复习与小结教案苏教版必修4

三角函数复习与小结教学目标:1.进一步巩固三角函数的图象、性质;2.应用三角函数解决实际问题;3.渗透数形结合与转化思想.教学重点:让学生掌握三角函数的图象;熟练运用三角公式.教学难点:图象变换.教学过程:一、问题情景问题:本章有哪些知识点?1.任意角的概念;2.角度制与弧度制;3.任意角的三角函数;4.三角函数的图象与性质;二、学生活动1.sin390°+cos120°+sin225°的值是 .2.︒-︒︒-︒23cos 37cos 23sin 37sin = .3.已知sin θ+cos θ=51-,(0,),πθ∈ tan θ的值是 .4.关于函数f (x )=4sin(2x +π3)(x ∈R),有下列命题:(1)y =f (x )的表达式可改写为y =4·cos(2x -π6);(2)y =f (x )是以2π为最小正周期的周期函数;(3)y =f (x )的图象关于点(-π6,0)对称;(4)y =f (x )的图象关于直线x =-π6对称.其中正确的命题序号是 (注:把你认为正确的命题序号都填上).三、数学应用1.例题:例1 已知角α终边上一点0),3,4(≠-a a a P ,求)29sin()211cos()sin()2cos(απαπαπαπ+---+的值. 分析 利用三角函数的定义,以及诱导公式.例2 已知函数cos 2(0)6y a b x b π=-+>⎛⎫ ⎪⎝⎭的最大值为23,最小值为21-. (1)求b a ,的值;(2)求函数)3sin(4)(π--=bx a x g 的最小值并求出对应x 的集合.分析:(1)利用三角函数的性质,]1,1[)62cos(-∈+πx (2)利用三角函数的性质,]1,1[)3sin(-∈-πbx 2.练习:(1)函数)22cos(π+=x y 的图象的对称轴方程是 ;(2)要得到函数y =sin(2x -3π)的图象,只要将函数y =sin2x 的图象 ; (3)已知()s i n ()c o s ()f x a x b x παπβ=++++(,,,a b αβ为非零实数),(2007)5f =,则(2008)f = ;(4)函数)32cos(π--=x y 的单调递增区间是 . 四、要点归纳与方法小结1.进一步巩固、熟悉了三角函数的图象、性质并加以灵活应用;2.初步学会了如何应用三角函数解决实际问题;3.进一步渗透了数形结合与转化思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【知识在线】
求下列各式的值
1.cos200°cos80°+cos110°cos10°=.
2.(cos15°+sin15°)=.
3.化简1+2cos2θ-cos2θ=.
4.cos(20°+x)cos(25°-x)-cos(70°-x)sin(25°-x)=.
5.-=.
【讲练平台】
例1求下列各式的值
(1)tan10°+tan50°+tan10°tan50°;
例3设θ是第二象限角,且满足|sin|=-sin,是哪个象限的角?
解∵θ是第二象限角,∴2kπ+<θ<2kπ+,k∈Z.
∴kπ+<<kπ+,k∈Z.
∴是第一象限或第三象限角.①
又∵|sin|=-sin,∴sin<0.∴是第三、第四象限的角.②
由①、②知,是第三象限角.
点评已知θ所在的象限,求或2θ等所在的象限,要运用终边相同的角的表示法来表示,否则易出错.
【考点指津】
掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式,能运用化归思想(将不同角化成同角等)解题.
【知识在线】
1.cos105°的值为()
A.B.C.D.
2.对于任何α、β∈(0,),sin(α+β)与sinα+sinβ的大小关系是()
A.sin(α+β)>sinα+sinβB.sin(α+β)<sinα+sinβ
C.sin(α+β)=sinα+sinβD.要以α、β的具体值而定
3.已知π<θ<,sin2θ=a,则sinθ+cosθ等于()
A.B.-C.D.±
4.已知tanα=,tanβ=,则cot(α+2β)=.
5.已知tanx=,则cos2x=.
【讲练平台】
例1已知sinα-sinβ=-,cosα-cosβ=,求cos(α-β)的值.
5.若4π<α<6π,且α与-终边相同,则α=.
6.角α终边在第三象限,则角2α终边在象限.
7.已知|tanx|=-tanx,则角x的集合为.
8.如果θ是第三象限角,则cos(sinθ)·sin(sinθ)的符号为什么?
9.已知扇形AOB的周长是6cm,该扇形中心角是1弧度,求该扇形面积.
第2课同角三角函数的关系及诱导公式
A.B.C.D.
2.已知sin(π+α)=-,则( )
A.cosα=B.tanα=C.cosα=-D.sin(π-α)=
3.已tanα=3,的值为.
4.化简=.
5.已知θ是第三象限角,且sin4θ+cos4θ=,那么sin2θ等于( )
A.B.-C.D.-
【讲练平台】
例1化简.
分析式中含有较多角和较多三角函数名称,若能减少它们的个数,则式子可望简化.
若cos(α+β)≠0,cosα≠0,则3tan(α+β)=tanα.
点评审题中要仔细分析角与角之间的关系,善于运用整体思想解题,此题中将α+β看成一个整体
【知能集成】
审题中,要善于观察已知式和欲求式的差异,注意角之间的关系;整体思想是三角变换中常用的思想.
【训练反馈】
1.已知0<α<<β<π,sinα=,cos(α+β)=-,则sinβ等于()
(2).
(1)解原式=tan(10°+50°)(1-tan10°tan50°)+tan10°tan50°=.
(2)分析式中含有多个函数名称,故需减少函数名称的个数,进行切割化弦.
解原式==
=
=
点评(1)要注意公式的变形运用和逆向运用,注意公式tanA+tanB=tan(A+B)(1-tanAtanB),asinx+bsinx= sin(x+φ)的运用;(2)在三角变换中,切割化弦是常用的变换方法.
点评已知一个角的终边上一点的坐标,求其三角函数值,往往运用定义法(三角函数的定义)解决.
例2已知集合E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tanθ<sinθ},求集合E∩F.
分析对于三角不等式,可运用三角函数线解之.
解E={θ|<θ<},F ={θ|<θ<π,或<θ<2π},
∴E∩F={θ|<θ<π}.
A.在x轴上B.在y轴上C.在直线y=x上D.在直线y=-x上.
3.已知角α的终边过点p(-5,12),则cosα},tanα=.
4.的符号为.
5.若cosθtanθ>0,则θ是( )
A.第一象限角B.第二象限角
C.第一、二象限角D.第二、三象限角
【讲练平台】
例1已知角的终边上一点P(-,m),且sinθ=m,求cosθ与tanθ的值.
分析已知角的终边上点的坐标,求角的三角函数值,应联想到运用三角函数的定义解题,由P的坐标可知,需求出m的值,从而应寻求m的方程.
解由题意知r=,则sinθ==.
又∵sinθ=m,∴=m.∴m=0,m=±.
当m=0时,cosθ=-1,tanθ=0;
当m=时,cosθ=-,tanθ=-;
当m=-时,cosθ=-,tanθ=.
∴cos(α-β)=.
点评审题中要善于寻找已知和欲求的差异,设法消除差异.
例2求的值.
分析式中含有两个角,故需先化简.注意到10°=30°-20°,由于30°的三角函数值已知,则可将两个角化成一个角.
解∵10°=30°-20°,
∴原式=
===.
点评化异角为同角,是三角变换中常用的方法.
例3已知:sin(α+β)=-2sinβ.求证:tanα=3tan(α+β).
分析已知式中含有角2α+β和β,而欲求式中含有角α和α+β,所以要设法将已知式中的角转化成欲求式中的角.
解∵2α+β=(α+β)+α,β=(α+β)-α,
∴sin[(α+β)+α]=-2sin[(α+β)-α].
∴sin(α+β)cosα+cos(α+β)sinα=-2sin(α+β)cosα+2cos(α+β)sinα.
∵θ∈(,),∴cosθ<sinθ.
∴cosθ-sinθ=-.
变式1条件同例,求cosθ+sinθ的值.
变式2已知cosθ-sinθ=-,求sinθcosθ,sinθ+cosθ的值.
点评sinθcosθ,cosθ+sinθ,cosθ-sinθ三者关系紧密,由其中之一,可求其余之二.
例3已知tanθ=3.求cos2θ+sinθcosθ的值.
7.已知cos(α-β)=-,cos(α+β)=,且(α-β)∈(,π),α+β∈(,2π),求cos2α、cos2β的值.
8.已知sin(α+β)=,且sin(π+α-β)=,求.
第4课两角和与两角差的三角函数(二)
【考点指津】
掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;能灵活运用和角、差角、倍角公式解题.
解原式==
==1.
点评将不同角化同角,不同名的三角函数化成同名的三角函数是三角变换中常用的方法.
例2若sinθcosθ=,θ∈(,),求cosθ-sinθ的值.
分析已知式为sinθ、cosθ的二次式,欲求式为sinθ、cosθ的一次式,为了运用条件,须将cosθ-sinθ进行平方.
解(cosθ-sinθ)2=cos2θ+sin2θ-2sinθcosθ=1-=.
3.已知sinx+cosx=,x∈[0,π],则tanx的值是()
A.-B.-C.±D.-或-
4.已知tanα=-,则=.
5.的值为.
6.证明=.
7.已知=-5,求3cos2θ+4sin2θ的值.
8.已知锐角α、β、γ满足sinα+sinγ=sinβ,cosα-cosγ=cosβ,求α-β的值.
第3课两角和与两角差的三角函数(一)
例2求证=.
分析三角恒等式的证明可从一边开始,证得它等于另一边;也可以分别从两边开始,证得都等于同一个式子;还可以先证得另一等式,从而推出需要证明的等式.
由欲证的等式可知,可先证等式=,此式的右边等于tan2θ,而此式的左边出现了“1-cos4θ”和“1+cos4θ”,分别运用升幂公式可出现角2θ,sin4θ用倍角公式可出现角2θ,从而等式可望得证.
【考点指津】
掌握同角三角函数的基本关系式:sin2α+cos2α=1,=tanα,tanαcotα=1,掌握正弦、余弦的诱导公式.能运用化归思想(即将含有较多三角函数名称问题化成含有较少三角函数名称问题)解题.
【知识在线】
1.sin2150°+sin2135°+2sin210°+cos2225°的值是( )
【知能集成】
在三角变换中,要注意三角公式的逆用和变形运用,特别要注意如下公式:
tanA+tanB=tan(A+B)[1-tanAtanB];
asinx+bcosx= sin(x+φ)及升幂、降幂公式的运用.
2.注意1的作用:如1=sin2θ+cos2θ.
3.要注意观察式子特征,关于sinθ、cosθ的齐次式可转化成关于tanθ的式子.
4.运用诱导公式,可将任意角的问题转化成锐角的问题.
【训练反馈】
1.sin600°的值是()
A.B.-C.D.-
2.sin(+α)sin(-α)的化简结果为()
A.cos2αB.cos2αC.sin2αD.sin2α
分析因为cos2θ+sinθcosθ是关于sinθ、cosθ的二次齐次式,所以可转化成tanθ的式子.
相关文档
最新文档