§3.4相互独立的随机变量
相互独立的随机变量的方差公式

相互独立的随机变量的方差公式相互独立的随机变量,是指两个或多个随机变量完全独立,即当其中一个随机变量发生变化时,另一个随机变量不会受到影响。
它也被称为“完全独立的随机变量”,是概率论中比较重要的概念。
如何用方差公式衡量相互独立的随机变量?方差公式可以用来衡量相互独立的随机变量,方差公式是指:当一组随机变量X1,X2,X3,……,Xn服从某一分布模型,其期望值为μ,则X1,X2,X3,……,Xn的方差公式可以定义为:σ^2=E[(X1-μ)^2+(X2-μ)^2+...+(Xn-μ)^2]。
另外,如果有两个相互独立的随机变量X和Y,则它们的方差之和可以用如下的方式计算:σ^2X+σ^2Y=E[(X-μx)^2] + E[(Y-μY)^2]。
计算相互独立的随机变量的方差公式计算相互独立的随机变量的方差公式,可以使用以上提到的两个公式,即:σ^2=E[(X1-μ)^2+(X2-μ)^2+...+(Xn-μ)^2]和σ^2X+σ^2Y=E[(X-μx)^2] + E[(Y-μY)^2]。
例如,如果有三个相互独立的随机变量X1, X2, X3,则方差公式为:σ^2=E[(X1-μ)^2+(X2-μ)^2+(X3-μ)^2]。
又例如,如果有两个相互独立的随机变量X和Y,则它们的方差之和可以用公式σ^2X+^2Y=E[(X-μx)^2] + E[(Y-μY)^2]来计算。
相互独立的随机变量的方差公式的应用在统计学和概率论中,方差公式是计算分布和数据的偏差的重要参数。
它能够准确反映样本空间的分布情况。
进一步来讲,方差公式也可以用来计算相互独立的随机变量之间的关系。
例如,通过计算不同变量之间的方差比,我们可以比较这些变量之间的相关性。
另外,它还可以用来估计待检变量的方差,从而检验样本的变异性,这在实际的科学研究中也非常有用。
本文所介绍的方差公式对于研究相互独立的随机变量之间的关系也非常有用。
它能够帮助我们精确地计算和比较变量之间的差异,从而使实验结果更加准确。
§3.4相互独立的随机变量

9
可以验证此时有
p ij p ip j i 1 ,2 ;j 1 ,2 ,3
因 此 , 取 a=2,b1时 X 与 Y 相 互 独 立 .
99
7
例3 设X和Y相互独立,其边缘分布律如下 表,试求(X,Y)的联合分布律和P(X+Y=1)及 P(X+Y≠0).
X -2 -1 0 1/2 pi. 1/4 1/3 1/12 1/3
Y
-1/2 1
3
p.j
1/2 1/4 1/4
8
解:因X和Y相互独立,
应 有 p i j p i p j i 1 ,2 ,3 ,4 ;j 1 ,2 ,3
故(X,Y)的联合分布律为
Y
-1/2
1
3
X
-2
1/8
1/16
1/16
-1
1/6
1/12
1/12
0
1/24
1/48
1/48
1/2
1/6
1/12
1
由二维随机变量 ( X, Y ) 相互独立的定义 可知,二维随机变量 ( X, Y ) 相互独立的 充要条件是:对任意的x,y,有
F (x ,y ) F X (x )F Y (y )
它表明,两个随机变量相互独立时,它们 的联合分布函数等于两个边缘分布函数的乘 积.
2
若(X,Y)是连续型随机变量,则上述独立性的 定义等价于:若对任意的 x, y, 有
1 x2y2
f(x,y)2e 2
x,y
P {X2Y21} f(x,y)dxdy x2y21
1
x2 y2
e 2 dxdy
2 x2 y2 1
17
3.4 随机变量的独立性

第2页
3.4 随机变量独立性
可以证明如下结论: (1)若 (X,Y)是连续型r.v ,则上述独立性的定义等价于:
对任意的 x, y, 有
f ( x , y ) f X ( x ) fY ( y )
第6页
3.4 随机变量独立性
例3.4.1
1.
P( X P( X P( X P( X
X ,Y 具有分布律右图,则:
1, Y 0) 1 6 P( X 1) P(Y 0) 2, Y 0) 1 6 P( X 2) P(Y 0) 1, Y 1) 2 6 P( X 1) P(Y 1) 2, Y 1) 2 6 P( X 2) P(Y 1)
p ij p i p j
离散型随机变量的联合分布列等于其边缘分布列的乘积
P { X x i | Y y j } p i , , P { Y y j | X x i } p j
任一变量的条件分布列等于其边缘分布列
要判断 X 和 Y 不独立,只需找到 X, Y 的一对取值(xi,yj),使得 P{X xi , Y y j } P{X xi }P{Y y j }.
P( X1 x1i1 )
i2 ,i3 ,in
P( X1 x1i1 , X 2 x2i2 ,, X n xnin )
P( X1 x1i1 , X 2 x2i2 )
f X1 ( x1 )
i3 ,i4 ,in
P( X1 x1i1 , X 2 x2i2 ,, X n xnin )
二维随机变量的函数的分布

(2) 设连续型随机变量( X ,Y )的概率密度为f ( x, y) , 边缘概率密度分别为f X ( x) , fY ( y) ,则有
X 和Y 相互独立 f ( x, y) f X ( x) fY ( y).
在f ( x, y) , f X ( x) , fY ( y)的一切连续点(x, y)处
Z=X+Y的概率密度。
解
fX (x)
1
x2
e 2,
2
fY ( y)
1
y2
e 2 ,( x, y )
2
fZ (z) fX ( x) fY (z x)dx
t 2(x z ) 2
1
x2
e2
2
1 e dx
(
z x 2
0.1 0.3 0.3 0.1 0.2
X与Y独立,X,Y取0,1,2,…,则Z=X+Y Z=max(X,Y)
的分布律
设X与Y独立,分别服从参数为 1 ,2 的泊松分布, 证明Z=X+Y服从参数为 1 2 的泊松分布。
【注】分布具有可加性
二项分布的可加性(P89)
二、 连续型随机变量的函数的分布
例2 设随机变量X和Y相互独立,且X和Y都是(0,a) 上的均匀分布,求Z=X+Y的概率密度。
例2 在一简单电路中,两电阻R1和R2串联联接,设
R1, R2相f (互x)独 立1,050它x 们, 的0 概x率密10度, 均为 z
0,
其 它.
求总电阻R=R1+R2的概率密度.
z=x+10 z=x
0,
, x 0, 其它.
3.4(随机变量的相互独立性)

f ( x , y) 1 2 1 2 1 ( x 1 ) 2 ( x 1 )( y 2 ) ( y 2 ) 2 exp{ ( 2 } 2 2 2 2 2 ( 1 ) 1 1 1 2 2
由例3.11知,f X ( x ), fY ( y)的乘积为
0
1
x2 2
)dx
1 1 2 e 2 0
1
x2 2
dx
1 2 (1) (0)
1 2.5066 0.8413 0.5
0.1445
□
3.4 随机变量的相互独立性
【例 3.19】对于二维正态分布,则 X 与 Y 相互独立的 充要条件是ρ=0.
0.5
pj
0.5
0.5
及独立性得到下表:
3.4 随机变量的相互独立性
pij
Z
0.25
1
0.25
0
0.25
0
0.25
1
(X,Y) (0,0) (0,1) (1,0) (1,1)
(X,Z) (0,1) (0,0) (1,0) (1,1)
(X,Z)的分布律及边缘分布律为:
X Z 0 0 0.25 1 0.25 p i. 0.5
第3章 多维随机变量及其分布
3.4 随机变量的相互独立性
定义3.9 设n维随机变量(X1,X2,…,Xn)的分 布函数为F(x1,x2,…,xn),FXi (xi)为Xi的边缘分布 函数,如果对任意n个实数x1,x2,…,xn,有
P{ X 1 x1 , X 2 x2 ,, X n xn } P{ X i xi } 即 F ( x1 , x2 , , xn ) FX i ( xi )
第三章相互独立的随机变量(多维随机变量及其分布)

10:42:20
19
例5 设(X,Y)在圆域D={(x, y)| x2+y2r 2}上服从均匀 分布. (1) 求X与Y的边缘密度,判断X与Y是否相互独立. 2 r2 r 2 2 ( 2)求P 8 X Y 4 . 2 y 解 1 / r , ( x , y ) D , x2+y2=r 2
即 1 2σ1σ 2 1 2 2 σ1 1 ρ 1 , 2 σ 2
从而 0.
综上,对于二维正态随 机变量( X , Y ), X和Y相互独立的充分必要条 件是
0.
10:42:20
12
例3
甲乙两人约定中午12时30分在某地会面. 如果甲来到的时间在 12:15 到 12:45 之间是均匀 分布 . 乙独立地到达 , 而且到达时间在 12:00到 13:00之间是均匀分布. 求先到的人等待另一人到达的时间不超过 5 分钟的概率; 又甲先到的概率是多少? 解: 设X为甲到达时刻,Y为乙到达时刻. 以12时 为起点0,以分为单位.
d c
o
a
b
x
10:42:20
17
f X ( x)
f ( x , y )dy
d
y
当 a x b时,
d
1 1 f X ( x) dy . c ( b a )(d c ) ba 1 , a x b , f X ( x) b - a 0, 其它.
222121??????????nyx??????????????????????????????????????????????22222121212122212121exp121yyxxyxf??则若0????????????????????????????????????????222221212121exp21yxyxf??????????????????????????????????????22222212112exp212exp21yx????ryxyfxfyx????即即x与y相互独立
《概率论》第3章§4相互独立的随机变量

§4
A, B 相互独立 X , Y 相互独立
相互独立的随机变量
11/19
P( A | B) P( A), P( B | A) P( B)
f ( x, y) f X ( x) fY ( y) (a.e) f ( x, y ) f X |Y ( x | y ) = f X ( x) ( a.e) fY ( y )
§4
相互独立的随机变量
1/19
随机变量的独立性
离散型、连续型随机变量的独立性的判断
利用随机变量的独立性进行相关概率的 计算
第三章 多维随机变量及其分布
§4
A, B 相互独立
相互独立的随机变量
A, B 之间没有任何关系
P( AB) P( A) P( B)
2/19
怎样定义 r.v X , Y 之间的独立性 若
FX ( x2 ) FY ( y2 ) FX ( x1 ) FY ( y2 ) FX ( x2 ) FY ( y1 ) FX ( x1 ) FY ( y1 )
[ FX ( x2 ) FX ( x1 )] [ FY ( y2 ) FY ( y1 )]
P{x1 X x2 }P{ y1 Y y2 }
X ~ U (0,1), Y ~ U (0,1)
X , Y 独立,故联合密度为
1, 0 x 1, 0 y 1 f ( x, y ) f X ( x ) f Y ( y ) 其它 0,
故两信号互相干扰的概率为
P{ | X Y | 1 }
120
1
y
y x
1 2 1 2 1
2
( x ) 1 exp{ [ 21 2 1 2(1 )
概率论教学课件第三章3.4随机变量的独立性

1 .
24
Y X
0
1
X0 1
P 21
33
01 2
11 1 3 4 12
11 1 6 8 24
Y 0 13
P 131
288
容易知道:当 1, 1 时,X与Y是相互独立的.
8
24
例3.9 设(X ,Y )的联合分布列为: XY 0 1 2
且X与Y相互独立,求和的值. 0
4
1
.
8 24
容易知道:当 1, 1 时,X与Y是相互独立的.
8
24
例3.10 设二维随机变量(X,Y )的联合概率密度为
4xy 0 x 1, 0 y 1
f (x, y)
0
,
其他
问X与Y是否相互独立?
解 关于X, Y 的边缘概率密度分别为
fX
(x)
1 4 xyd y
0
2x,
一、随机变量的独立性 设 X, Y是两个随机变量,若 x, y R,
事件 {X x}和{Y y}相互独立,
即: P (X x, Y y) P(X x) P(Y y) ,
则称 X与Y 相互独立 .
两事件A, B相互独立的定义:
. 若P(AB)=P(A)P(B),则称事件A, B相互独立
2
R2 y2
R2
0,
其他
0,
, R y R, 其他
10
例3.11 设二维随机变量(X,Y)服从圆:
y
R
G (x, y) | x2 y2 R2
上的均匀分布,判断X与Y是否相互独立. R
Rx
R
解 关于X与Y 的边缘概率密度分别为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.4相互独立的随机变量
定义1 设(,)F x y 及(),()F x F y X Y
分别是二维随机变量(,)X Y 的分布函数及边缘分布函数,若对所有,x y 有
{}{}{},P X x Y y P X x P Y y ≤≤=≤≤
即(,)()()F x y F x F y X Y
= 则称随机变量X 和Y 是相互独立的
例1、设(X,Y )的分布函数:
(),0,0,0,x y y x A e e e x y F x y ⎛⎫ ⎪ ⎪⎝⎭⎧⎪⎪⎨⎪⎪⎩-+----+>>=其它
求:1)A ; 2)边缘分布函数; 3) X 与Y 是否独立.
一、二维离散型随机变量的相互独立性
设二维离散型随机向量(X,Y )的联合概率分布为
,,,1,2,P X x Y y p i j i j ij
⎛⎫ ⎪ ⎪⎝⎭==== ,
若
,,,1,2,P X x Y y P X x P Y y i j i j i j
⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
====== . 则称X,Y 相互独立
例2 、设二维离散型随机向量(X,Y )的联合概率分布为
证明:X,Y 相互独立
例3、设二维离散型随机向量(X,Y )的联合概率分布为
2 问α,β取何值时,X,Y 相互独立。
二、二维连续型随机变量的相互独立性 定理:设X,Y 的分布密度分别为()f x X ,()f y Y ,(),X Y 的联合分布密度为(),f x y ,
则X,Y 独立的充要条件是()()(),f x y f
x f y X Y
=,任意()2,x y R ∈
例4 、一负责人到达办公室的时间均匀分布在8~12时,他的秘书到达办公室的时间均匀分布在7~9时.设他们两人到达的时间是相互独立的,求他们到达办公室的时间相差不超过5分钟(1/12小时)的概率 .
例5、 设()22,,,,,1212X Y N μμσσρ⎛⎫ ⎪ ⎪⎝⎭ ,则X 和Y 相互独立的充要条件为0ρ=.
例6、设()(),1,01
,10X Y N ;;,求()0p XY Y -<.
例7、设(),X Y 的联合分布密度为
()()1,0,02,0,f x y x y e x y x y ⎛⎫ ⎪ ⎪⎝⎭⎧⎪⎪⎨⎪⎪⎩-++>>=其它 判断X,Y 是否独立.
例8、设(),X Y 在由曲线22
x y =和y x =所围的有限区域内均匀分布.
(1)求(),X Y 的联合分布密度;
(2)计算()f x X ,()f y Y
; (3)X,Y 是否独立。
.
随机变量的独立性可以推广到n 维随机变量的情况。
设(,,,),()(1,2,,)12F x x x F x i n n i X i
= 分别是n 维随机变量(,,,)12
X X X n 的分布函数和边缘分布函数,若对任意实数,,,12x x x n ,有 (,,,)()()()121212
F x x x F x F x F x n n X X X n =
则称,,,12
X X X n 是相互独立的。
故连续型随机变量,,,12X X X n 相互独立的充要条件是
(,,,)()()()121212f x x x f x f x f x n n X X X n = 离散型随机变量,,,12X X X n 相互独立的充要条件是
{},,,11221122P X x X x X x n n P X x P X x P X x n n ⎧⎫⎨⎬⎩⎭⎧⎫⎧⎫⎨⎬⎨⎬⎩⎭⎩⎭=======。