等差数列的概念教案(wfl)
等差数列的概念教案

等差数列的概念教案
【教学目标】
知识与技能:1、理解等差数列的定义,能根据定义判断一个数列是否为等差数列;
2、了解公差的概念,会求一个给定等差数列的首项与公差;
3、理解等差中项的概念,会利用等差中项解决相应的简单的等差数列问题。
过程与方法:1、通过对情景问题的分析理解和归纳概括,了解等差数列的简单产生过程;
2、通过解决基本等差数列问题的过程,加深对等差数列概念、公差、等差中项的理解;
情感态度与价值观:1、通过等差数列概念的归纳概括,培养学生的观察能力、分析探索能力激发学生积极思考,追求新知的创新意识;
2、通过解决等差数列概念的基本问题,培养学生分析问题解决问题的能力,提高学生的运算能力。
【教学重点】1、理解等差数列的定义,理解等差中项的概念;
2、了解公差的概念,根据给定的等差数列求公差。
【教学难点】探索等差数列定义的形成过程。
【教学方法】情境教学法、自主探究法、讲练结合法
【教学用具】黑板电子白板
【教学课型】新授课
【教学设想】本课教学,重点是等差数列的概念,在讲概念时,通过创设情境引导学生分析出等差数列的特点,从而引出等差数列的定义,进一步引导学生通过定义来判断一个数列是否是等差数列。
整个过程以学生自主思考、合作探究、教师适时点拨为主,真正体现课堂教学中学生的主体作用。
【教学准备】1、教师认真备课、制作课件、布置预习内容;
2、学生认真阅读课本内容,标出关键词以及不理解的地方,完成预习内容,做好上课准备。
【教学过程】。
等差数列教学设计

等差数列教学设计等差数列教学设计(精选5篇)作为一名默默奉献的教育工作者,时常要开展教学设计的准备工作,借助教学设计可以让教学工作更加有效地进行。
一份好的教学设计是什么样子的呢?以下是店铺帮大家整理的等差数列教学设计(精选5篇),欢迎大家分享。
等差数列教学设计1教学目标:1.知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。
2.过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。
3.情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。
教学重点:等差数列的概念及通项公式。
教学难点:(1)理解等差数列“等差”的特点及通项公式的含义。
(2)等差数列的通项公式的推导过程及应用。
教具:多媒体、实物投影仪教学过程:一、复习引入:1.回忆上一节课学习数列的定义,请举出一个具体的例子。
表示数列有哪几种方法——列举法、通项公式、递推公式。
我们这节课接着学习一类特殊的数列——等差数列。
2.由生活中具体的数列实例引入(1).国际奥运会早期,撑杆跳高的记录近似的由下表给出:你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?(2)某剧场前10排的座位数分别是:48、46、44、42、40、38、36、34、32、30引导学生观察:数列①、②有何规律?引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差0.2,数列②从左到右相差-2。
二.新课探究,推导公式1.等差数列的概念如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。
强调以下几点:① “从第二项起”满足条件;②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );所以上面的2、3都是等差数列,他们的公差分别为0.20,-2。
等差数列的概念教案

等差数列的概念教案
等差数列是指一个数列中,从第二项起,每一项与它的前一项的差都相等的数列。
这个相等的差值被称为公差,通常用字母d表示。
等差数列可以用数学公式来表示,a_n = a_1 + (n-1)d,其中a_n表示数列的第n项,a_1表示数列的首项,n表示项数,d表示公差。
在教学等差数列的概念时,可以从以下几个方面展开:
1. 基本概念,首先介绍等差数列的定义,引入公差的概念,让学生了解等差数列的特点,即相邻两项的差是一个固定的值。
2. 等差数列的表示,引导学生了解等差数列的一般表示形式,即a_n = a_1 + (n-1)d,强调首项、公差和项数之间的关系。
3. 等差数列的性质,介绍等差数列的性质,包括任意项与首项的关系、相邻两项的关系,以及等差数列的前n项和公式等内容。
4. 等差数列的应用,通过实际问题引导学生理解等差数列在数学和现实生活中的应用,比如等差数列在数学模型、金融等领域的
应用。
5. 解题方法,介绍解等差数列相关问题的常用方法,包括求和公式的推导和应用,以及根据题目特点选择合适的解题方法等。
教学等差数列的概念时,可以通过举例、图表和实际问题等多种方式,帮助学生深入理解等差数列的概念和性质,培养他们的数学建模能力和解决实际问题的能力。
同时,引导学生发现等差数列在自然界和日常生活中的存在,增强他们对数学的兴趣和实际运用能力。
高三数学必修五教案《等差数列》优秀4篇

等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么你对等差数列了解多少呢?这次白话文为您整理了高三数学必修五教案《等差数列》优秀4篇,希望能够给予您一些参考与帮助。
数学等差数列教案篇一【教学目标】一、知识与技能1、掌握等差数列前n项和公式;2、体会等差数列前n项和公式的推导过程;3、会简单运用等差数列前n项和公式。
二、过程与方法1.通过对等差数列前n项和公式的推导,体会倒序相加求和的思想方法;2、通过公式的'运用体会方程的思想。
三、情感态度与价值观结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
【教学重点】等差数列前n项和公式的推导和应用。
【教学难点】在等差数列前n项和公式的推导过程中体会倒序相加的思想方法。
【重点、难点解决策略】本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。
利用数形结合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从而突出重点、突破教学难点。
【教学用具】多媒体软件,电脑【教学过程】一、明确数列前n项和的定义,确定本节课中心任务:本节课我们来学习《等差数列的前n项和》,那么什么叫数列的前n项和呢,对于数列{an}:a1,a2,a3,…,an,…我们称a1+a2+a3+…+an为数列{an}的前n项和,用sn表示,记sn=a1+a2+a3+…+an,如S1 =a1, S7 =a1+a2+a3+……+a7,下面我们来共同探究如何求等差数列的前n项和。
二、问题牵引,探究发现问题1:(播放媒体资料情景引入)印度泰姬陵世界七大奇迹之一。
传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见图),奢靡之程度,可见一斑。
你知道这个图案一共花了多少圆宝石吗?即: S100=1+2+3+······+100=?著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型和方法本质。
等差数列的教案

等差数列的教案教案标题:等差数列的教案教学目标:1. 理解等差数列的概念和性质。
2. 掌握等差数列的通项公式和求和公式。
3. 能够运用等差数列的性质解决实际问题。
4. 培养学生的逻辑思维能力和问题解决能力。
教学准备:1. 教师准备:白板、黑板笔、教材、教具、电脑和投影仪等。
2. 学生准备:教材、作业本、笔和计算器等。
教学步骤:引入(约5分钟):1. 利用引人入胜的事例或问题,激发学生对等差数列的兴趣。
2. 引导学生思考等差数列的定义,并通过简单的数字序列示例向学生介绍等差数列的特点。
探究(约15分钟):1. 让学生合作解决一系列等差数列问题,引导他们发现数列中的规律。
2. 向学生提问,帮助他们从已知数列中寻找通项公式的套路。
讲解与示范(约20分钟):1. 解释等差数列的通项公式和求和公式的推导过程和意义。
2. 通过具体的例子帮助学生理解和应用这些公式。
3. 解释如何利用通项公式和求和公式解决实际问题。
练习与巩固(约15分钟):1. 给学生分发练习题,让他们独立或合作解答。
2. 布置一道综合题,要求学生利用所学知识解决问题。
3. 及时检查学生答题情况,并给予指导和批评。
拓展(约10分钟):1. 引导学生思考等差数列在实际生活中的应用。
2. 鼓励学生做更多的练习,巩固所学知识。
3. 提供一些挑战性问题,激发学生的思考和求知欲。
总结(约5分钟):1. 回顾本节课的重点内容和学习收获。
2. 强调等差数列的重要性和实用性。
3. 激励学生保持学习动力,并鼓励他们在课后进一步探索等差数列的其他应用。
课堂延伸活动:1. 组织学生进行数列游戏,加深对等差数列的理解。
2. 请学生以小组形式设计并演示一些实际应用等差数列的场景。
教学评估:1. 教师根据学生的课堂表现、练习题、作业以及参与度等进行综合评估。
2. 对于出现理解困难的学生,教师可给予额外辅导和指导。
教学反思:通过本节课的设计和实施,学生能够深入理解等差数列的概念和性质,掌握其相关公式,并能运用所学知识解决实际问题。
等差数列教案(多篇)

一、教学目标1. 知识与技能:(1)理解等差数列的概念及其特点;(2)掌握等差数列的通项公式、求和公式;(3)能够运用等差数列解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳等差数列的性质;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(2)引导学生运用数学知识解决实际问题,感受数学的应用价值。
二、教学重点与难点1. 教学重点:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式。
2. 教学难点:(1)等差数列的通项公式的推导;(2)等差数列求和公式的应用。
三、教学过程1. 导入新课:(1)回顾等差数列的定义;(2)引导学生思考等差数列的特点。
2. 知识讲解:(1)讲解等差数列的通项公式;(2)讲解等差数列的求和公式。
3. 例题解析:(1)分析等差数列的例题,引导学生运用通项公式和求和公式;(2)讲解解题思路和方法。
4. 课堂练习:(1)布置练习题,让学生巩固所学知识;(2)引导学生互相讨论,共同解决问题。
四、课后作业1. 巩固等差数列的概念和性质;2. 练习运用通项公式和求和公式解决实际问题。
五、教学反思1. 总结本节课的收获:(1)学生掌握了等差数列的概念和性质;(2)学生能够运用通项公式和求和公式解决实际问题。
2. 反思教学过程:(1)是否充分讲解等差数列的性质和公式;(2)是否注重学生的参与和思考;(3)是否及时给予学生反馈和指导。
3. 改进措施:(1)针对学生的薄弱环节,加强讲解和练习;(2)鼓励学生积极参与,提高课堂氛围;(3)关注学生的学习进度,及时调整教学节奏。
六、教学评价1. 评价内容:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式;(3)运用等差数列解决实际问题的能力。
2. 评价方式:(1)课堂问答;(2)练习题;(3)课后作业;(4)小组讨论。
七、教学资源1. 教学课件:(1)展示等差数列的定义、性质;(2)呈现通项公式、求和公式的推导过程;(3)提供丰富的例题和练习题。
等差数列的概念教学设计与反思(共5则)

等差数列的概念教学设计与反思(共5则)第一篇:等差数列的概念教学设计与反思等差数列的概念教学设计与反思【教学目标】理解等差数列的定义,掌握等差数列的通项公式,会应用通项公式解决简单的计算;培养学生的观察、归纳、分析探索能力。
【教学重点】理解等差数列的定义,探索并掌握等差数列的通项公式,会用公式解决简单的计算。
【教学难点】探索推导等差数列的通项公式。
【教学方法】尝试探究【教学过程】一、尝试预习,以旧引新出示题目:观察下列数列,按规律填空1)1,3,(),7,9,…… 2)2,5,8,(),14,…… 3)-2,3,8,(),18,…… 4)12,8,4,(),-4,……师:这些数列共同的特点是什么?生:后一项减前一项的差相等。
师:我们给这样的数列取个名字吧?生:等差数列。
师:很好,这节课我们就研究等差数列。
板书课题:等差数列二、师生互动,讲授新课1.尝试举例,强化概念师:等差数列强调每相邻的两项,后一项减前一项的差相等,作为差的这个数对每个差式都是公共的,我们可以叫它什么?生:公差。
师:很好,前面四个数列的公差分别是多少?生:2,3,5,-4。
师:你能举出等差数列的例子吗?(学生举出3至5个例子,并说出它们的公差)师:你在举例子时,最先确定哪些量,然后给出整个数列?生:首项和公差。
2.尝试推导,应用概念师:如果给出等差数列的首项是a1,公差是d,你能写出它的第2项、第3项、第4项、第5项……吗?生:a2=a1+d a3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d a5=a4+d=(a1+3d)+d=a1+4d ……师:按照这个规律,你能得出第n项吗?生:an=a1+(n-1)d 师:非常好,这就是等差数列的通项公式。
板书通项公式:an=a1+(n-1)d 师:要确定通项公式,必须知道哪些量?生:首项a1和公差d。
师:好,请同学们分组写出前面四个数列的通项公式。
等差数列的概念教案

等差数列的概念教案教学目标:1.了解等差数列的定义和性质;2.学会计算等差数列的通项公式;3.能够应用等差数列解决实际问题。
教学内容:一、引入(10分钟)1.引出等差数列的概念:教师出示一个数字序列:1,3,5,7,9,询问学生是否有发现,让学生讨论并总结规律。
2.介绍等差数列的定义:教师解释等差数列的定义:如果一个数列中任意两个相邻的项之差始终保持不变,那么这个数列就是等差数列。
二、定义与性质(20分钟)1.形式化的定义:教师整理上述讨论结果,给出等差数列的形式化定义,即对于数列{a1, a2, a3,..., an},如果有公差d,那么对于任意的n≥2, ai+1 - ai = d。
2.等差数列的特点:-公差d的大小决定了数列每一项之间的差距;-第一项a1的大小、公差d的正负以及项数n的大小决定了整个数列的排列。
三、计算等差数列的通项公式(30分钟)1.推导递推公式:教师给出等差数列的第一项a1和公差d,让学生推导出递推公式。
-a2=a1+d-a3=a1+2d-...- an = a1 + (n-1)d2.总结通项公式:教师引导学生从递推公式中总结出等差数列的通项公式:an = a1 + (n-1)d。
3.练习计算:学生通过练习计算等差数列的通项公式,巩固学习成果。
四、应用示例(30分钟)1.求等差数列的和:教师给出一个等差数列,让学生思考如何通过通项公式求出数列的和,并进行讲解。
2.实际问题的应用:-示例1:小明从1月1日起,每天存入100元,到12月31日共存了多少钱?-示例2:在一座大楼的楼梯间,第一步有10级台阶,之后每一步比前一步多2级,小明从第二步开始每一步以这个规律上楼,到第10步停下,请计算小明一共走了多少级台阶。
学生通过这些实际问题,巩固应用等差数列解决实际问题的能力。
五、练习与总结(10分钟)1.练习题:让学生独立完成一些练习题,检查学生对等差数列的概念和通项公式的理解和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2.1 等差数列的概念
【教学目标】
1. 理解等差数列的概念,掌握等差数列的通项公式;掌握等差中项的概念
2. 逐步灵活应用等差数列的概念和通项公式解决问题
3. 通过教学,培养学生的观察、分析、归纳、推理的能力,渗透由特殊到一般的思想
【教学重点】
等差数列的概念、通项公式及等差中项
【教学难点】
等差数列通项公式的理解和应用
【教学方法】
本节课主要采用自主探究式教学方法.充分利用现实情景,尽可能地增加教学过程的趣味性、实践性.在教师的启发指导下,强调学生的主动参与,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的.
【教学过程】。