2.1.2空间中直线与直线之间的位置关系(2)
2.1.2 空间中直线与直线之间的位置关系

2.1.2 空间中直线与直线之间的位置关系[学习目标]1.会判断空间两直线的位置关系.2.理解两异面直线的定义,会求两异面直线所成的角. 3.能用公理4解决一些简单的相关问题. [知识链接]公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.[预习导引]1.空间两条直线的位置关系空间两条直线的位置关系有且只有三种. (1)若从公共点的数目分,可以分为 ①只有一个公共点——相交. ②没有公共点⎩⎨⎧平行.异面.(2)若从平面的基本性质分,可以分为 ①在同一平面内⎩⎨⎧相交.平行.②不同在任何一个平面内——异面. 2.异面直线(1)定义:不同在任何一个平面内的两条直线. (2)异面直线的画法3.平行公理(公理4)文字表述:平行于同一条直线的两条直线平行,这一性质叫做空间平行线的传递性.符号表述:⎭⎬⎫a ∥b b ∥c ⇒a ∥c . 4.等角定理空间中如果两个角的两边分别平行,那么这两个角相等或互补. 5.异面直线所成的角(1)定义:已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b ,我们把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)异面直线所成的角θ的取值范围:(0°,90°]. (3)当θ=90°时,a 与b 互相垂直,记作a ⊥b .要点一空间两条直线位置关系的判断例1如图,正方体ABCD-A1B1C1D1中,判断下列直线的位置关系:①直线A1B与直线D1C的位置关系是________;②直线A1B与直线B1C的位置关系是________;③直线D1D与直线D1C的位置关系是________;④直线AB与直线B1C的位置关系是________.答案①平行②异面③相交④异面解析直线D1D与直线D1C显然相交于D1点,所以③应该填“相交”;直线A1B与直线D1C在平面A1BCD1中,且没有交点,则两直线“平行”,所以①应该填“平行”;点A1、B、B1在一个平面A1BB1内,而C不在平面A1BB1内,则直线A1B与直线B1C“异面”.同理,直线AB与直线B1C“异面”.所以②④都应该填“异面”.规律方法 1.判定两条直线平行与相交可用平面几何的方法去判断,而两条直线平行也可以用公理4判断.2.判定两条直线是异面直线有定义法和排除法,由于使用定义判断不方便,故常用排除法,即说明这两条直线不平行、不相交,则它们异面.跟踪演练1(1)若a、b是异面直线,b、c是异面直线,则()A.a∥c B.a、c是异面直线C.a、c相交D.a、c平行或相交或异面(2)若直线a、b、c满足a∥b,a、c异面,则b与c()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线答案 (1)D (2)C解析 (1)若a 、b 是异面直线,b 、c 是异面直线,那么a 、c 可以平行,可以相交,可以异面.(2)若a ∥b ,a 、c 是异面直线,那么b 与c 不可能平行,否则由公理4知a ∥c .要点二 公理4、等角定理的应用例2 在如图所示的正方体ABCD -A 1B 1C 1D 1中,E 、F 、E 1、F 1分别是棱AB 、AD 、B 1C 1、C 1D 1的中点,求证:(1)EF 綉E 1F 1; (2)∠EA 1F =∠E 1CF 1. 证明 (1)连接BD ,B 1D 1,在△ABD 中,因为E 、F 分别为AB 、AD 的中点,所以EF 綉12BD . 同理,E 1F 1綉12B 1D 1.在正方体ABCD -A 1B 1C 1D 1中,BB 1綉DD 1, 所以四边形BB 1D 1D 为平行四边形, 因此,BD 綉B 1D 1,又EF 綉12BD ,E 1F 1綉12B 1D 1,所以EF綉E1F1.(2)取A1B1的中点M,连接F1M,BM,则MF1綉B1C1,又B1C1綉BC,所以MF1綉BC.所以四边形BMF1C为平行四边形,因此,BM∥CF1.因为A1M=12A1B1,BE=12AB,且A1B1綉AB,所以A1M綉BE,所以四边形BMA1E为平行四边形,则BM∥A1E.因此,CF1∥A1E,同理可证A1F∥CE1.因为∠EA1F与∠E1CF1的两边分别对应平行,且方向都相反,所以∠EA1F =∠E1CF1.规律方法(1)空间两条直线平行的证明:一是定义法:即证明两条直线在同一个平面内且两直线没有公共点;二是利用平面图形的有关平行的性质,如三角形,梯形中位线,平行四边形等关于平行的性质;三是利用公理4:找到一条直线,使所证的直线都与这条直线平行.(2)求证角相等:一是用等角定理;二是用三角形全等或相似.跟踪演练2如图,已知E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点.(1)求证:E,F,G,H四点共面;(2)若四边形EFGH是矩形,求证:AC⊥BD.证明(1)在△ABD中,∵E,H分别是AB,AD的中点,∴EH∥BD.同理FG∥BD,则EH∥FG.故E,F,G,H四点共面.(2)由(1)知EH∥BD,同理AC∥GH.又∵四边形EFGH是矩形,∴EH⊥GH.故AC⊥BD.要点三求异面直线所成的角例3如图,在空间四边形ABCD中,AD=BC=2,E、F分别是AB、CD 的中点,若EF=3,求异面直线AD、BC所成角的大小.解如图,取BD的中点M,连接EM、FM.因为E、F分别是AB、CD的中点,所以EM綉12AD,FM綉12BC,则∠EMF或其补角就是异面直线AD、BC所成的角.AD=BC=2,所以EM=MF=1,在等腰△MEF中,过点M,作MH⊥EF于H,在Rt△MHE中,EM=1,EH=12EF=32,则sin∠EMH=3 2,于是∠EMH=60°,则∠EMF=2∠EMH=120°.所以异面直线AD、BC所成的角为∠EMF的补角,即异面直线AD、BC所成的角为60°.规律方法 1.异面直线一般依附于某几何体,所以在求异面直线所成的角时,首先将异面直线平移成相交直线,而定义中的点O常选取两异面直线中其中一个线段的端点或中点或几何体中的某个特殊点.2.求异面直线所成的角的一般步骤为:(1)作角:平移成相交直线.(2)证明:用定义证明前一步的角为所求.(3)计算:在三角形中求角的大小,但要注意异面直线所成的角的范围.跟踪演练3如图,在正方体ABCD-A1B1C1D1中,(1)AC和DD1所成的角是________;(2)AC和D1C1所成的角是________;(3)AC和B1D1所成的角是________;(4)AC和A1B所成的角是________.答案(1)90°(2)45°(3)90°(4)60°解析(1)根据正方体的性质可得AC和DD1所成的角是90°.(2)∵D1C1∥DC,所以∠ACD即为AC和D1C1所成的角,由正方体的性质得∠ACD=45°.(3)∵BD∥B1D1,BD⊥AC,∴B1D1⊥AC,即AC和B1D1所成的角是90°.(4)∵A1B∥D1C,△ACD1是等边三角形,所以AC和A1B所成的角是60°.1.若空间两条直线a和b没有公共点,则a与b的位置关系是()A.共面B.平行C.异面D.平行或异面答案 D解析若直线a和b共面,则由题意可知a∥b;若a和b不共面,则由题意可知a与b是异面直线.2.一条直线与两条异面直线中的一条平行,则它和另一条的位置关系是()A.平行或异面B.相交或异面C.异面D.相交答案 B解析如图,在正方体ABCD-A1B1C1D1中,AA1与BC是异面直线,又AA1∥BB1,AA1∥DD1,显然BB1∩BC=B,DD1与BC是异面直线,故选B.3.设P是直线l外一定点,过点P且与l成30°角的异面直线()A.有无数条B.有两条C.至多有两条D.有一条答案 A解析我们现在研究的平台是锥空间.如图所示,过点P作直线l′∥l,以l′为轴,与l′成30°角的圆锥面的所有母线都与l成30°角.4.已知角α的两边和角β的两边分别平行且α=80°,则β=________.答案80°或100°解析由等角定理可知,α=β或α+β=180°,∴β=100°或80°.5.在正方体ABCD-A1B1C1D1中,E为C1D1的中点,则异面直线AE与A1B1所成的角的余弦值为________.答案 13解析 设棱长为1, 因为A 1B 1∥C 1D 1,所以∠AED 1就是异面直线AE 与A 1B 1所成的角. 在△AED 1中,cos ∠AED 1=D 1E AE =1232=13.1.判定两直线的位置关系的依据就在于两直线平行、相交、异面的定义.很多情况下,定义就是一种常用的判定方法.2.在研究异面直线所成角的大小时,通常把两条异面直线所成的角转化为两条相交直线所成的角.将空间问题向平面问题转化,这是我们学习立体几何的一条重要的思维途径.需要强调的是,两条异面直线所成角为θ,且0°<θ≤90°,解题时经常结合这一点去求异面直线所成的角的大小.一、基础达标1.分别和两条异面直线平行的两条直线的位置关系是( ) A .一定平行 B .一定相交 C .一定异面 D .相交或异面答案 D解析 可能相交也可能异面,但一定不平行(否则与条件矛盾). 2.a 、b 为异面直线是指①a ∩b =∅,且a 不平行于b ;②a ⊂平面α,b ⊄平面α,且a ∩b =∅;③a ⊂平面α,b ⊂平面β,且α∩β=∅;④不存在平面α能使a ⊂α,且b ⊂α成立.( )A .①②③B .①③④C .②③D .①④答案 D解析②③中的a,b有可能平行,①④符合异面直线的定义.3.下列选项中,点P,Q,R,S分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ与RS是异面直线的一个图是()答案 C解析易知选项A,B中PQ∥RS,选项D中RS与PQ相交,只有选项C 中RS与PQ是异面直线.4.下面四种说法:①若直线a、b异面,b、c异面,则a、c异面;②若直线a、b相交,b、c相交,则a、c相交;③若a∥b,则a、b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中正确的个数是()A.4 B.3C.2 D.1答案 D解析若a、b异面,b、c异面,则a、c相交、平行、异面均有可能,故①不对.若a、b相交,b、c相交,则a、c相交、平行、异面均有可能,故②不对.若a⊥b,b⊥c,则a、c平行、相交、异面均有可能,故④不对.③正确.5.如图,三棱柱ABC-A1B1C1中,底面三角形A1B1C1是正三角形,E是BC 的中点,则下列叙述正确的是()A.CC1与B1E是异面直线B.C1C与AE共面C.AE,B1C1是异面直线D.AE与B1C1所成的角为60°答案 C解析由于CC1与B1E都在平面C1B1BC内,故C1C与B1E是共面的,所以A错误;由于C1C在平面C1B1BC内,而AE与平面C1B1BC相交于E点,点E 不在C1C上,故C1C与AE是异面直线,B错误;同理AE与B1C1是异面直线,C正确;而AE与B1C1所成的角就是AE与BC所成的角,E为BC中点,△ABC 为正三角形,所以AE⊥BC,D错误.综上所述,故选C.6.若AB∥A′B′,AC∥A′C′,则下列结论:①∠BAC=∠B′A′C′;②∠ABC+∠A′B′C′=180°;③∠ACB=∠A′C′B′或∠ACB+∠A′C′B′=180°.一定成立的是________.答案③解析∵AB∥A′B′,AC∥A′C′,∴∠ACB=∠A′C′B′或∠ACB+∠A′C′B′=180°.7.在正方体ABCD-A1B1C1D1中,求A1B与B1D1所成的角.解如图,连接BD、A1D,∵ABCD-A1B1C1D1是正方体,∴DD1綉BB1,∴四边形DBB1D1为平行四边形,∴BD∥B1D1.∵A1B、BD、A1D是全等的正方形的对角线,∴A1B=BD=A1D,△A1BD是正三角形,∴∠A1BD=60°.∵∠A1BD是锐角,∴∠A1BD是异面直线A1B与B1D1所成的角,∴A1B与B1D1所成的角为60°.二、能力提升8.(2014·信阳高一检测)如图所示,正方体ABCD-A1B1C1D1中,异面直线A1B 与AD1所成角为()A.30°B.45°C.60°D.90°答案 C解析连接BC1、A1C1,∵BC1∥AD1,∴异面直线A1B与AD1所成的角即为直线A1B与BC1所成的角.在△A1BC1中,A1B=BC1=A1C1,∴∠A1BC1=60°.故异面直线A1B与AD1所成角为60°.9.在空间四边形ABCD中,AB=CD,且异面直线AB与CD所成的角为30°,E、F分别是边BC和AD的中点,则异面直线EF和AB所成的角等于()A.15°B.30°C.75°D.15°或75°答案 D解析如图,设G是AC中点,分别连接EG、GF,由已知得EG綉12AB,FG綉12CD,∴∠EGF是AB和CD所成角或是其补角.∵AB=CD,∴EG=GF.当∠EGF=30°时,AB和EF所成角∠GEF=75°,当∠EGF=150°时,AB和EF所成角∠GEF=15°.10.一个正方体纸盒展开后如图,在原正方体纸盒中有下列结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN ∥CD.以上结论中正确的是________(填序号).答案①③解析把正方体平面展开图还原为原来的正方体,如图所示,AB⊥EF,EF 与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.11.如图所示,在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,求异面直线A1B与AD1所成角的余弦值.解连接A1C1,BC1,由A1B1綉D1C1,A1B1綉AB,得AB綉D1C1,∴四边形ABC1D1是平行四边形,∴BC1綉AD1,∴∠A1BC1是异面直线A1B与AD1所成的角或其补角.如右图所示,过B,C1分别作BM⊥A1C1,垂足为M,C 1N ⊥A 1B ,垂足为N . 由已知可设A 1B 1=1, 则AA 1=BB 1=2, ∴A 1B =BC 1=5,A 1C 1= 2.∴点M 是A 1C 1中点, ∴A 1M =22.∴cos ∠BA 1C 1=A 1M A 1B =225=1010.∵在Rt △A 1NC 1中, A 1N =A 1C 1cos ∠BA 1C 1=55, ∴BN =A 1B -A 1N =5-55=455.∴cos ∠A 1BC 1=BN BC 1=455×15=45.三、探究与创新12.如图,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB =90°,BC ∥AD ,BC =12AD ,BE ∥F A ,BE =12F A ,G ,H 分别为F A ,FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C,D ,F ,E 四点是否共面?为什么?(1)证明由已知FG=GA,FH=HD,可得GH∥AD,GH=12AD.又BC∥AD,BC=12AD,∴GH∥BC,GH=BC,∴四边形BCHG为平行四边形.(2)解C,D,F,E四点共面.证明如下:由BE∥F A,BE=12F A,G为F A中点知,BE∥FG,BE=FG,∴四边形BEFG为平行四边形,∴EF∥BG,EF=BG.由(1)知BG∥CH,BG=CH,∴EF∥CH,EF=CH,∴四边形EFHC是平行四边形,∴CE与HF共面,又D∈FH,∴C,D,F,E四点共面.13.如图所示,△ABC和△A′B′C′的对应顶点的连线AA′、BB′、CC′交于同一点O,且OAOA′=BOOB′=COOC′=23.(1)求证:A′B′∥AB,A′C′∥AC,B′C′∥BC;(2)求S△ABCS△A′B′C′的值.(1)证明∵AA′∩BB′=O,且AOA′O=BOB′O=23,∴AB∥A′B′,同理AC∥A′C′,BC∥B′C′.(2)解∵A′B′∥AB,A′C′∥AC且AB和A′B′、AC和A′C′方向相反,∴∠BAC=∠B′A′C′,同理∠ABC=∠A′B′C′,∴△ABC∽△A′B′C′且ABA′B′=AOOA′=23,∴S△ABCS△A′B′C′=⎝⎛⎭⎪⎫232=49.。
2.1.2 空间中直线与直线之间的位置关系

目 录/contents
1. 什么是学习力 2. 高效学习模型 3. 超级记忆法 4. 费曼学习法
什么是学习力
什么是学习力-你遇到这些问 题了吗
总是 比别人 学得慢
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人学得差 不会举一反三
2.1.2 空间中直线与直线之间 的位置关系
立交桥
六角螺母
C A
D B
两条直线 既不平行 也不相交
1.理解空间两直线的位置关系,并掌握异面直线的 定义.(重点)
2.掌握平行公理、等角定理及其推论,并会应用它们 去解决简单问题.(重点)
3.理解异面直线所成角的定义,并会求两异面直线所 成的角. (难点)
(6)若两条相交直线和另两条相交直线分别平行,
那么这两组直线所成的锐角(或直角)相等.( √ )
2.填空: (1) 空间两条不重合的直线的位置关系有 平行 、
相交 、异面 三种. (2)没有公共点的两条直线可能是 平行 直线,也有 可能是异面直线. (3)和两条异面直线中的一条平行的直线与另一条 的位置关系是 相交、异面 . (4)过已知直线上一点可以作 无数 条直线与已 知直线垂直.
∠ADC与∠A′D′C′相等, ∠ABC与∠A′B′C′相等.
3. 等角定理 定理 空间中如果两个角的两边分别对应平行,那么
这两个角相等或互
F
E
定理的推论:如果两条相交直线和另两条相交直线
分别平行,那么这两组直线所成的锐角(或直角)相等.
三、两条异面直线所成的角
如图所示,a,b是两条异面直线,在空间中任选一点 O,过O点分别作 a、b的平行线 a′和 b′, 则这两 条线所成的锐角θ(或直角),称为异面直线a,b所 成的角.
必修2课件:2.1.2空间中直线与直线之间的位置关系(第2课时)

第1课时
1、空间中两条直线的位置关系有( ) A、 1种 B、 2种 C、 3种 D、无数种
D A CΒιβλιοθήκη BN提问 :
1 直线AA1与直线BC什么关系? 2 直线MB1与直线CC1什么关系?
M D1 A1 B1 C1
异面直线的定义:
D A C
B
N
我们把不同在任何一 个平面内的两条直线 叫做异面直线(skew lines)
———平行线的传递性
推广:在空间平行于一条已知直线的所有直线都互相平行.
BACK NEXT
㈡:在平面内, 我们可以证明 “ 如果一个角的两边与另一个角的
两边分别平行,那么这两个角相等或互补 ”.空间中这一结
论是否仍然成立呢? 观察 :如图所示,长方体ABCD-A1B1C1D1中, ∠ADC与∠A1D1C1 ,
例如 :
M D1 A1 B1
C1 1 直线AA 与BC异面直线关系 1
2 直线MB1与CC1异面直线关系
主要特征:既不平行,也不相交
异面直线的定义:
D A C
B
N
我们把不同在任何一 个平面内的两条直线 叫做异面直线(skew lines)
回答 :
M D1 A1 B1
C1 1 直线AA1与BC异面直线关系
(4)理论支持 ㈠:我们知道,在同一平面内, 如果两条直线都和第三条直线平行, 那么这两条直线互相平行.在空间这一规律是否还成立呢?
观察 : 将一张纸如图进行折叠 , 则各折痕及边 a, b, c, d, e, … 之间有何关系?
a
b
c
d
e
a∥b ∥c ∥d ∥e ∥ …
2.1.2空间中直线与直线之间的位置关系教案

张喜林制[2.1.2 空间中直线与直线之间的位置关系【教学目标】(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角定理;(5)异面直线所成角的定义、范围及应用。
【教学重难点】重点:1、异面直线的概念; 2、公理4及等角定理。
难点:异面直线所成角的计算。
【教学过程】(一)创设情景、导入课题问题1:在平面几何中,两直线的位置关系如何?问题2:没有公共点的直线一定平行吗?问题3:没有公共点的两直线一定在同一平面内吗?1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线。
2、师:那么,空间两条直线有多少种位置关系?(板书课题)(二)讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。
思考:如图所示:正方体的棱所在的直线中,与直线AB异面的有哪些?2、教师再次强调异面直线不共面的特点,介绍异面直线的作图,如下图:3、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。
在空间中,是否有类似的规律?组织学生思考:长方体ABCD-A'B'C'D'中, BB'∥AA',DD'∥AA', BB'与DD'平行吗?生:平行。
再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a、b、c是三条共面直线直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
例1空间四边形 A BCD 中,E.F.G.H 分别是AB.BC.CD.DA 的中点 求证:四边形EFGH 是平行四边形 证明:连接BD因为EH 是△A BD 的中位线,所以EH ∥BD 且EH=21BD 同理FG ∥BD 且FG=21BD 因为EH ∥FG 且EH=FG所以四边形 EFGH 是平行四边形点评:例2的讲解让学生掌握了公理4的运用变式:在例1中如果加上条件AC=BD ,那么四边形EFGH 是什么图形? 4、组织学生思考教材P46的思考题 让学生观察、思考:∠ADC 与A'D'C'、∠ADC 与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何?生:∠ADC = A'D'C',∠ADC + ∠A'B'C' = 1800教师画出更具一般性的图形,师生共同归纳出如下定理等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
高中数学 (知识导学+例题解析+达标训练)2.1.2 空间中直线与直线之间的位置关系 新人教A版必修

空间中直线与直线之间的位置关系知识导学:(1)理解异面直线的概念、空间中两条直线的位置关系及画法;(2)理解异面直线所成角的定义、X 围及应用,进一步培养空间想象能力.一、基础知识:1、平面的基本性质:2、不同在任何一个平面内的两条直线叫做异面直线.3、空间两条直线的位置关系:空间两直线{⎧⎪⎨⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有共公点.b a ba αβαO a'b a(1) (2) (3)1A1C 4、异面直线所成的角:已知两条异面直线a与b,经过空间任一点O作直线a’//a,b’//b,直线a’与b’所成的锐角(或直角)叫做异面直线a与b所成的角.异面直线所成的角的X围:(0︒,90]︒.如果两条异面直线所成的角是直角,叫做这两条直线互相垂直.注意:两条直线互相垂直,有共面垂直与异面垂直两种情形.二、例题解析:例1、在空间四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,则:(1)四边形EFGH是__________四边形;(2)若AC=BD,则四边形EFGH是_______;(3)若AC=BD,且AC⊥BD,则四边形EFGH是_______________。
例2、如图,空间四边形ABCD中,AB=CD,AB⊥CD,E、F分别为BC、AD的中点,求EF和AB所成的角.例3、在正方体ABCD—A1B1C1D1中,(1)与直线A1B异面的棱有(2)与直线CC1垂直的棱有____________________________;(3)直线A1B和CC1的夹角是______度;A1B和B1C的夹角是______度;(4)与直线A1B的夹角为60°的所有面对角线有__________________。
三、达标训练:1、关于异面直线下列说法正确的是()A.不相交的两条直线是异面直线B.分别在两个平面内的两条直线是异面直线C.没有公共点的两条直线是异面直线D.既不相交也不平行的两条直线是异面直线2、给出三个命题:②若两条直线都与第三条直线垂直,则这两条直线互相平行;③若两条直线都与第三条直线平行,则这两条直线互相平行。
空间中直线与直线之间的位置关系

2.1.2空间中直线与直线之间的位置关系一、空间两直线的位置关系 1.异面直线(1)异面直线的定义:我们把不同在 的两条直线叫做异面直线. 即若a ,b 是异面直线,则不存在平面α,使a ⊂α且b ⊂α.(2)异面直线的画法:为了表示异面直线不共面的特点,通常用一个或两个平面衬托,如图:2.空间两直线的位置关系空间两条直线的位置关系有且只有三种:相交、平行和异面. (1) ——同一平面内,有且只有一个公共点; (2) ——同一平面内,没有公共点;学!科网 (3) ——不同在任何一个平面内,没有公共点. 3. 空间中两直线位置关系的分类空间中两条直线的位置关系有以下两种分类方式: (1)从有无公共点的角度分类:⎧⎪⎨⎪⎩⎩⎧⎨两条直线有且仅有一个公共点:相交直线平行直线两条直线无公共点:异面直线直线 (2)从是否共面的角度分类:⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线直线平行直线不共面直线:异面直线二、公理4与等角定理 1.公理4(1)自然语言:平行于同一条直线的两条直线互相 .(2)符号语言:a ,b ,c 是三条不同的直线, a ∥b ,b ∥c . (3)作用:判断或证明空间中两条直线平行. 公理4表述的性质也通常叫做空间平行线的传递性.用公理4证明空间两条直线,a c 平行的步骤(1)找到直线b ; (2)证明∥a b ,∥b c ; (3)得到∥a c .2.等角定理(1)自然语言:空间中如果两个角的两边分别对应平行,那么这两个角 . (2)符号语言:如图(1)(2)所示,在∠AOB 与∠A ′O ′B ′中,OA ∥O ′A ′,OB ∥O ′ B ′,则∠AOB =∠A ′O ′B ′或∠AOB +∠A ′O ′B ′=180°.图(1) 图(2)三、异面直线所成的角1.两条异面直线所成的角的定义如图,已知两异面直线a ,b ,经过空间任一点O ,分别作直线a ′∥a ,b ′∥b ,相交直线a ′,b ′所成的 叫做异面直线a 与b 所成的角(或夹角).(1)在定义中,空间一点O 是任取的,根据等角定理,可以判定a ′,b ′所成的角的大小与点O 的位置无关.为了简便,点O 常取在两条异面直线中的一条上.(2)研究异面直线所成的角,就是通过平移把异面直线转化为相交直线,即把求空间角问题转化为求平面角问题,这是研究空间图形的一种基本思路.2.异面直线所成的角的范围异面直线所成的角必须是锐角或直角,则这个角α的取值范围为 . 3.两条异面直线垂直的定义如果两条异面直线所成的角是 ,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a ,b ,记作a ⊥b .4.构造异面直线所成角的方法(1)过其中一条直线上的已知点(往往是特殊点)作另一条直线的平行线;(2)当异面直线依附于某几何体,且直接平移异面直线有困难时,可利用该几何体的特殊点,将两条异面直线分别平移相交于该点;(3)构造辅助平面、辅助几何体来平移直线.注意,若求得的角为钝角,则两异面直线所成的角应为其补角.学科*网5.求两条异面直线所成的角的步骤(1)平移:选择适当的点,平移异面直线中的一条或两条,使其成为相交直线; (2)证明:证明作出的角就是要求的角; (3)计算:求角度(常利用三角形的有关知识);(4)结论:若求出的角是锐角或直角,则它就是所求异面直线所成的角;若求出的角是钝角,则它的补角就是所求异面直线所成的角.K 知识参考答案:一、1.(1)任何一个平面内2.(1)相交直线 (2)平行直线 (3)异面直线 二、1.(1)平行 (2)a ∥c 2.(1)相等或互补 三、1.锐角(或直角) 2.090α<≤ 3.直角K—重点掌握公理4及等角定理,异面直线及其所成的角K—难点理解两异面直线所成角的定义,并会求两异面直线所成的角K—易错忽略异面直线所成的角的范围致误1.空间两直线的位置关系的判断空间两直线的位置关系有平行、相交、异面三种情形,因此对于空间两直线位置关系的判断,应由题意认真分析,进而确定它们的位置关系.【例1】如图,在正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM 与DD1是异面直线.其中正确的结论为A.③④B.①②C.①③D.②④【答案】A【解析】∵A、M、C、C1四点不共面,∴直线AM与CC1是异面直线,故①错误;同理,直线AM与BN也是异面直线,故②错误.同理,直线BN与MB1是异面直线,故③正确;同理,直线AM与DD1是异面直线,故④正确.故选A.【方法技巧】判定或证明两直线异面的常用方法:1.定义法:不同在任何一个平面内的两条直线.2.定理法:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.3.推论法:一条直线上两点与另一条与它异面的直线上两点所连成的两条直线为异面直线.4.反证法:证明立体几何问题的一种重要方法. 证明步骤有三步:第一步是提出与结论相反的假设;第二步是由此假设推出与已知条件或某一公理、定理或某一已被证明是正确的命题相矛盾的结果;第三步是推翻假设,从而原命题成立. 2.公理4的应用证明两条直线平行的方法: (1)平行线的定义;(2)利用平面几何的知识,如三角形与梯形的中位线、平行四边形的性质、平行线分线段成比例定理等; (3)利用公理4.【例2】如图,△ABC 的各边对应平行于111△A B C 的各边,点E ,F 分别在边AB ,AC 上,且1,3AE AB AF ==13AC ,试判断EF 与的位置关系,并说明理由.【解析】平行.理由如下: ∵11,33AE AB AF AC ==,∴∥EF BC . 又11∥B C BC ,∴11∥B C EF . 3.等角定理利用等角定理解题的关键是不要漏掉两个角互补的这种情况. 【例3】空间两个角α,β的两边分别对应平行,且α=60°,则β为 A .60° B .120° C .30°D .60°或120°【答案】D【解析】∵空间两个角α,β的两边对应平行,∴这两个角相等或互补,∵α=60°,∴β=60°或120°.故选D . 【名师点睛】根据公理4知道当空间两个角α与β的两边对应平行时,得到这两个角相等或互补,根据所给的角的度数,即可得到β的度数.【例4】如图所示,已知棱长为a 的正方体中,M ,N 分别是棱的中点.(1)求证:四边形是梯形; (2)求证:(2)由(1)知MN ∥A 1C 1,又∵ND ∥A 1D 1,∴∠DNM 与∠D 1A 1C 1相等或互补,而∠DNM 与∠D 1A 1C 1均是直角三角形的锐角,∴∠DNM =∠D 1A 1C 1. 4.两异面直线所成的角通过平移直线至相交位置求两条异面直线所成的角,是数学中转化思想的运用,也是立体几何问题的一个难点.【例5】如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=,2BC AD =,PAB △和PAD △都是等边三角形,则异面直线CD 和PB 所成角的大小为A.90B.75C.60D.45【答案】A【方法点睛】本题主要考查了空间几何体的结构特征及空间中异面直线所成角的求解,其中根据空间几,放置在三角形中,利用何体的结构特征,把空间中异面直线CD和PB所成的角转化为平面角AEF解三角形的知识求解是解答本题的关键,着重考查了转化与化归思想和学生的推理、运算能力,试题属于基础题.5.忽略异面直线所成的角的范围致误【例6】如图,已知空间四边形ABCD中,AD=BC,M,N分别为AB,CD的中点,且直线BC与MN所成的角为30°,求BC与AD所成的角.【错因分析】在未判断出∠MEN 是锐角或直角还是钝角之前,不能断定它就是两异面直线所成的角,因为异面直线所成的角α的取值范围是090α<≤,如果∠MEN 为钝角,那么它的补角才是异面直线所成的角. 学#科网【正解】以上同错解,求得∠MEN =120°,即BC 与AD 所成的角为60°.【误区警示】求异面直线所成的角的时候,要注意异面直线所成的角α的取值范围是090α<≤.1.若,a b 为异面直线,直线c a ∥,则c 与b 的位置关系是 A .相交 B .异面 C .平行 D .异面或相交 2.已知∥AB PQ ,∥BC QR ,∠ABC =30°,则∠PQR 等于 A .30° B .30°或150° C .150° D .以上结论都不对 3.已知异面直线,a b 分别在平面,αβ内,且c αβ=,那么直线c 一定A .与a b ,都相交B .只能与a b ,中的一条相交C .至少与a b ,中的一条相交D .与a b ,都平行 4.如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有A .2对B .3对C .4对D .6对5.如图,四面体ABCD 中,AD BC =,且AD BC ⊥,E F 、分别是AB CD 、的中点,则EF 与BC 所成的角为A .30B .45C .60D .906.如果OA //O A '',OB //O B '',那么AOB ∠和A O B '''∠的关系为 . 7.下列命题中不正确的是________.(填序号)①没有公共点的两条直线是异面直线; ②分别和两条异面直线都相交的两直线异面;③一条直线和两条异面直线中的一条平行,则它和另一条直线不可能平行; ④一条直线和两条异面直线都相交,则它们可以确定两个平面.8.如图所示,两个三角形ABC 和A'B'C'的对应顶点的连线AA',BB',CC'交于同一点O , 且AO BO COOA OB OC =='''.求证:△∽△ABC A B C '''.9.空间四边形ABCD中,AB=CD且AB与CD所成的角为60°,E、F分别是BC、AD的中点,求EF与AB所成角的大小.10.分别和两条异面直线相交的两条不同直线的位置关系是A.相交B.异面C.异面或相交D.平行11.如图是一个正方体的平面展开图,则在正方体中,AB与CD的位置关系为A.相交B.平行C .异面而且垂直D .异面但不垂直12.如图,正四棱锥ABCD P 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与PA 所成的角的余弦值等于_________.ECDPAB13.如图,若P 是△ABC 所在平面外一点,PA ≠PB ,PN ⊥AB ,N 为垂足,M 为AB 的中点,求证:PN 与MC 为异面直线.14.(2016上海)如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是BC D E F A B 11D 1A .直线AA 1B .直线A 1B 1C .直线A 1D 1 D .直线B 1C 115.(2015广东)若直线l 1与l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是 A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交16.(2015浙江)如图,直三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB =AC =AA 1=1,BC =2,则异面直线A 1C 与B 1C 1所成的角为A .30°B .45°C .60°D .90°17.(2014广东)若空间中四条两两不同的直线1234,,,l l l l ,满足12l l ⊥,23l l ∥,34l l ⊥,则下列结论一定正确的是A .14l l ⊥B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定1 2 3 4 5 10 11 14 15 16 17 DBCBBCDDDCD1.【答案】D【解析】c a ∥,a b ,为异面直线,所以c 与b 的位置关系是异面或相交.4.【答案】B【解析】根据异面直线的定义观察图形,可知有三对异面直线,分别是PB 与AC 、P A 与BC 、PC 与AB ,故选B. 5.【答案】B【解析】如图,设G 为AC 的中点,连接,EG FG .由中位线可知,∥∥EG BC GF AD ,所以GEF ∠就是EF 与BC 所成的角,且三角形GEF 为等腰直角三角形,所以45GEF ∠=.6.【答案】相等或互补【解析】根据等角定理的概念可知AOB ∠和A O B '''∠的关系为相等或互补. 7.【答案】①②8.【解析】∵AA'与BB'交于点O ,且AO BOOA OB='',∴AB ∥A'B'.同理,AC ∥A'C'.又∠BAC 与∠B'A'C'两边的方向相反,∴∠BAC =∠B'A'C'. 同理,∠ABC =∠A'B'C'. 因此,△∽△ABC A B C '''.9.【解析】如图,取AC 的中点G ,连接EG 、FG ,则EG ∥AB ,GF ∥CD ,且由AB =CD 知EG =FG ,∴∠GEF (或它的补角)为EF 与AB 所成的角,∠EGF (或它的补角)为AB 与CD 所成的角. ∵AB 与CD 所成的角为60°,∴∠EGF =60°或120°. 由EG =FG 知△EFG 为等腰三角形, 当∠EGF =60°时,∠GEF =60°;当∠EGF =120°时,∠GEF =30°.学@科网 故EF 与AB 所成的角为60°或30°.10.【答案】C【解析】(1)若两条直线与两异面直线的交点有4个,如图(1),两条直线异面;(2)若两条直线与两异面直线的交点有3个,如图(2),两条直线相交.故选C.(1) (2)【误区警示】在判断两直线的位置关系时,要全面思考问题,可通过画出相关图形帮助分析,从而防止遗漏.本题中,没有明确指出直线交点的个数,两条直线分别与两异面直线相交,交点可能有4个,此时两条直线异面,也可能有3个,此时两条直线相交.11.【答案】D【解析】将展开图还原为正方体,如图所示.AB与CD所成的角为60°,故选D.13.【解析】假设PN与MC不是异面直线,则存在一个平面α,使得PN⊂α,MC⊂α,于是P∈α,C∈α,N∈α,M∈α.∵PA≠PB,PN⊥AB,N为垂足,M是AB的中点,∴M,N不重合.∵M∈α,N∈α,∴直线MN⊂α.∵A∈MN,B∈MN,∴A∈α,B∈α.即A,B,C,P四点均在平面α内,这与点P在平面ABC外相矛盾.∴假设不成立,则PN与MC是异面直线.16.【答案】C【解析】根据题意,得BC∥B1C1,故异面直线A1C与B1C1所成的角即BC与A1C所成的角.如图,连接A 1B ,在△A 1BC 中,BC =A 1C =A 1B =2,故∠A 1CB =60°,即异面直线A 1C 与B 1C 1所成的角为60°.故选C.17.【答案】D【解析】如下图所示,在正方体1111ABCD A B C D -中,取1AA 为2l ,1BB 为3l ,取AD 为1l ,BC 为4l ,则14l l ∥;取AD 为1l ,AB 为4l ,则14l l ⊥;取AD 为1l ,11A B 为4l ,则1l 与4l 异面,因此14,l l 的位置关系不确定,故选D.D 1C 1B 1A 1DCBA。
2.1.2 空间中直线与直线之间的位置关系课件 新人教A版必修2
注意证明中常常要说明两个平面是重合的, 其基本模式如: ①点A、B、C、D共面于α,点A、B、C、 E共面于β,经过不共线三点A、B、C的平 面有且仅有一个,∴α与β重合,从而A、B、 C、D、E共面. ②直线a、b、c共面于α,直线a、b、d共 面于β,但直线a与b确定一个平面(a∥b或a 与b相交),∴α与β重合,∴a、b、c、d共 面.
(3)共面问题 证明多个几何元素(点和直线)共面,一般 先据公理2或其推论结合题设条件确定一 个平面α,再由公理1或公理3说明其它元 素也在平面α内. 证明直线共面的一般方法有两种:一是先 由两条平行或相交直线确定一个平面,再 依据平面的基本性质证明其它直线在此平 面内;二是先分别确定两个平面,再依据 平面的基本性质证明两个平面是同一个平 面(即两平面重合).
2.怎样检查一张桌子的四条腿的下端是 否在同一个平面内. [解析] 用两条细绳沿桌子对角两腿的下 端拉直,看两绳是否相交,若相交则在同 一个平面内,否则不在同一个平面内.
3.已知:a∥b∥c,l∩a=A,l∩b=B, l∩c=C,求证:a、b、c、l共面. [证明] ∵a∥b,∴a、b确定一个平面α, ∵l∩a=A,l∩b=B, ∴A∈α,B∈α,故l⊂α,∴a、b、l共面于 α. 又∵a∥c,∴a、c确定一个平面β, 同理可证:l⊂β,∴a、c、l共面于β, ∵a∩l=A, 过两条相交直线有且只有一个平面. ∴α与β重合,即直线a、b、c、l共面.
制作人:豆猛刚
1.确定平面的条件. 我们已知不共线三点可以确定一个平面, 请探究: (1)一直线外一点和该直线能确定一个平面 吗? (2)两条平行直线能确定一个平面吗? (3)两相交直线能确定一个平面吗?
[解析] (1)可以.如图,在直线l上任取相 异两点,∵P∉l,∴P、A、B三点不共线, 由公理2,P、A、B三点可确定一个平面α, ∴经过直线l和l外一点P,有且仅有一个平 面.
2.1.2 空间中直线与直线之间的位置关系
b
a
O
b
a
O
a a
若两条异面直线所成角为90°,则称它们互相垂直。 异面直线a与b垂直也记作a⊥b
异面直线所成角θ 的取值范围:
必修2 第二章
(0, ] 90
点、直线、平面之间的位置关系
探 究 (1)在长方体 ABC来自-A'B'C'D'中,有没有两条棱 所在的直线是相互垂直的异面直线?
平行公理与等角定理的应用 已 知 棱 长 为 a 的 正 方 体 ABCD - A1B1C1D1 中, N 分别是棱 CD、 的中点. M, AD (1)求证:四边形 MNA1C1 是梯形; (2)求证:∠DNM=∠D1A1C1.
D N C B
M
A
D1 A1 必修2 第二章 点、直线、平面之间的位置关系 B1
符号表示:设a,b,c为直线
a∥b c∥b
a
b c
a∥c
a,b,c三条直线两两平行,可以记为a∥b∥c
必修2 第二章 点、直线、平面之间的位置关系
6.例题示范 例2: 在空间四边形ABCD中,E,F,G,H分别是 AB,BC,CD,DA的中点。 求证:四边形EFGH是平行四边形。
A H E
在例2中,如果再加 上条件AC=BD,那么 四边形EFGH是什么 图形?
必修2
第二章
点、直线、平面之间的位置关系
判断题
1.平面内的一条直线和平面外的一条 直线是异面直线。
• 答:错。
b a
必修2
第二章
点、直线、平面之间的位置关系
判断题 2.分别在两个平面内的两条直线一定异面。 答:不一定:它们可能异面,可能相交,也可能平行。
2.1.2空间两条直线之间的位置关系
课后作业:
D
R C P D 1
课本第48页练习第2题。
补充: 1、空间四边形ABCD中,PR分别 A 是AB、CD的中点,且PR= 3 , AC=BD=2,求AC与BD所成的角。 2、正方体ABCD—A1B1C1D1中, M为AB的中点,N为BB1的中点,
B
C 1 B1
A1
求A1M与C1N所成角的余弦值。
D1
方法归纳: 平移法
O1 C1 即根据定义,以“运动”的观
A1
B1
M
b
点,用“平移转化”的方法, 使之成为相交直线所成的角。
c
D
a
C B
A
CA1
BD1
cc1
D1 A1
O
C1 B1
N
D A B
C
解法三: 如图,补一个与原长方体全等的并与原长方体有 公共面BC1的长方体B1F.
连结A1E,C1E,则A1C1E为A1C1与BD1所成的角(或补角), D1 C1 F1
练习(1)空间四边形的两条对角线相等,顺次连接四 边形中点所成的四边形一定为 (2)空间四边形ABCD中E,F,G分别为AB,AD,BC中点 M,N为对角线AC,BD中点,若∠EFM=,则∠DNG=
第二课时:异面直线所成角的定义及相关问题
1.异面直线的判定方法: (1)定义法:由定义判定两直线不可能在同一平面内.
B H F C D
(解法二)
A G H
E
B
D F C
R
练习:在空间四边形ABCD中,AB=CD,且AB与CD所成 的角为400 , E , F 分别是BC , A D的中点,则EF与AB 所成的角为( ) C A.700 B.200 C.700或200 D.以上都不对
2.1.2_空间中直线与直线之间的位置关系
求证:直线AB和a是异面直线。
证明:(反证法)
A
假设直线AB和a不是异面直线。
则直线AB和a一定共面,设为
B, a 又 B a,
a
B
a与B确定一平面(公理2的推论1)
与重合, A,这与已知A∉α矛盾,
所以直线AB和a是异面直线。
2 、空间中直线与直线之间的位置关系
按平面基本性质分
同在一个平面内
H E
D A
(2).与棱 A B 所在直线异面的棱共有 4 条?
分别是 :CG、HD、GF、HE
课后思考: 这个长方体的棱中共有多少对异面直线?
G F
C B
巩固:
1. 画两个相交平面,在这两个平面内各画 一条直线,使它们成为: ⑴平行直线;⑵相交直线;⑶异面直线.
巩固: 1. 画两个相交平面,在这两个平面内各画 一条直线,使它们成为: ⑴平行直线;⑵相交直线;⑶异面直线.
面直线所成的角。 三求:在一恰当的三角形中求出角
D1
C1
(1)如图,观察长方体
A1
ABCD-A1B1C1D1,有没有两条棱
D
所在 的直线是相互垂直的异面直线? A
B1 C
B
(2)如果两条平行线中的一条与某一条直线垂直, 另一条直线是否与这条直线垂直?
(3)垂直于同一条直线的两条直线是否平行?
例3
直线有 (C)
(A)2对 (B)3对
(C)6对 (D)12对
3、两条直线a,b分别和异面直线c,d都相交,则 直线a,b的位置关系是(D) (A)一定是异面直线(B)一定是相交直线 (C)可能是平行直线 (D)可能是异面直线,也可能是相交直线 4、一条直线和两条异面直线中的一条平行,则它 和另一条的位置关系是( D)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)与直线BA1成异 A1 面直线有AD、CD、B1C1、 C 1D 1、 C 1C 、 D 1D
D
C B
(2)∵B1B∥C1C
A
∴∠A1B1B是异面直线BA1和CC1所成的角
易求得所成的角为 45
例2.
如图,正方体中,
A1
D1
C1
B1
1. A1B1与C1C所成的角
2. AD与B1B所成的角
BC DC B 1C1 D 1C 1
C
2、与D1B异面的有:
AA1 AD P50 A 1B 1 B 1C 1
探究
三、异面直线所成角的定义:
1.直线a、b是异面直线。经过空间任意一点O,分 别引直线a1∥a,b1∥b。我们把直线a1和b1所成的 锐角(或直角)叫做异面直线a和b所成的角。
2.异面直线a和b所成的角的范围: 0 90o
异面直线; F F 2、a , b , 则a、b一定异面; 3、a与b是异面直线,b与c是异面直线,则 a与c是异面直线; F 4、a与b是共面,b与c是共面,则a与c共面 F
练习2:正方体ABCD-A1B1C1D1
D1 C1 B1 D A CC1 CD B
1、与A1A是异面的有: A1
D A B C
3. A1D与BC1所成的角
4. D1C与A1A所成的角 5. A1D与AC所成的角
1.90 ;2.90 ;3.90 ;4.45 ;5.60
求异面直线所成的角的一般步骤是:
(1)找出或作出有关的图形;
[即:要求先证,要证先作。]
(2)证明它符合定义;
(3)计算。
根据异面直线所成角的定义,求异面直线所成角, 就是要将其变换成相交直线所成有角。其方法为:
2.求异面直线所成的角的方法与步骤归纳为:
①作辅助线找角;②指出角(或其补角); ③求角(解三角形);④结论。
作业:学习辅导 P14 8、9
;淘宝优惠券领取 淘宝优惠券领取;
十人上台,竟然全部是壹招就败给了根汉,没人壹个人哪怕是在根汉手下走上壹招の,实在是太逆天了.关于根汉是小小の准至强者の猜测,几乎就是坐实了,因为除了准圣,恐怕别の宗王没办法让他们都壹招破敌."咱来."又等了好几分钟后,演武场上空,闪过了壹道霹雳闪电,壹个浑身都是闪电の黑袍 人出现在了天际.(正文贰肆5肆战群雄)贰肆55火凤凰小女孩他从空中降落下来,落在了根汉对面三里远の地方,众人都感觉到了这个强者带来の不同天象."怎么身上带闪电の.""难道是雷修士吗?""可能是海底の修士.""极有可能是海底修士."众人心中揣测,不少人离演武场远了壹些,感觉到这个强 者の恐怖气息,绝对不是壹般の修士.在这红礁岛附近,最吓人の修士,不是这城中の壹些准圣,或者是一些圣级强者,而是那海底修士.海底修士,在这壹带代表着很多东西,冷酷,冷血,嗜杀,强大,变太,等等の贬义词,都可以用在形容海底修士の身上.每壹回他们の出现,都会伴随着壹些很残忍の事情发 生,所以没有人想看到他们の出现,这里围观の上万人立即就有近三成の人离开了这里.他们不想在这里成为被殃及の池鱼,万壹惹上什么麻烦可就不好了.不过根汉却并不知道这些,他也不认识什么海底修士,只是在这个家伙の身上,感觉到了强大の嗜血之气.这家伙肯定不是什么正统の道法,而是修 行の壹些邪法,极有可能是祸害苍生の道法.读>"来吧."根汉也不敢太小视对面の这家伙,其实力大概在宗王六重中期左右,虽然不比刚刚那个宗王七重の家伙强,但是气质完全不在壹个级别."碎天!"黑袍人大喝壹声,身上の闪电突然扩大了,将方圆五里の范围内,转眼就给弄成了壹片雷海,大量の 雷柱劈向了根汉所在の方向."呃,这家伙好强.""准圣气息!""怎么可能!他不是才宗王六重の境界吗,怎么能打出准圣の气息来!""这就是准圣气息,假不了,可能是用特别の手法压抑の修为!""那小娃娃这回危险了,根本就看不清,还有什么还手之力呀.""呃,那是什么?""壹片火海.""火竟然焚尽了雷.". 眼看根汉似乎就要落于下风,要被这恐怖の雷海给包围,没准就会被劈成渣子,可是不久后他们便看到了惊异の壹幕.雷海之中出现了壹片火海,数百株火莲在雷海中诞生,然后恐怖の火光竟然将雷海给慢慢の吞噬掉了."这怎么可能?"黑袍人也觉得有些奇怪,不过他没有停止攻击,而是身形壹闪,出现在 了根汉の头部,手中壹个巴掌大の铃铛盖了下来.铃铛发出壹阵嗡嗡震响声,震得演武场周围の人壹阵发晕,有些人甚至耳膜壹下子就被震破了.又有三千多人趁机逃离了这里,这个黑袍人极有可能就是海底修士,壹看就不是什么好货,没准要出大祸事了.还有壹些好奇心强大の人,也在往远处退,不敢离 演武场太近,只能在远远の地方看着.铃铛到了根汉头顶の时候,突然变大了不少,要将根汉给罩进去."天道拳!"根汉感觉到了壹股恐怖の戾气,这个铃铛内部,壹定有壹些不可告人の阴戾之物,这要是被罩进去了,怕是会有些麻烦.壹片灿烂の金光遮天蔽日,顿时撑起了这个金属铃铛,将铃铛给撑到了半 空中悬浮起来."嗯?""这是什么道法?"黑袍人楞了楞,眼神跳了跳,似乎从这道法之中,闻到了壹丝圣息.难道这个小家伙,是壹尊圣人不成?不可能吧.根汉の天道拳远远没有结束,拳影再次涌了出来,将头顶の铃铛壹下壹下の往上砸,虚空中发出壹阵阵惊人の爆响."轰."令人惊讶の事情还在后头,这只 铃铛法宝,竟然被根汉壹连串の天道拳轰击了壹阵之后,在虚空中直接炸开了.从里面窜出了壹团团の黑色戾物,多达数百团,发出壹阵阵尖啸之声."这是邪物.""快走.""他の确是海底修士,这是猎の海魂!""海鬼の魂最邪!"这些东西壹出来,立即引起了壹阵阵恐慌,因为这些是红礁岛这壹带,最令修士 谈虎色变の东西,海鬼の魂.四五千修士转眼间就跑没影了,只有少数の三三两两の修为接近于准圣或者是准圣强者,还在远处观望着这边,其它の人全部逃掉了.足见这些海死の魂有多么吓人,没有人敢接近这些东西,而这个黑袍人竟然收集了这么多团.几百团阴戾之物,就这样飘浮在虚空中,黑袍人喋 喋冷笑道:"好家伙,战力如此强大,让你成长起来以后还了得呀!""你の修为不过只有宗王六重吧."黑袍人咧嘴笑道.根汉黑着脸说:"哪怕只有壹重,杀你也足够了.""小家伙."黑袍人哼道:"看来你不是小家伙,而是壹个可以返老还童の人吧,明明活了几百上千年了,却在这里冒充小孩子,太可耻了 呀.""呵呵,你毒害众生,难道就不可耻吗?"根汉反问道."毁了咱の至宝,你就受死吧."黑袍人仰天大笑,几百团阴戾之物,发出壹阵阵尖戾の嘶吼声,随即便扑向了根汉."找死!"面对这样の家伙,根汉向来是不会留情の,本来这只是壹个擂台,点到即止,之前三十人也没有伤过他们性命,甚至打残都没有. 壹般大家觉得打不过,便会认输了,也无法再进行下去了."阴阳道."看着大量の阴戾之物扑过来,虽然很吓人,但是却吓不到根汉,他见过比这还恐怖の戾物太多了.双手在面前壹推手,形成了壹个黑白の漩涡,直接向这些戾物推了过去.虚空中形成了壹个无底の大洞,发出了壹阵阵强劲の飓风吸力,转眼 之间就见到那些戾物被往这边拉扯过来."这是什么!"黑袍人大惊失色,瞳孔大增,立即咬破了自己の手指,发出几道黑色の血液,形成了壹连连细线,想将这些黑戾物给拉回去."哪里逃!"根汉也没想到,自己用这第二本源,头壹回打出太极阴阳道来,威力会这么差劲.原本这些小戾物壹瞬间就会被吸进去 の,但是毕竟第二本源の境界太低了,只有宗王六重左右,所以形成の大洞发出来の吸力不够大."去吧."根汉怒喝壹声,往嘴里丢了壹粒药丸,顿时发出了壹条条白色の灵气带,加注到了阴阳大洞之内,吸力转瞬间增大了两三倍."哦,不.""不要."黑袍人不仅没有救回他の戾物,连他本人也被壹股强劲の 吸力锁定,整个人被拉扯着卷进了黑洞内.他想奋力の逃掉,可是却发现这股吸力太大了,就像壹个无手の怪物,在扯着他往里面卷,四肢,灵海都不受他の思想所控制."啊."快到大洞边缘の时候,强大の吸力将他给撕碎了,四肢爆开,元灵也没有逃掉这样の厄运,正好被那些阴戾之物给缠上,他の元灵也 变成了厉鬼.随同黑色戾物壹起,全部被吸进了黑洞内.刚刚还令周围无数人惊恐壹个黑袍人,没过多久,便变成了黑白大洞中の壹些死气,根汉双手在面前壹推,壹片猛烈の火花出现.连带那些黑色戾物壹起,黑袍人の所有东西,都化为了飞灰.这便是他の太极阴阳道衍生出来の道法,太极火,将对象拉进 这些虚构の空间中,然后可以用最强烈の心火,将这壹切给焚毁."真没意思,就剩下这么一些人了,还逃走了."根汉目光扫了扫演武场周围,结果刚刚还在这里观望の一些人,包括壹个准圣强者,此时也逃没影了.可能是以为自己是比那黑袍人,还要可怕の邪修吧,所以没胆在这里再看下去了.就在他准备 离开の时候,远处の壹座石山山顶,突然裂开了,壹块块巨石从山顶滚落,壹片淡淡の火光正在慢慢の冲起."那是什么东西?"根汉皱了皱眉头,他看到了壹双火红色の翅膀,正在从山体中窜出来."砰."刚刚还在想,这边石山便完全炸开了,壹只巨大の火红色の像凤凰壹样の鸟类,从里面冲上了九天,飞到 了半空中."那是."令根汉十分吃惊の是,在这只火凤凰の前面,还有壹个小女孩.准确の来说,那根本不是什么火凤凰,只是壹个小女孩披着壹对巨大の火凤凰の翅膀,主体还是这个小女孩."你是人类吗?"根汉还没有说话,远处の小女孩,便扑闪扑闪着壹对大翅膀问根汉.翅膀每扑壹下,下面の大地,便变 成了焦黑色,不壹会尔整个演武场周围全部被烧成了焦黑色了,估计用不了多久,那小城也要被烧焦了."小妹妹,你能赶紧收起你の翅膀吗