考点16+等差、等比数列的运算和性质-高考数学(理)提分必备30个黄金考点+Word版含解析
高三数学数列知识点归纳总结

高三数学数列知识点归纳总结数列是数学中重要的概念,广泛应用于各个领域。
高三学习阶段,数列的理解和应用变得尤为重要。
本文将对高三数学数列的知识点进行归纳总结,帮助同学们更好地掌握数列的相关内容。
一、数列的定义和性质数列是按照一定规律排列的一系列数的集合。
一般表示为{a₁, a₂, a₃, ... , aₙ},其中a₁, a₂, a₃, ... 分别表示数列的第1项、第2项、第3项、... 第n项。
1. 等差数列等差数列是一种常见的数列,其特点是每一项与前一项之间的差值是一个常数,称为公差,一般表示为d。
常用性质:(1) 第n项公式:aₙ = a₁ + (n-1)d(2) 前n项和公式:Sₙ = (a₁ + aₙ) * n / 22. 等比数列等比数列是一种常见的数列,其特点是每一项与前一项之间的比值是一个常数,称为公比,一般表示为r。
常用性质:(1) 第n项公式:aₙ = a₁ * r^(n-1)(2) 前n项和公式(当r ≠ 1时):Sₙ = a₁ * (1 - rⁿ) / (1 - r)3. 通项公式通项公式可以根据数列的规律,直接给出第n项的表达式。
通过通项公式,可以快速计算数列的任意一项。
二、数列的应用1. 等差数列的应用等差数列在实际问题中的应用非常广泛,常用于描述一些增减规律明显的情况。
(1) 速度、距离和时间的关系:当速度恒定时,可以利用等差数列来描述物体在某段时间内的位置变化。
(2) 等差数列求和:可以利用等差数列的前n项和公式,求解一段时间内某物体的总距离或总位移。
2. 等比数列的应用等比数列在实际问题中也有广泛的应用,常用于描述一些指数型的增长或衰减规律。
(1) 复利问题:利用等比数列可以解决一些复利问题,比如定期存款、投资基金等。
(2) 指数增长和衰减:利用等比数列可以描述一些指数增长或衰减的情况,比如病菌的增殖、放射性物质的衰变等。
三、常见数列的特殊性质1. 斐波那契数列斐波那契数列是一种特殊的数列,每一项是前两项之和。
高三等比数列知识点

高三等比数列知识点解析数学作为一门重要的学科,在高中阶段占据着至关重要的地位。
而在数学学科中,等比数列与等差数列是高三学生最常接触的数列类型之一,且对学生的数学思维与分析能力有着较大的考验。
在本文中,我们将对高三等比数列的基本概念、性质和解题技巧进行详细论述。
一、等比数列的基本概念等比数列是指一个数列中,从第二个数起,每一个数都是前一个数乘以同一个常数得到的。
例如,数列1,2,4,8,16就是一个等比数列,公比为2。
在等比数列中,每个数与它的前一个数之比是相等的,这个比值叫做公比。
并且,公比的绝对值大于1时,数列的绝对值会呈现出递增的趋势;而公比的绝对值在0到1之间时,则数列的绝对值会呈现出递减的趋势。
二、等比数列的性质1. 前n项和公式等比数列的前n项和公式为Sn=a1*(1-q^n)/(1-q),其中a1为首项,q为公比,n为项数。
这个公式可以帮助我们求解等比数列前n项和,其中的(1-q^n)部分是通过公比的n次幂来表示的。
需要注意的是,当公比q等于1时,前n项和公式会退化为等差数列的前n项和公式Sn=n*a1。
2. 通项公式等比数列的通项公式为an=a1*q^(n-1),其中a1为首项,q为公比,n为项数。
通过通项公式,我们可以方便地求得等比数列中任意一项的值。
如果已知首项和公比,通过代入数值即可计算出对应的项数的数值。
3. 其他重要性质(1)对于任意等比数列,首项与公比的乘积等于第二项与公比的乘积,即a1 * q = a2。
这个性质是由等比数列的定义所确定的。
(2)等比数列任意两项的比值都是相等的。
这个性质在解题过程中有着很大的应用价值,可以帮助我们确定未知量的值。
三、等比数列的解题技巧1. 确定题目所给信息和所求结论在解题过程中,首先要仔细阅读题目,理解题目所给的条件和所要求的结果。
通过明确题目的要求,可以更加有目的地进行解题,在遇到复杂问题时能够有针对性地选择合适的方法。
2. 掌握运用前n项和公式和通项公式在解决关于等比数列的问题时,掌握前n项和公式和通项公式是必不可少的。
(完整版)高考等差等比数列知识点总结

1高考数列知识点等差数列1.等差数列的定义:d aa n n=--1(d 为常数)(2≥n );2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项首项首项::1a ,公差,公差:d :d :d,末项,末项,末项::n a推广: d m n a a m n )(-+=. 从而mn a a d m n --=; 3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22dn a d n =+-2An Bn =+(其中(其中A A 、B 是常数,所以当是常数,所以当d d ≠0时,时,S S n 是关于是关于n n 的二次式且常数项为的二次式且常数项为00) 特别地()()()12121121212n n n n a a S n a +++++==+5.等差数列的判定方法(1) 定义法:若d a a n n=--1或d a an n =-+1(常数*∈N n )⇔ {}n a 是等差数列.是等差数列. (2) 等差中项:数列{}na 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
是常数)。
(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中(其中A A 、B 是常数)6.等差数列的证明方法定义法:若d a a n n=--1或d a an n =-+1(常数*∈N n )⇔ {}n a 是等差数列7.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函的一次函 数,数,且斜率为公差d ;前n 和211(1)()222n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
数列高三理科知识点归纳

数列高三理科知识点归纳数列是高中数学中的重要内容,也是高三数学考试中常见的知识点。
理解和掌握数列的性质及相关概念对于高考数学的顺利解题至关重要。
本文将对高三数学中与数列相关的知识点进行归纳和概述。
一、数列的基本概念:数列是由一串按特定规律排列的数所组成的有序集合。
数列的一般形式为:an=a1+(n-1)d,其中an表示第n个数,a1为首项,d 为公差。
二、等差数列:等差数列是最基本的数列之一,其特点是每一项与前一项之差都相等。
常见的等差数列有以下几个重要概念:1. 公差:等差数列中相邻两项之间的差值,用d表示。
2. 通项公式:等差数列的通项公式为an=a1+(n-1)d,通过该公式可以求得任意一项的值。
3. 求和公式:等差数列的前n项和公式为Sn=n/2(a1+an),通过该公式可以求得前n项的和。
三、等比数列:等比数列是指数列中相邻两项之比都相等的数列。
常见的等比数列有以下几个重要概念:1. 公比:等比数列中相邻两项之比,用q表示。
2. 通项公式:等比数列的通项公式为an=a1*q^(n-1),通过该公式可以求得任意一项的值。
3. 求和公式:等比数列的前n项和公式为Sn=a1(1-q^n)/(1-q),通过该公式可以求得前n项的和。
四、数列的性质:数列具有一些重要的性质和特点,这些性质对于解题和理解数列的本质起到了重要的作用。
1. 有界性:数列可以是有界的,即存在上界和下界,也可以是无界的。
2. 单调性:数列可以是递增的,即每一项都比前一项大,也可以是递减的,即每一项都比前一项小。
还可以是常数列,即每一项都相等。
3. 极限:数列可能有极限,即当项数趋近于无穷时,数列的值趋于一个确定的常数。
4. 递推关系:数列的每一项都可以通过前一项或前几项来确定。
五、常见数列:高三数学中常见的数列有以下几种:1. 等差数列:每一项与前一项之差相等。
2. 等比数列:每一项与前一项之比相等。
3. 斐波那契数列:每一项等于前两项之和。
等差数列与等比数列的知识点总结

等差数列与等比数列的知识点总结
等差数列和等比数列是数学中的两个重要概念,它们在日常生活和科学研究中有着广泛的应用。
以下是关于等差数列和等比数列的主要知识点总结:
等差数列:
1. 定义:一个数列,其中任意两个相邻项的差是一个常数,这个数列被称为等差数列。
2. 通项公式:$a_n = a_1 + (n - 1)d$,其中 $a_1$ 是首项,$d$ 是公差,$n$ 是项数。
3. 求和公式:$S_n = \frac{n}{2} [2a_1 + (n - 1)d]$,其中 $S_n$ 是前$n$ 项的和。
4. 等差中项:任意两项的算术平均值等于第三项。
5. 等差数列的性质:如果两个数列都是等差数列,那么它们的和也是一个等差数列。
等比数列:
1. 定义:一个数列,其中任意两个相邻项的比是一个常数,这个数列被称为等比数列。
2. 通项公式:$a_n = a_1 \times q^{n-1}$,其中 $a_1$ 是首项,$q$ 是公比,$n$ 是项数。
3. 求和公式:对于 $q \neq 1$,有 $S_n = \frac{a_1(1 - q^n)}{1 - q}$;对于 $q = 1$,有 $S_n = na_1$。
4. 等比中项:任意两项的几何平均值等于第三项。
5. 等比数列的性质:如果两个数列都是等比数列,那么它们的乘积是一个等比数列。
以上是关于等差数列和等比数列的主要知识点总结。
在学习这些内容时,可以通过做练习题来加深理解和巩固知识。
等差数列、等比数列知识点梳理

等差数列和等比数列知识点梳理第一节:等差数列的公式和相关性质1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈)注:下面所有涉及n ,*n N ∈省略,你懂的。
2、等差数列通项公式:1(1)n a a n d =+-,1a 为首项,d 为公差推广公式:()n m a a n m d =+-变形推广:mn a a d mn --= 3、等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a4、等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+ 211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0)特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)5、等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔{}n a 是等差数列.(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a(3)数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4)数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。
6、等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔{}n a 是等差数列.7、等差数列相关技巧:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d、n 、n a 及n S ,其中1a 、d 称作为基本元素。
等差数列等比数列知识点归纳总结

等差数列等比数列知识点归纳总结等差数列和等比数列是高中数学中非常重要的概念,它们在解决各种数学问题中都起着重要的作用。
本文将对等差数列和等比数列的基本概念、性质、求和公式以及应用进行归纳总结。
一、等差数列等差数列是指一个数列中的每一项与前一项之间的差都相等。
这个相等的差值被称为等差数列的公差,通常用字母d表示。
1. 基本概念一个等差数列可以以通项公式的形式表示为:an = a1 + (n - 1) * d,其中an表示数列的第n项,a1表示第一项,d表示公差。
2. 性质(1)公差:等差数列的公差d是等差数列中相邻两项的差,公差可以是正数、负数或零。
(2)公式:等差数列的通项公式为an = a1 + (n - 1) * d,其中n表示项数。
(3)前n项和:等差数列的前n项和可以通过求和公式Sn = n * (a1 + an) / 2来计算。
3. 应用等差数列广泛应用于数学和物理等领域,常见的应用包括:(1)数学题目中的差额、间隔、递推关系等。
(2)物理问题中的匀速直线运动、连续等差分布等。
(3)经济学中的利润、销售额等。
二、等比数列等比数列是指一个数列中的每一项与前一项之间的比都相等。
这个相等的比值被称为等比数列的公比,通常用字母r表示。
1. 基本概念一个等比数列可以以通项公式的形式表示为:an = a1 * r^(n-1),其中an表示数列的第n项,a1表示第一项,r表示公比。
2. 性质(1)公比:等比数列的公比r是等比数列中相邻两项的比值,公比可以是正数、负数或零。
(2)公式:等比数列的通项公式为an = a1 * r^(n-1),其中n表示项数。
(3)前n项和:等比数列的前n项和可以通过求和公式Sn = a1 * (1 - r^n) / (1 - r)来计算。
3. 应用等比数列也广泛应用于数学和物理等领域,常见的应用包括:(1)数学题目中的倍数关系、增长衰减等。
(2)物理问题中的连续等比分布、指数增长等。
高三数列知识点理科版总结

高三数列知识点理科版总结数列是数学中非常重要的概念之一,在高三的学习中,数列经常被提及和使用。
下面将对高三数列的知识点进行理科版总结,包括等差数列、等比数列以及基本数列操作等内容。
一、等差数列(Arithmetic Progression)等差数列是指数列中的每一项与前一项之差等于一个常数d,这个常数称为公差。
通常用字母an表示等差数列的第n项,即an = a1 + (n-1)d。
1. 等差数列的通项公式对于等差数列an,其通项公式为an = a1 + (n-1)d。
其中,a1表示首项,d表示公差,n表示项数。
2. 等差数列的前n项和等差数列的前n项和公式为Sn = (n/2)(a1 + an)。
其中,Sn表示前n项和,a1表示首项,an表示第n项。
3. 等差数列的性质- 等差数列的任意三项成等差数列。
- 等差数列的任意n项成等差数列。
二、等比数列(Geometric Progression)等比数列是指数列中的每一项与前一项之比等于一个常数q,这个常数称为公比。
通常用字母an表示等比数列的第n项,即an = a1 * q^(n-1)。
1. 等比数列的通项公式对于等比数列an,其通项公式为an = a1 * q^(n-1)。
其中,a1表示首项,q表示公比,n表示项数。
2. 等比数列的前n项和(只有当公比q不等于1时才有意义)等比数列的前n项和公式为Sn = (a1 * (1 - q^n)) / (1 - q)。
其中,Sn表示前n项和,a1表示首项,q表示公比,n表示项数。
3. 等比数列的性质- 等比数列的任意三项成等比数列。
- 等比数列中任意两项的比值都相等。
三、基本数列操作1. 数列的加减法- 两个数列加(或减)得到的新数列,其第n项等于原数列的第n项之和(或差)。
2. 数列的乘法- 两个数列的乘积得到的新数列,其第n项等于原数列的第n 项之积。
3. 数列的除法- 两个数列的除法得到的新数列,其第n项等于原数列的第n 项之商。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【考点剖析】
1. 命题方向预测:
数列是高考必考内容,往往是主、客观题均有.预计2019年高考将重点考查等差、等比数列的通项公式及其性质、求和公式等,主观题以等差、等比数列与其他知识的综合为主. 2.课本结论总结:
等差数列的判断方法:
(1)定义法:对于的任意自然数,验证
为同一常数;
(2)等差中项法:验证都成立;
(3)通项公式法:验证;
(4)前n项和公式法:验证. 注后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.等比数列的判定方法:
(1)定义法:若
(为非零常数)或
(为非零常数且
),则
是等比数列.
(2)中项公式法:若数列中
且
,则数列
是等比数列.
(3)通项公式法:若数列通项公式可写成
(,
均为不为0的常数,
),则
是等比数列.
(4)前n项和公式法:若数列{a n}的前n项和
(为常数且
,
),则
是等比数列.3.名师二级结论:
以数列与函数、不等式相结合为背景的选择题,主要考查知识重点和热点是数列的通项公式、
前项和公式以及二者之间的关系、等差数列和等比数列、比较大小、参数取值范围的探求,此类题型主要考查学生对知识的灵活变通、融合与迁移,考查学生数学视野的广度和进一步学习数学的潜能.
求解数列与不等式相结合恒成立条件下的参数问题主要两种策略:(1)若函数
在定义域为
,则当时,有恒成立
;
恒成立
;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得.
4.考点交汇展示:
(1)数列与函数相结合
1.【2018年浙江卷】已知成等比数列,且
.若
,则
A. B.
C.
D.
【答案】B
【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断
(2)数列与不等式相结合
【2018年江苏卷】已知集合,
.将
的所有元素从小到大依次排列构成一个数
列.记
为数列
的前n项和,则使得
成立的n的最小值为________.
【答案】27
【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.
详解:设,则
,由得
,所以只需研究
是否有满足条件的解,此时
,
,
为等差数列项数,且
.由
得满足条件的最小值为
.
【考点分类】
考向一等差数列基本量的计算
1.【2018年理新课标I卷】设为等差数列
的前
项和,若,
,则
A. B.
C.
D.
【答案】B
【解析】
2.【2017课标1,理4】记为等差数列
的前
项和.若,
,则
的公差为
A.1 B.2 C.4 D.8 【答案】C
【解析】设公差为,
,
,联立解得
,故选C.
秒杀解析:因为,即
,则
,即
,解得
,故选C.
3.【2018年理北京卷】设是等差数列,且
a1=3,a2+a5=36,则的通项公式为__________.【答案】
【解题技巧】
等差数列的通项公式及前n项和公式,共涉及五个量
,
,,,
,知其中三个就能求另外两个,体现了用方
程的思想解决问题,此外要注意当时,为常数列,是特殊的等差数列.
【方法规律】
数列的通项公式和前项和公式在解题中起到变量代换作用,而和
是等差数列的两个基本量,用它们表示已知
和未知是常用方法,例如第3题,将条件中的等式都转化为关于
和
的方程组,通过解方程组求解.
考向二等差数列性质的综合运用
1.【2018届河北省武邑中学第二次调研】数列
满足,且
,
,则()
A. 9
B. 10
C. 11
D. 12
【答案】D
2.【2018届东北师范大学附属中学五模】我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,中间三尺重几何.”意思是:“现
有一根金锤,长5尺,头部尺,重
斤,尾部
尺,重
斤,且从头到尾,每一尺的重量构成等差数
列,问中间三尺共重多少斤.”
A. 6斤 B. 7斤 C.斤
D.斤
【答案】D
【解析】
原问题等价于等差数列中,已知,求
的值.
由等差数列的性质可知:,
则,即中间三尺共重
斤.
本题选择D选项.
3.设数列都是等差数列,若
,则
__________.
【答案】35
【方法规律】
等差数列的性质:(1)通项公式的推广:(2)。