卡方检验习题

合集下载

5习题-卡方检验

5习题-卡方检验

计数资料统计分析————习题1.220.05,n x x ≥ 则( )A.P ≥0.05B.P ≤0.05C.P <0.05D.P =0.05E.P >0.052.2x 检验中,自由度v 的计算为( )A.行×列(R ×C )B.样本含量nC.n-1D.(R -1)(C -1)E.n2.四格表卡方检验中,2x <20.05(1)x ,可认为A.两样本率不同B.两样本率相同C.两总体率不同D.两总体率相同E.样本率与总体率不同3.分析计数资料时,最常用的显著性检验方法是( )A.t 检验法B.正态检验法C.秩和检验法D.2x 检验法 E.方差分析4.在卡方界值(2x )表中,当自由度一定时,2x 值愈大,P 值( )A.不变B.愈大C.愈小D.与2x 值相等E.与2x 值无关 5.从甲乙两篇论文中,查到同类的两个率比较的四格表资料以及2x 检验结果,甲论文2x >20.01(1)x 2x >20.05(1)x 。

若甲乙两论文的样本量相同,则可认为( ) A.两论文结果有矛盾 B.两论文结果基本一致 C.甲论文结果更可信D.甲论文结果不可信E.甲论文说明两总体的差别大6.计算R ×C 表的专用公式是( )A. 22()()()()()ad bc n x a b a c b d c d -=++++ B. B. 22()b c x b c -=+ C . 221R C A x n n n ⎛⎫=- ⎪⎝⎭∑ D. ()220.5b c x b c --=+E. 22()A T x T -=∑7.关于行×列表2x检验,正确的应用必须是()A.不宜有格子中的实际数小于5 B.不宜有格子中的理论数小于5C.不宜有格子中的理论数小于5 或小于1D.不宜有1/5 以上的格子中的理论数小于5 或有一个格子中的理论数小于l E.不宜有1/5 以上的格子中的实际教小于5 或有一个格子中的实际数小于18.R×C 表的2x检验中,P<0.05 说明()A.被比较的n 个样本率之间的差异有显著性B.样本率间差别没有显著性C.任何两个率之间差别均有显著性D.至少某两个样本率是差别有显著性E.只有两个样本率间差别有显著性9.四个样本率作比较,220.01,(3)χχ>,可认为()A.各总体率不等或不全相等 B.各总体率均不相等 C.各样本率均不相等D.各样本率不等或不全相等E.各总体率相等10.配对四格表资料需用校正公式的条件()A.1<T<5 和n>40B.b+c<40C.T<1 或n<40D.T>1 n>40E.a+c<4011.配对资料2x值专用公式是()A.22()()()()()ad bc nxa b a c b d c d-=++++B.2 2()b c xb c-=+C.221R CAx nn n⎛⎫=-⎪⎝⎭∑D.()2 20.5b cxb c--=+E.2 2()A T xT-=∑12.在x2 检验中,四格表的校正公式是:A.22()()()()()ad bc nxa b a c b d c d-=++++B.2 2()b c xb c-=+C . 221R C A x n n n ⎛⎫=- ⎪⎝⎭∑ D. ()220.5b c x b c --=+ E. 22()A T x T -=∑ 13.作四格表卡方检验,当N>40,且__________时,应该使用校正公式A T<5B T>5C T<1D T>5E 1<T<514.四格表资料的卡方检验时无需校正,应满足的条件是( )。

卡方检验计算题例题

卡方检验计算题例题

卡方检验计算题例题
假设有一组数据,如下表所示:
| 实际值 | 预期值 |
|--------|--------|
| 50 | 40 |
| 60 | 70 |
| 90 | 80 |
现在需要进行卡方检验,判断实际值是否与预期值有显著差异。

步骤如下:
1. 计算每个单元格的卡方值。

对于第一个单元格,其卡方值为: $ frac{(50-40)^2}{40} =
2.5 $
同理,对其他单元格进行计算,得到:
| 实际值 | 预期值 | 卡方值 |
|--------|--------|--------|
| 50 | 40 | 2.5 |
| 60 | 70 | 1.25 |
| 90 | 80 | 1.125 |
2. 计算所有单元格的卡方值之和,得到:
$ chi^2 = 2.5 + 1.25 + 1.125 = 4.875 $
3. 根据自由度计算临界值。

自由度为 $(r-1)(c-1)$,其中
$r$ 和 $c$ 分别为行数和列数。

在本例中,自由度为 $2$。

根据统计学知识,当显著性水平为 $0.05$ 时,临界值为 $5.99$。

4. 比较计算出来的卡方值和临界值。

如果计算出来的卡方值小于临界值,则认为实际值与预期值没有显著差异;否则,认为有显著差异。

在本例中,计算出来的卡方值为 $4.875$,小于临界值 $
5.99$,因此认为实际值与预期值没有显著差异。

因此,通过卡方检验得出结论:实际值与预期值没有显著差异。

第11章卡方检验课后题

第11章卡方检验课后题

第十一章2χ检验【习题解析】 一、思考题 1.2χ检验的基本思想:在0H 成立的条件下,推算出各个格子的理论频数T ,然后利用理论频数T 和实际频数A 构造2χ统计量,22()A T Tχ-=∑,反映实际频数与理论频数的吻合程度。

若无效假设0H 成立,则各个格子的A 与T 相差不应该很大,即2χ统计量不应该很大。

A 与T 相差越大,2χ值越大,相对应的P 值越小,当P α≤,则越有理由认为无效假设不成立,继而拒绝0H ,作出统计推断。

由于格子越多,2χ值也会越大,因而考虑2χ值大小的意义时,应同时考虑格子数的多少(严格地说是自由度ν的大小),这样2χ值才能更准确地反映A 与T 的吻合程度。

2χ检验可用于:独立样本两个或多个率或构成比的比较,配对设计两样本率的比较,频数分布的拟合优度检验,线性趋势检验等。

2. 对不同设计类型的资料,2χ检验的应用条件不同:(1) 独立样本四格表的2χ检验 1) 当40n ≥,且5T≥时,用非连续性校正的2χ检验。

22()A T Tχ-=∑或22()()()()()ad bc na b c d a c b d χ-=++++2) 当40n ≥,且有15T≤<时,用连续性校正的2χ检验或用四格表的确切概率法。

22(0.5)A T Tχ--=∑或22(/2)()()()()ad bc n na b c d a c b d χ--=++++ 3) 当40n <或1T<时,用四格表的确切概率法。

(2) 独立样本R C ⨯列联表2χ检验的专用公式为:22(1)R CA n n n χ=-∑1) 不宜有1/5以上格子的理论频数小于5,或有1个格子的理论频数小于1。

2) 结果为有序多分类变量的R ×C 列联表,在比较各处理组的平均效应有无差别时,应该用秩和检验或Ridit 检验。

(3) 配对四格表的2χ检验1) 当40b c +≥时,22b c b cχ-=+()。

5习题-卡方检验知识讲解

5习题-卡方检验知识讲解

计数资料统计分析————习题1.220.05,n x x ≥ 则( )A.P ≥0.05B.P ≤0.05C.P <0.05D.P =0.05E.P >0.052.2x 检验中,自由度v 的计算为( )A.行×列(R ×C )B.样本含量nC.n-1D.(R -1)(C -1)E.n2.四格表卡方检验中,2x <20.05(1)x ,可认为A.两样本率不同B.两样本率相同C.两总体率不同D.两总体率相同E.样本率与总体率不同3.分析计数资料时,最常用的显著性检验方法是( )A.t 检验法B.正态检验法C.秩和检验法D.2x 检验法 E.方差分析4.在卡方界值(2x )表中,当自由度一定时,2x 值愈大,P 值( )A.不变B.愈大C.愈小D.与2x 值相等E.与2x 值无关 5.从甲乙两篇论文中,查到同类的两个率比较的四格表资料以及2x 检验结果,甲论文2x >20.01(1)x 2x >20.05(1)x 。

若甲乙两论文的样本量相同,则可认为( ) A.两论文结果有矛盾 B.两论文结果基本一致 C.甲论文结果更可信D.甲论文结果不可信E.甲论文说明两总体的差别大6.计算R ×C 表的专用公式是( )A. 22()()()()()ad bc n x a b a c b d c d -=++++ B. B. 22()b c x b c -=+ C . 221R C A x n n n ⎛⎫=- ⎪⎝⎭∑ D. ()220.5b c x b c --=+E. 22()A T x T -=∑7.关于行×列表2x检验,正确的应用必须是()A.不宜有格子中的实际数小于5 B.不宜有格子中的理论数小于5C.不宜有格子中的理论数小于5 或小于1D.不宜有1/5 以上的格子中的理论数小于5 或有一个格子中的理论数小于l E.不宜有1/5 以上的格子中的实际教小于5 或有一个格子中的实际数小于18.R×C 表的2x检验中,P<0.05 说明()A.被比较的n 个样本率之间的差异有显著性B.样本率间差别没有显著性C.任何两个率之间差别均有显著性D.至少某两个样本率是差别有显著性E.只有两个样本率间差别有显著性9.四个样本率作比较,220.01,(3)χχ>,可认为()A.各总体率不等或不全相等 B.各总体率均不相等 C.各样本率均不相等D.各样本率不等或不全相等E.各总体率相等10.配对四格表资料需用校正公式的条件()A.1<T<5 和n>40B.b+c<40C.T<1 或n<40D.T>1 n>40E.a+c<4011.配对资料2x值专用公式是()A.22()()()()()ad bc nxa b a c b d c d-=++++B.2 2()b c xb c-=+C.221R CAx nn n⎛⎫=-⎪⎝⎭∑D.()2 20.5b cxb c--=+E.2 2()A T xT-=∑12.在x2 检验中,四格表的校正公式是:A.22()()()()()ad bc nxa b a c b d c d-=++++B.2 2()b c xb c-=+C . 221R C A x n n n ⎛⎫=- ⎪⎝⎭∑ D. ()220.5b c x b c --=+ E. 22()A T x T -=∑ 13.作四格表卡方检验,当N>40,且__________时,应该使用校正公式A T<5B T>5C T<1D T>5E 1<T<514.四格表资料的卡方检验时无需校正,应满足的条件是( )。

卡方检验四格表例题

卡方检验四格表例题

卡方检验四格表例题卡方检验是用于比较两个或多个样本之间是否存在显著差异的统计方法。

在四格表中,卡方检验可用于比较两个样本的性别、年龄、地区等因素之间的关系是否存在显著差异。

下面是一个例子: 假设我们要比较甲乙两个社区的死亡率是否存在显著差异。

我们随机从甲乙两个社区中各抽取了 100 名居民进行调查,发现甲社区的死亡率为千分之 5.4,乙社区的死亡率为千分之 8.3。

我们需要使用卡方检验来比较这两个社区的死亡率是否存在显著差异。

首先,我们需要画出一个四格表,列出甲乙两个社区的性别、年龄、地区等信息,如下所示:| 甲社区 | 乙社区 || ------ | ------ || 男 | 女 || 5.4 | 8.3 || 男 | 男 || 5.4 | 5.4 || 女 | 女 || 8.3 | 8.3 |接下来,我们可以计算出两个社区的死亡率之间的差异,可以使用卡方检验来进行假设检验。

卡方检验的基本思想是,根据样本数据计算出期望频数和实际频数之间的差异,然后通过卡方值来表达这种差异的程度。

在四格表中,卡方值可以表示为:卡方值 = (列交叉项的期望频数 - 列交叉项的实际频数) / 列交叉项的期望频数例如,在上面的示例中,甲社区的男性和女性的死亡率期望频数为 5.4 和 8.3,而实际频数为 5.4 和 5.4,因此卡方值 = (5.4 - 5.4) / 5.4 = 0。

最后,我们需要根据卡方值和原假设提出一个统计结论。

在本例中,原假设为两个社区的死亡率不存在显著差异,即 H0: μ1 = μ2,其中μ1 和μ2 分别表示甲社区和乙社区的死亡率。

我们要求出 P 值,P 值是指我们在零假设成立的情况下,观察到的卡方值至少大于该值的概率。

在本例中,卡方值为 0,P 值 = 0.999,这意味着我们几乎完全可以拒绝零假设,认为甲乙两个社区的死亡率存在显著差异。

需要注意的是,卡方检验只是一种统计方法,不能保证结论绝对正确。

习题卡方检验图文稿

习题卡方检验图文稿

习题卡方检验集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)计数资料统计分析————习题1.220.05,n x x ≥ 则( )A.P ≥0.05B.P ≤0.05C.P <0.05D.P =0.05E.P >0.052.2x 检验中,自由度v 的计算为( )A.行×列(R ×C )B.样本含量nC.n-1D.(R -1)(C -1)E.n2.四格表卡方检验中,2x <20.05(1)x ,可认为?A.两样本率不同B.两样本率相同C.两总体率不同D.两总体率相同E.样本率与总体率不同3.分析计数资料时,最常用的显着性检验方法是( )A.t 检验法B.正态检验法C.秩和检验法D.2x 检验法E.方差分析4.在卡方界值(2x )表中,当自由度一定时,2x 值愈大,P 值( )A.不变B.愈大C.愈小D.与2x 值相等E.与2x 值无关5.从甲乙两篇论文中,查到同类的两个率比较的四格表资料以及2x 检验结果,甲论文2x >20.01(1)x ,乙论文2x >20.05(1)x 。

若甲乙两论文的样本量相同,则可认为( )A.两论文结果有矛盾B.两论文结果基本一致C.甲论文结果更可信D.甲论文结果不可信E.甲论文说明两总体的差别大6.计算R ×C 表的专用公式是( )A. 22()()()()()ad bc n x a b a c b d c d -=++++B. B.2 2()b c xb c-=+C.221R CAx nn n⎛⎫=-⎪⎝⎭∑D.()2 20.5b cxb c--=+E.2 2()A T xT-=∑7.关于行×列表2x检验,正确的应用必须是()A.不宜有格子中的实际数小于5 B.不宜有格子中的理论数小于5 C.不宜有格子中的理论数小于5 或小于1D.不宜有1/5 以上的格子中的理论数小于5 或有一个格子中的理论数小于lE.不宜有1/5 以上的格子中的实际教小于5 或有一个格子中的实际数小于18.R×C 表的2x检验中,P<0.05 说明()A.被比较的n 个样本率之间的差异有显着性B.样本率间差别没有显着性C.任何两个率之间差别均有显着性D.至少某两个样本率是差别有显着性E.只有两个样本率间差别有显着性9.四个样本率作比较,220.01,(3)χχ>,可认为()A.各总体率不等或不全相等 B.各总体率均不相等 C.各样本率均不相等D.各样本率不等或不全相等E.各总体率相等10.配对四格表资料需用校正公式的条件()A.1<T<5 和n>40B.b+c<40C.T<1 或n<40D.T>1 n>40E.a+c<4011.配对资料2x值专用公式是()A.22()()()()()ad bc nxa b a c b d c d-=++++B.2 2()b c xb c-=+C.221R CAx nn n⎛⎫=-⎪⎝⎭∑D.()2 20.5b cxb c--=+E.2 2()A T xT-=∑12.在x2 检验中,四格表的校正公式是:A.22()()()()()ad bc nxa b a c b d c d-=++++B.2 2()b c xb c-=+C.221R CAx nn n⎛⎫=-⎪⎝⎭∑D.()2 20.5b cxb c--=+E.2 2()A T xT-=∑13.作四格表卡方检验,当N>40,且__________时,应该使用校正公式A T<5B T>5C T<1D T>5E 1<T<514.四格表资料的卡方检验时无需校正,应满足的条件是( )。

卡方检验

卡方检验

作业2 卡方测验(一)1.资料:P144习题7.4。

2.数据说明:大麦杂交F2代芒性状表型有钩芒、长芒、短芒三种,测验三种性状是否符合9:3:4比例。

3.结果。

FREQ 过程检验gouxing 频数百分比百分比---------------------------------------钩芒 348 56.13 56.25长芒 115 18.55 18.75短芒 157 25.32 25.00指定比例的卡方检验-------------------------卡方 0.0409自由度 2渐近的 Pr >卡方 0.9798精确的 Pr >= 卡方 0.9797样本大小 = 6204.分析。

H0:三种性状符合9:3:4;H A:不符合。

显著水平:α=0.05 υ=2χ20.05,2=5.99>χ2.因此接受无效假设,无显著差异。

5.程序代码。

optionps=32767ls=255nocenter;data xiti7_4;x 'F:';x 'cd "F:\"';infile 'xiti7_4.csv' dsd;inputgouxing$ zhushu;run;procfreq data=xiti7_4 order=data;weightzhushu;tablesgouxing/nocumtestp=(56.2518.7525);/*ratio of 9:3:4*/exactpchi;run;(二)1.资料:P144习题7.6。

2.数据说明:某杂交组F2得到四种表型,B_C_,B_cc,bbC_,bbcc。

判断四种表型实际观察次数是否符合9:3:3:1的比例,判断是连锁遗传还是独立遗传。

3.结果。

FREQ 过程检验biaoxing 频数百分比百分比----------------------------------------B-C- 132 58.41 56.25B-cc 42 18.58 18.75bbC- 38 16.81 18.75bbcc 14 6.19 6.25指定比例的卡方检验-------------------------卡方 0.6431自由度 3渐近的 Pr >卡方 0.8865精确的 Pr >= 卡方 0.8915样本大小 = 2264.分析。

5习题-卡方检验

5习题-卡方检验

计数资料统计分析————习题1.220.05,n x x ≥ 则( )A.P ≥0.05B.P ≤0.05C.P <0.05D.P =0.05E.P >0.052.2x 检验中,自由度v 的计算为( )A.行×列(R ×C )B.样本含量nC.n-1D.(R -1)(C -1)E.n2.四格表卡方检验中,2x <20.05(1)x ,可认为A.两样本率不同B.两样本率相同C.两总体率不同D.两总体率相同E.样本率与总体率不同3.分析计数资料时,最常用的显著性检验方法是( )A.t 检验法B.正态检验法C.秩和检验法D.2x 检验法E.方差分析4.在卡方界值(2x )表中,当自由度一定时,2x 值愈大,P 值( )A.不变B.愈大C.愈小D.与2x 值相等E.与2x 值无关5.从甲乙两篇论文中,查到同类的两个率比较的四格表资料以及2x 检验结果,甲论文2x >20.01(1)x ,乙论文2x >20.05(1)x 。

若甲乙两论文的样本量相同,则可认为( )A.两论文结果有矛盾B.两论文结果基本一致C.甲论文结果更可信D.甲论文结果不可信E.甲论文说明两总体的差别大6.计算R ×C 表的专用公式是( )A. 22()()()()()ad bc n x a b a c b d c d -=++++ B. B. 22()b c x b c -=+ C . 221R C A x n n n ⎛⎫=- ⎪⎝⎭∑ D. ()220.5b c x b c --=+E. 22()A T x T -=∑7.关于行×列表2x检验,正确的应用必须是()A.不宜有格子中的实际数小于5 B.不宜有格子中的理论数小于5C.不宜有格子中的理论数小于5 或小于1D.不宜有1/5 以上的格子中的理论数小于5 或有一个格子中的理论数小于l E.不宜有1/5 以上的格子中的实际教小于5 或有一个格子中的实际数小于18.R×C 表的2x检验中,P<0.05 说明()A.被比较的n 个样本率之间的差异有显著性B.样本率间差别没有显著性C.任何两个率之间差别均有显著性D.至少某两个样本率是差别有显著性E.只有两个样本率间差别有显著性9.四个样本率作比较,220.01,(3)χχ>,可认为()A.各总体率不等或不全相等 B.各总体率均不相等 C.各样本率均不相等D.各样本率不等或不全相等E.各总体率相等10.配对四格表资料需用校正公式的条件()A.1<T<5 和n>40B.b+c<40C.T<1 或n<40D.T>1 n>40E.a+c<4011.配对资料2x值专用公式是()A.22()()()()()ad bc nxa b a c b d c d-=++++B.2 2()b c xb c-=+C.221R CAx nn n⎛⎫=-⎪⎝⎭∑D.()2 20.5b cxb c--=+E.2 2()A T xT-=∑12.在x2 检验中,四格表的校正公式是:A.22()()()()()ad bc nxa b a c b d c d-=++++B.2 2()b c xb c-=+C.221R CAx nn n⎛⎫=-⎪⎝⎭∑D.()220.5b cxb c--=+E.22()A TxT-=∑13.作四格表卡方检验,当N>40,且__________时,应该使用校正公式A T<5B T>5C T<1D T>5E 1<T<514.四格表资料的卡方检验时无需校正,应满足的条件是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
检验
练习题
一、最佳选择题
1.四格表的周边合计不变时,如果实际频数有变化,则理论频数()。

A.增大 B.减小 C.不变
D.不确定 E.随a格子实际频数增减而增减
2.有97份血液标本,将每份标本一分为二,分别用血凝试验法和ELISA法对轮状病毒进行诊断,诊断符合情况见下表,欲比较何种诊断方法的诊断符合率较高,用()统计方法
两种诊断方法的诊断结果
血凝试验法ELISA法
合计符合不符合
符合74882
不符合14115
合计88997
A.连续性校正2χ检验 B.非连续性校正2χ检

C.确切概率法 D.配对2χ检验
(McNemar检验)
E.拟合优度2χ检验
3.做5个样本率的2检验,每组样本量均为50,其自由度为
()。

A 249
B 246
C 1
D 4
E 9
4.对四格表资料做2χ检验时,如果将四格表的行与列对调,则对
调前后的()。

A.校正2χ值不等 B.非校正2χ值不等
C.确切概率检验的P值不等 D.非校正2χ值相等
E.非校正2χ值可能相等,也可能不等
二、问答题
1.简述2χ检验的基本思想。

2.四格表2χ检验有哪两种类型各自在运用上有何注意事项
3.什么情况下使用Fisher确切概率检验两个率的差别
4.在回顾性研究和前瞻性研究的四格表中,各自如何定义优势比
三、计算题
1.前列腺癌患者121名中,82名接受电切术治疗,术后有合并症者11人;39名接受开放手术治疗,术后有合并症者1人。

试分析两种手术的合并症发生率有无差异
2.苏格兰西南部两个地区献血人员的血型记录见下表,问两地的血型分布是否相同
两地献血人员的血型分布
地区血型
合计A B O AB
Eskdal
336565100
e
Annand
5414525125
ale
合计872010810225
3.某医院以400例自愿接受妇科门诊手术的未产妇为观察对象,
将其分为4组,每组
100例,分别给予不同的镇痛处理,观察的镇痛效果见下表,问4种镇痛方法的效果有无差异
4种镇痛方法的效果比较
镇痛方法例数有效率(%)
颈麻10041
注药10094
置栓10089
对照10027
练习题答案
一、最佳选择题解答
1. C
2. D
3. D
4. D
二、问答题解答
1.
答:在2χ检验的理论公式()2
2
A T T
χ-=∑中,A 为实际频数,T
为理论频数。

根据检验假设H 0:π1=π2,若H 0 成立,则四个格子的实际频数A 与理论频数T 相差不应很大,即2χ统计量不应很大。

若2χ值很大,即相对应的P 值很小,比如P ≤a ,则反过来推断A 与T 相差太大,超出了抽样误差允许的范围,从而怀疑H 0的正确性,继而拒绝H 0,接受其对立假设H 1,即π1≠π2。

2.
答:四格表2χ检验分为两独立样本率检验和两相关样本率检
验。

两独立样本率检验应当首先区分其属于非连续性校正2χ检验,或是连续性校正2χ检验。

非连续性校正2χ检验的理论计算公式为:
()2
2A T T
χ-=∑
,专用计算公式为:()()()()()
2
2ad bc n
a b a c b d c d χ-=
++++。

连续
性校正2χ检验的理论计算公式为:()2
20.5A T T
χ--=∑,专用计算公
式为()
2
2
2ad bc n n
a b a c b d c d χ--=
++++;两相关样本率检验的理论计算公式
为:()2
2
b c b c
χ-=+,当样本数据b +c <40时,需做连续性校正,其公
式为()2
2
1c b c b c
χ--=
+。

3.
答:当样本量n 和理论频数T 太小时,如n <40而且T <5,
或T <1,或n <20,应该用确切概率检验,即Fisher 检验。

4.
答:暴露组的优势与非暴露组的优势之比就称为优势比,也称
为比数比,简记为OR 。

前瞻性研究暴露组相对于非暴露组关于非暴露组关于“发病”的优势比,即:()()
Odd a c ad
OR Odd b d bc
=
=
=
暴露非暴露;如果资料来自回顾性病例对照研究,则根据“暴露”相对于“非暴露”的优势计算病例组相对于对照组关于“暴露因素”的优势比,即:
()()
Odd a b ad
OR Odd c d bc
=
=
=
病例对照。

三、计算题解答 1.解:
H 0:π1=π2,两种治疗方法总体合并症发生率无显著差异 H 1:π1≠π2;两种治疗方法总体合并症发生率有明显差异
05.0=α
()()()2
2
7111138121
3.483
823912109
21211
χν⨯-⨯⨯=
=⨯⨯⨯=--= 查附表8,因为22
0.052,1
3.84 3.483χχ=>=,故05.0>P ,按05.0=α水准,不拒绝H 0 ,即两种治疗方法合并症发生率无显著差异。

2.解:
0H :两地的总体血型分布相同
1H :两地的总体血型分布不同
05.0=α
()()2222
2
2222
336565225100871002010010810010
54145251 5.71012587125201251081251041213
χν⎛=+++
⨯⨯⨯⨯⎝⎫++++-=⎪⨯⨯⨯⨯⎭
=--= 查附表8,因为22
0.052,37.81 5.710χχ=>=,故05.0>P ,按05.0=α水
准,不拒绝0H ,即两地的总体血型分布无显著差异。

3.解:
H 0:π1=π2=π3=π4 ,四种镇痛方法总体有效率相同 H 1:四种镇痛方法总体有效率不同或不全相同
05.0=α
()()2222
2
2222
41948927400100251100251100251100251
59611731146.17510014910014910014910014941213
χν⎛=+++
⨯⨯⨯⨯⎝⎫++++-=⎪⨯⨯⨯⨯⎭
=--= 查附表8,因为22
0.005/2,312.84146.175χχ=<=,
故005.0<P ,按05.0=α水准,拒绝H 0 ,接受H 1,即四种镇痛方法总体有效率有显著差异,有效率由高到低依次为注药、置栓、颈麻和对照。

相关文档
最新文档