历年自主招生试题分类汇编—集合与逻辑

合集下载

浙江十年(2014-2023)单独考试招生文化考试数学真题分类汇编 集合与常用逻辑用语、等式与不等式

浙江十年(2014-2023)单独考试招生文化考试数学真题分类汇编 集合与常用逻辑用语、等式与不等式

专题01集合与常用逻辑用语、等式与不等式考点01集合1.(2023年浙江)已知集合S={1,2,4},T={2,3},则∩=()u 1,2,3,4u 2u 1,3,4u2.(2022年浙江)已知全集03{}689U =,,,,,集合}9{3A =,,则U A =ð()A .{068},,B .{3,9}C .0368{}9,,,,D .∅3.(2021年浙江)集合{2,1,0,1,2}A =--,集合{2,4}B =-,则A B = ()A.{2,1,4}-- B.{2}- C.{0,1,2,4}D.{2,1,0,1,2,4}--4.(2020年浙江)集合{1,2,7,8}A =,集合{2,3,5,8}B =,则A B = ()A .{2}B .{3,5}C .{2,8}D .{1,2,3,5,7,8}5.(2019年浙江)已知集合{}1,0,1A =-,集合{}3,1,1,3B =--,则A B = ()A.{}1,1- B.{}1- C.{}1 D.∅6.(2018年浙江)已知集合A={1,2,4},B={1,3,5,7},则A ∪B=()A.{1}B.{1,3,5,7}C.{1,2,3,4,5,7}D.{1,2,4}7.(2017年浙江)已知集合{}1,0,1A =-,集合{}3,B x x x =<∈N ,则A B ⋂=()A.{}1,0,1,2- B.{}1,1,2,3- C.{}0,1,2 D.{}0,18.(2016年浙江)已知集合{1,2,3,4,5,6}A =,}7,5,3,2{=B ,则A B = A .}3,2{B .{6,7}C .}5,3,2{D .{1,2,3,4,5,6,7}9.(2015年浙江)己知集合{}230M x x x =++=,则下列结论正确的是()A .集合M 中共有2个元素B .集合M 中共有2个相同元素C .集合M 中共有1个元素D .集合M 为空集10.(2014年浙江)已知集合{},,,M a b c d =,则含有元素a 的所有真子集个数有()A .5个B .6个C .7个D .8个考点02常用逻辑用语1.(2023年浙江)“=1”是“=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(2022年浙江)“21x >”是“0x >”的()A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件3.(2021年浙江)已知a ,b 为实数,则“330a b -=”是“a b =”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(2020年浙江)“45α=︒”是“sin 2α=”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.(2019年浙江)“2120191k -=”是“1k =”的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件6.(2018年浙江)命题p :α=0是命题q :sin α=0的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(2017年浙江)命题p :1a =,命题q :()210a -=.p 是q 的()A.充分且必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件8.(2016年浙江)命题甲“sin 1α=”是命题乙“cos 0α=”的A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件9.(2015年浙江)命题甲“a b <”是命题乙“0a b -<”成立的()A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件10(2014年浙江)“0a b +=”是“0a b ⋅=”的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件考点03等式与不等式1.(2023年浙江)已知实数a>b>c,则下列结论正确的是()A.a+b<2cB.a+b>2cC.a+c>2bD.a +c<2b 2.(2023年浙江)当x>-1时、函数f(x)=2+2r10r1的最大值的最小值是()A.2B.3C.6D.103.(2022年浙江)下列不等式(组)中,其解集在数轴上的表示如图的是()A .|1|3x -≤B .4020x x -<⎧⎨+≥⎩C .2280x x --<D .1311x x -≤⎧⎨+>-⎩4.(2022年浙江)已知00x y >>,,且221102x y +=,则xy 的最大值为__________.5.(2021年浙江)不等式3.5 1.5x -£的解集为()A.[2,5]B.(2,5)C.(,2][5,)-¥+¥ D.(,2)(5,)-¥+¥ 6.(2021年浙江)已知实数0m n <<,则下列不等式成立的是()A.220m n << B.22m n < C.n m m n-<- D.n m -<-7.(2021年浙江)已知3 4 (0,0)x y x y +=>>,则xy 的最大值为.8.(2020年浙江)已知a ,b ,c 是实数,下列命题正确的是()A .若a b >,则22a b>B .若22a b >,则a b >C .若22ac bc >,则a b>D .若a b >,则22ac bc>9.(2020年浙江)若正数a ,b 满足20ab =,则2a b +的最小值为_________.10.(2019年浙江)不等式240x x -≤的解集为()A.[]0,4 B.()0,4 C.[)(]4,00,4- D.(][),04,-∞+∞ 11.(2019年浙江)a 、b 、c 为实数,则下列各选项中正确的是()A.0a b a c b c-<⇔-<- B.0a b a b->⇔>-C.022a b a b ->⇔->- D.0bca b c a a>>>⇔>12.(2019年浙江)正数x 、y 满足lg lg 2x y +=,则x y +的最小值等于________.13.(2018年浙江)不等式|1-3x |≥2的解集是()A.−∞,B.−∞,⋃1,+∞C.−13,1D.1,+∞14.(2017年浙江)若x ∈R ,下列不等式一定成立的是()A.52x x < B.52x x->- C.2x > D.()2211x x x +>++15.(2017年浙江)如图,在数轴上表示的区间是下列哪个不等式的解集()A.260x x --≤ B.260x x --≥ C.1522x -≥ D.302x x -≥+16.(2017年浙江)若1x <-,则函数()121f x x x =--+的最小值为______.17.(2016年浙江)不等式213x -<的解集是A .(1,)-+∞B .(2,)+∞C .(1,2)-D .(2,4)-18.(2016年浙江)若1x >,则91x x +-的最小值为.19.(2015年浙江)已知()()2220x x y -++=,则3xy 的最小值为()A .2-B .2C .6-D .-20.(2015年浙江)不等式277x ->的解集为__________.(用区间表示)21.(2014年浙江)下列不等式(组)解集为{}|0x x <的是()A .3323x x -<-B .20231x x -<⎧⎨->⎩C .220x x ->D 12x -<x<<,则当且仅当x=时,x(4-x)的最大值为22.(2014年浙江)若04专题01集合与常用逻辑用语、等式与不等式考点01集合1.(2023年浙江)已知集合S={1,2,4},T={2,3},则∩=()u 1,2,3,4u 2u 1,3,4u答案B2.(2022年浙江)已知全集03{}689U =,,,,,集合}9{3A =,,则U A =ð()A .{068},,B .{3,9}C .0368{}9,,,,D .∅答案A3.(2021年浙江)集合{2,1,0,1,2}A =--,集合{2,4}B =-,则A B = ()A.{2,1,4}--B.{2}- C.{0,1,2,4}D.{2,1,0,1,2,4}--答案D4.(2020年浙江)集合{1,2,7,8}A =,集合{2,3,5,8}B =,则A B = ()答案C A .{2}B .{3,5}C .{2,8}D .{1,2,3,5,7,8}5.(2019年浙江)已知集合{}1,0,1A =-,集合{}3,1,1,3B =--,则A B = ()A.{}1,1-B.{}1-C.{}1 D.∅答案A6.(2018年浙江)已知集合A={1,2,4},B={1,3,5,7},则A ∪B=()A.{1}B.{1,3,5,7}C.{1,2,3,4,5,7}D.{1,2,4}答案C7.(2017年浙江)已知集合{}1,0,1A =-,集合{}3,B x x x =<∈N ,则A B ⋂=()A.{}1,0,1,2-B.{}1,1,2,3- C.{}0,1,2 D.{}0,1答案D8.(2016年浙江)已知集合{1,2,3,4,5,6}A =,}7,5,3,2{=B ,则A B = A .}3,2{B .{6,7}C .}5,3,2{D .{1,2,3,4,5,6,7}【答案】D【解析】集合A ,B 中出现的所有元素1,2,3,4,5,6,7;所以答案选D 。

高中数学--《集合与逻辑》测试题(含答案)

高中数学--《集合与逻辑》测试题(含答案)

高中数学--《集合与逻辑》测试题(含答案)1.已知集合A={0,1,2},集合B={x|x﹣1≥0},则A∩B的真子集个数为()A.1 B.2 C.3 D.4【答案解析】C解:因为集合A={0,1,2},集合B={x|x﹣1≥0}={x|x≥1},所以A∩B={1,2},故A∩B的真子集个数为22﹣1=3.故选:C.2.设集合A={y|y=3x,x∈R},B={x|y=,x∈R},则A∩B=.【答案解析】解:因为集合A={y|y=3x,x∈R}={y|y>0},B={x|y=,x∈R}={x|},所以A∩B=.故答案为:.3.设z是复数,则“z2=1”是“|z|=1”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.非充分非必要条件【答案解析】A解:设z=x+yi(x,y∈R),①若z2=1时,则z2=(x+yi)2=x2﹣y2+2xyi=1,∴,∴,∴|z|=1,∴充分性成立,②若z=+i,满足|z|=1,但z2==﹣+i,∴必要性不成立,∴z2=1是|z|=1的充分不必要条件,故选:A.4.已知集合A={m|m=x2﹣y2,x、y∈Z),将A中的正整数从小到大排列为:a1,a2,a3,….若an=2021,则正整数n=.【答案解析】1516解:m=x2﹣y2=(x+y)(x﹣y),当x﹣y=1时,m=2y﹣1表示奇数;当x﹣y=2时,m=4y+4表示4的倍数,所以A中的整数从小到大排列为:1,3,4,5,7,8,9,11,12,13……即数列{an}满足a3k=4k(k∈N+),又2021=505×4+1,所以n=505×3+1=1516.故答案为:1516.5.已知函数f(x)=2sin(x+φ),则“”是“f(x)为偶函数”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件【答案解析】A解:①当φ=时,f(x)=2sin(x+)=2cosx,∵f(﹣x)=2cos(﹣x)=2cosx=f(x),∴f(x)为偶函数,②当f(x)为偶函数时,φ=+kπ,k∈Z,综上所述,φ=是f(x)为偶函数的充分不必要条件.故选:A.6.“0<a+b≤4”是“ab≤4”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案解析】A解:当a+b>0,ab<0时,显然ab≤4成立,反之不成立,当a>0,b>0时,则4≥a+b≥2,故≤2,ab≤4,充分性成立,令a=4,b=,由ab≤4推不出a+b≤4,故“0<a+b≤4”是“ab≤4”的充分不必要条件,故选:A.7.已知集合A={y|y<1},B={x|3x<1},则()A.A∪B=R B.A∩B={x|x<0} C.A∪B={x|x>1} D.A∩B=∅【答案解析】B解:∵A={y|y<1}={x|x<1},B={x|3x<1}={x|x<0},∴A∪B={x|x<1}∪{x|x<0}={x|x<1},A∩B={x|x<1}∩{x|x<0}={x|x<0}.故选:B.8.给定正整数n(n≥3),集合Un={1,2,…,n}.若存在集合A,B,C,同时满足下列条件:①Un=A∪B∪C,且A∩B=B∩C=A∩C=∅;②集合A中的元素都为奇数,集合B中的元素都为偶数,所有能被3整除的数都在集合C 中(集合C中还可以包含其它数);③集合A,B,C中各元素之和分别记为SA,SB,SC,有SA=SB=SC;则称集合Un为可分集合.(Ⅰ)已知U8为可分集合,写出相应的一组满足条件的集合A,B,C;(Ⅱ)证明:若n是3的倍数,则Un不是可分集合;(Ⅲ)若Un为可分集合且n为奇数,求n的最小值.【答案解析】【分析】(I)取A={5,7},B={4,8},C={1,2,3,6},即可满足条件.(II)假设存在n是3的倍数且Un是可分集合.设n=3k,则依照题意{3,6,…,3k}⊆C,可得SC≥3+6+…+3k,而这n个数的和为,即可得出矛盾.(Ⅲ)n=35.由于所有元素和为,又SB中元素是偶数,所以=3SB=6m (m为正整数),可得以n(n+1)=12m,由(Ⅱ)知道,n不是3的倍数,所以一定有n+1是3的倍数.当n为奇数时,n+1为偶数,而n(1+n)=12m,一定有n+1既是3的倍数,又是4的倍数,所以n+1=12k,所以n=12k﹣1,k∈N*.可得:k(12k﹣1)=m.定义集合D={1,5,7,11,…},即集合D由集合Un中所有不是3的倍数的奇数组成,定义集合E={2,4,8,10,…},即集合E由集合Un中所有不是3的倍数的偶数组成,可得k≥3.即可得出.解:(I)依照题意,可以取A={5,7},B={4,8},C={1,2,3,6}.(II)假设存在n是3的倍数且Un是可分集合.设n=3k,则依照题意{3,6,…,3k}⊆C,故SC≥3+6+…+3k=,而这n个数的和为,故SC==,矛盾,所以n是3的倍数时,Un一定不是可分集合.(Ⅲ)n=35.因为所有元素和为,又SB中元素是偶数,所以=3SB=6m(m为正整数),所以n(n+1)=12m,因为n,n+1为连续整数,故这两个数一个为奇数,另一个为偶数.由(Ⅱ)知道,n不是3的倍数,所以一定有n+1是3的倍数.当n为奇数时,n+1为偶数,而n(1+n)=12m,所以一定有n+1既是3的倍数,又是4的倍数,所以n+1=12k,所以n=12k﹣1,k∈N*.…定义集合D={1,5,7,11,…},即集合D由集合Un中所有不是3的倍数的奇数组成,定义集合E={2,4,8,10,…},即集合E由集合Un中所有不是3的倍数的偶数组成,根据集合A,B,C的性质知道,集合A⊆D,B⊆E,此时集合D,E中的元素之和都是24k2,而,此时Un中所有3的倍数的和为,24k2﹣(24k2﹣2k)=2k,(24k2﹣2k)﹣(24k2﹣6k)=4k显然必须从集合D,E中各取出一些元素,这些元素的和都是2k,所以从集合D={1,5,7,11,…}中必须取偶数个元素放到集合C中,所以2k≥6,所以k≥3,此时n≥35而令集合A={7,11,13,17,19,23,25,29,31,35},集合B={8,10,14,16,20,22,26,28,32,34},集合C={3,6,9,12,15,18,21,24,27,30,33,1,5,2,4},检验可知,此时U35是可分集合,所以n的最小值为35.…9.已知数列{an}的通项公式为,则“a2>a1”是“数列{an}单调递增”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【答案解析】C【分析】数列{an}单调递增⇔an+1>an,可得a的范围.由“a2>a1”可得:2+>1+a,可得a的范围.即可判断出关系.解:数列{an}单调递增⇔an+1>an,可得:n+1+>n+,化为:a<n2+n.∴a<2.由“a2>a1”可得:2+>1+a,可得:a<2.∴“a2>a1”是“数列{an}单调递增”的充要条件,故选:C.10.已知集合A={a1,a2,…,an,n∈N*且n>2},令TA={x|x=ai+aj},ai∈A,aj∈A,1≤i≤j≤n,card(TA)表示集合TA中元素的个数.①若A={2,4,8,16},则card(TA)=;②若ai+1﹣ai=c(1≤i≤n﹣1,c为非零常数),则card(TA)=.【答案解析】6;2n﹣3解:①若A={2,4,8,16},则TA={6,10,18,12,20,24},∴card(TA)=6;②若ai+1﹣ai=c(1≤i≤n﹣1,c为非零常数),说明数列a1,a2,…,an,构成等差数列,取特殊的等差数列进行计算,取A={1,2,3,…,n},则TA={3,4,5,…,2n﹣1},由于(2n﹣1)﹣3+1=2n﹣3,∴TA中共2n﹣3个元素,利用类比推理可得若ai+1﹣ai=c(1≤i≤n﹣1,c为非零常数),则card(TA)=2n﹣3.故答案为:6;2n﹣3.。

专题01 集合与常用逻辑用语专项高考真题总汇(带答案与解析)

专题01 集合与常用逻辑用语专项高考真题总汇(带答案与解析)

专题01集合与常用逻辑用语1.【2021·浙江高考真题】设集合{}1A x x =≥,{}12B x x =-<<,则A B = ()A .{}1x x >-B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<【答案】D【解析】由交集的定义结合题意可得:{}|12A B x x =≤< .故选:D.2.【2021·全国高考真题】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B【解析】由题设有{}2,3A B ⋂=,故选:B .3.【2021·全国高考真题(理)】设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ()A .103x x ⎧⎫<≤⎨⎩⎭B .143xx ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【答案】B【解析】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.4.【2021·全国高考真题(理)】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A .∅B .SC .TD .Z【答案】C【解析】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.5.【2021·浙江高考真题】已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【答案】B【解析】若a c b c ⋅=⋅ ,则()0a b c -⋅=r r r ,推不出a b = ;若a b =,则a c b c ⋅=⋅ 必成立,故“a c b c ⋅=⋅ ”是“a b =”的必要不充分条件故选:B.6.【2021·全国高考真题(理)】已知命题:,sin 1p x x ∃∈<R ﹔命题:q x ∀∈R ﹐||e 1x ≥,则下列命题中为真命题的是()A .p q ∧B .p q⌝∧C .p q∧⌝D .()p q ⌝∨【答案】A【解析】由于1sin 1x -≤≤,所以命题p 为真命题;由于0x ≥,所以||e 1x ≥,所以命题q 为真命题;所以p q ∧为真命题,p q ⌝∧、p q ∧⌝、()p q ⌝∨为假命题.故选:A .7.【2021·全国高考真题(理)】等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B【解析】由题,当数列为2,4,8,--- 时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件.故选:B .8.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B 【解析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.9.【2020年高考全国Ⅱ卷理数】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B = ðA .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.10.【2020年高考全国Ⅲ卷理数】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为A .2B .3C .4D .6【答案】C 【解析】【分析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y ∈N ,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选C .【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.11.【2020年高考天津】设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =∩ðA .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---【答案】C 【解析】【分析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果.【详解】由题意结合补集的定义可知{}2,1,1U B =--ð,则(){}U 1,1A B =- ð.故选C .【点睛】本题主要考查补集运算,交集运算,属于基础题.12.【2020年高考北京】已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B = A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2}【答案】D 【解析】【分析】根据交集定义直接得结果.【详解】{1,0,1,2}(0,3){1,2}A B =-=I I ,故选D .【点睛】本题考查集合交集概念,考查基本分析求解能力,属基础题.13.【2020年高考天津】设a ∈R ,则“1a >”是“2a a >”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】【分析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可.【详解】求解二次不等式2a a >可得:1a >或0a <,据此可知:1a >是2a a >的充分不必要条件.故选A .【点睛】本题主要考查二次不等式的解法,充分性和必要性的判定,属于基础题.14.【2020年新高考全国Ⅰ卷】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4}【答案】C 【解析】【分析】根据集合并集概念求解.【详解】[1,3](2,4)[1,4)A B ==U U .故选C【点睛】本题考查集合并集,考查基本分析求解能力,属基础题.15.【2020年高考浙江】已知集合P ={|14}x x <<,Q={|23}x x <<,则P I Q =A .{|12}x x <≤B .{|23}x x <<C .{|34}x x ≤<D .{|14}x x <<【答案】B 【解析】【分析】根据集合交集定义求解.【详解】(1,4)(2,3)(2,3)P Q ==I I .故选B.【点睛】本题考查交集概念,考查基本分析求解能力,属基础题.16.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】【分析】将两个条件相互推导,根据能否推导的结果判断充分必要条件.【详解】依题意,,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选B.【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.17.【2020年高考北京】已知,αβ∈R ,则“存在k ∈Z 使得π(1)k k αβ=+-”是“sin sin αβ=”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断.【详解】(1)当存在k ∈Z 使得π(1)k k αβ=+-时,若k 为偶数,则()sin sin πsin k αββ=+=;若k 为奇数,则()()()sin sin πsin 1ππsin πsin k k αββββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2πm αβ=+或π2πm αβ+=+,m ∈Z ,即()()π12kk k m αβ=+-=或()()π121kk k m αβ=+-=+,亦即存在k ∈Z 使得π(1)k k αβ=+-.所以,“存在k ∈Z 使得π(1)k k αβ=+-”是“sin sin αβ=”的充要条件.故选C .【点睛】本题主要考查充分条件,必要条件的定义的应用,诱导公式的应用,涉及分类讨论思想的应用,属于基础题.18.【2019年高考全国Ⅰ卷理数】已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<,则{|22}M N x x =-<< .故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分.19.【2019年高考全国Ⅱ卷理数】设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B =A .(–∞,1)B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞ .故选A .【名师点睛】本题考点为集合的运算,为基础题目.20.【2019年高考全国Ⅲ卷理数】已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B = A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =- .故选A .【名师点睛】本题考查了集合交集的求法,是基础题.21.【2019年高考天津理数】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤<R ,则()A C B = A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4【答案】D【解析】因为{1,2}A C = ,所以(){1,2,3,4}A C B = .故选D .【名师点睛】集合的运算问题,一般要先研究集合中元素的构成,能化简的要先化简,同时注意数形结合,即借助数轴、坐标系、韦恩图等进行运算.22.【2019年高考浙江】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则()U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-【答案】A【解析】∵{1,3}U A =-ð,∴(){1}U A B =- ð.故选A.【名师点睛】注意理解补集、交集的运算.23.【2019年高考浙江】若a >0,b >0,则“a +b ≤4”是“ab ≤4”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.故选A.【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取,a b 的特殊值,从假设情况下推出合理结果或矛盾结果.24.【2019年高考天津理数】设x ∈R ,则“250x x -<”是“|1|1x -<”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由250x x -<可得05x <<,由|1|1x -<可得02x <<,易知由05x <<推不出02x <<,由02x <<能推出05x <<,故05x <<是02x <<的必要而不充分条件,即“250x x -<”是“|1|1x -<”的必要而不充分条件.故选B.【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到x 的取值范围.25.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内有两条相交直线都与β平行是αβ∥的充分条件;由面面平行的性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内有两条相交直线都与β平行是αβ∥的必要条件.故α∥β的充要条件是α内有两条相交直线与β平行.故选B .【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.26.【2019年高考北京理数】设点A ,B ,C 不共线,则“AB 与AC的夹角为锐角”是“||||AB AC BC +>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AC -AB |⇔|AB +AC |2>|AC -AB |2AB ⇔·AC >0AB ⇔与AC的夹角为锐角,故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC|”的充分必要条件.故选C.【名师点睛】本题考查充要条件的概念与判断、平面向量的模、夹角与数量积,同时考查了转化与化归的数学思想.27.【2020年高考江苏】已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = _____.【答案】{}0,2【解析】【分析】根据集合的交集即可计算.【详解】∵{}1,0,1,2A =-,{}0,2,3B =,∴{}0,2A B =I .故答案为{}0,2.【点睛】本题考查了交集及其运算,是基础题型.28.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.29.【2019年高考江苏】已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B = ▲.【答案】{1,6}【解析】由题意利用交集的定义求解交集即可.由题意知,{1,6}A B = .【名师点睛】本题主要考查交集的运算,属于基础题.。

华约自主招生试题

华约自主招生试题

华约自主招生试题一、数学部分1. 有一个集合A={1,2,3,4,5},请列举出A中的所有子集。

2. 设集合A={a, b, c},集合B={1, 2, 3},则集合A与集合B的笛卡尔积为什么?3. 已知函数f(x) = 3x + 4,求f(-2)的值。

4. 已知集合A={1, 2, 3},集合B={2, 3, 4},则集合A与集合B的交集为什么?5. 求方程3x^2 - 2x + 1 = 0的解。

6. 在一个等边三角形ABC中,BC=x,求三角形ABC的面积。

7. 已知函数f(x) = x^3 + 2x^2 - 3x,求f'(x)。

二、英语部分1. 根据所给的短文,回答以下问题:The Great Wall is one of the most famous sights in the world. It is more than 20,000 kilometers long and is known as one of the Seven Wonders of the World. The Great Wall was built over 2,000 years ago to protect the Chinese Empire from invasions. It attracts millions of tourists from all over the world every year.a) How long is the Great Wall?b) Why was the Great Wall built?c) What does the Great Wall attract every year?2. 根据所给的对话,填写空缺处的单词:A: Can you help me with my math homework?B: Sure, what's the problem?A: I can't solve this equation. _______ you show me how?B: Of course, let me take a look. ________ the equation for me.A: It's 3x^2 + 4x - 5 = 0.B: Alright, first we need to find the _______ of the equation. Then we can use the quadratic formula.A: How do we find the _______?B: We look at the coefficient of the x^2 term, which is 3 in this case. Now let's plug the values into the quadratic formula...三、逻辑思维部分1. 莉莉、爱丽丝、汤姆和鲍勃是四个朋友。

集合与常用逻辑用语测试题+答案-精选.pdf

集合与常用逻辑用语测试题+答案-精选.pdf

故选 A.
2.设集合
A=
{(
x,
y)|x2+ 4
y2 16
=1}

B=
{(
x,
y)|y=
3x}
,则
A∩ B 的子集的个数是
(
)
A.4
B. 3
C.2
D. 1
解析: 选 A. 集合 A 中的元素是椭圆 x2+ y2= 1 上的点,集合 B 中的元素是函数
4 16
y= 3x 的
图象上的点.由数形结合,可知 A∩ B 中有 2 个元素,因此 A∩ B 的子集的个数为 4.
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个 选项中,只有一项是符 合题目要求的。
1.已知全集 U 和集合 A, B 如图所示,则 ( ?U A)∩ B( )
A . {5,6}
B .{3,5,6}
C.{3}
D. {0,4,5,6,7,8}
解析: 选 A. 由题意知: A= {1,2,3} ,B= {3,5,6} ,?UA={0,4,7,8,5,6} ,∴(?UA)∩ B= {5,6} ,
∴ m=- 3. 答案: - 3 12.设全集 I = {2,3 ,a2+ 2a- 3} , A= {2 , |a+1|} ,?IA= {5} ,M = { x|x= log 2|a|} ,则集合 M 的所有子集是 ________.
解析: ∵ A∪ (?IA)= I , ∴ {2,3 , a2+ 2a-3} = {2,5 ,|a+ 1|} , ∴ |a+ 1|= 3,且 a2+ 2a- 3= 5,
结合数轴可得 6≤ a<7,故选 C
8.下列命题中,真命题是 ( ) A . ? m∈ R ,使函数 f(x)= x2+ mx( x∈ R)是偶函数 B.? m∈ R,使函数 f(x)= x2+mx(x∈ R)是奇函数 C.? m∈ R,函数 f( x)=x2+ mx(x∈ R) 都是偶函数 D. ? m∈ R ,函数 f(x) =x2+ mx(x∈ R)都是奇函数 解析: 选 A. 对于选项 A ,? m∈R ,即当 m= 0 时, f(x)= x2+ mx=x2 是偶函数.故

体育单招专题1集合,简易逻辑

体育单招专题1集合,简易逻辑

考纲要求:2.集合,简易逻辑 考试内容:集合、子集、真子集、补集、交集、并集内容要点:1、集合集合元素的特征:确定性、互异性、无序性.集合的性质:①任何一个集合是它本身的子集,记为A A ⊆;②空集是任何集合的子集,记为A ⊆φ;③空集是任何非空集合的真子集;如果B A ⊆,同时A B ⊆,那么A = B.如果C A C B B A ⊆⊆⊆,那么,.2、①n 个元素的子集有2n 个. ②n 个元素的真子集有2n-1个.③n 个元素的非空真子集有2n -2个.3: ⑴ ①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题.②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题.⑵小范围推出大范围;大范围推不出小范围.例:若255 x x x 或,⇒.1. 集合运算:交、并、补. {|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉ U 交:且并:或补:且C习题汇总:06年(共5分):(1)设集合M={χ||χ|≤2},N= {1,2,3,4,5}则集合N ⋂M =A 、{1,2} (B 、{-2,-1,1,2}(C 、{χ| 0≤χ≤2}(D 、{χ|1≤χ≤2 } 【 】07年(共10分):08年(共5分):09年(共5分):(1)集合I={0,1,2,3,4,5},M={0,2,4},N={1,3,5},则⋂M (C I N )=A 、空集B 、IC 、MD 、N10年(共5分)(1)已知集合M={x |-23<X <23},N={x |x=2n,n ∈Z },则M∩N= (A )φ (B ){0} (C ){-1,1} (D ){-1,0,1}【 】11年(共5分)(1)设集合M = {x|0<x<1},集合N={x| -1<x<1},则【 】(A )M ∩N=M (B )M ∪N=N(C )M ∩N=N (D )M ∩N= M ∩N2012年体育单招数学模拟试题之集合、简易逻辑1.已知集合A ={x|x 2―1>0},B ={x|log 2x <0},则A ∩B 等于 ( )A .ØB .{x|x <-1}C .{x|x >1}D .{x|x <-1或x >1}1.设集合M = {x|0<x<1},集合N={x|-1<x<1},则下列正确的是( )(A )M ∩N=N (B )M ∪N=M (C )M ∩N=M (D )M ∪N= M ∩N2.“a>0,b>0”是“ab>0”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∁R B )= ( )A .{x |x >1}B .{x |x ≥1}C .{x |1<x ≤2}D .{x |1≤x ≤2}1. 设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a 的值为________. 1“p 或q ”为真命题是“p 且q ”为真命题的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件10、已知命题“存在x ∈R ,使2x 2+(a -1)x +12≤0”是假命题,则实数a 的取值范围是____。

(完整)集合与逻辑关系综合测试题(含答案),推荐文档

(完整)集合与逻辑关系综合测试题(含答案),推荐文档

1第一单元 <<集合与简易逻辑>>一.选择题:(60分)1.如果C 、R 和I 分别表示复数集、实数集和纯虚数集,其中C是全集。

则有( ) A. C=R ∪I B. R ∩I={0} C. R ∩I=φ D. CcR=C ∩I 2.集合M={}220,x x x a x R +-=∈,且M ∅Ø.则实数a 的取值范围是( )A. a ≤-1B. a ≤1C. a ≥-1D.a ≥13.满足{a ,b }UM={a ,b ,c ,d }的所有集合M 的个数是 A. 7 B. 6 C. 5 D. 44.a ∈R,a <3成立的一个必要不充分条件是( ) A. a<3 B. a <2 C. 2a <9 D. 0<a<2 5.若命题P :x ∈A I B ,则τ P 是( ) A. x ∉A U B B. x ∉A 或x ∉BC. x ∉A 且x ∉BD. x ∈A U B6.已知集合M={2a ,a }.P={-a,2a-1};若card(M U P)=3,则M I P= ( )A.{-1}B.{1}C.{0}D.{3}7.设集合P={3,4,5}.Q={4,5,6,7}.定P*Q=(){},,a b a p b Q ∈∈,则P*Q 中元素的个数是 ( )A. 3B. 7C. 10D. 12 8.不等式20052006ab +=()()22111a x a x ----<0的解集为全体实数,则实数a 的取值范围是 ( ) A. 35-<a<1 B. 35-<a ≤1 C. 35-≤a ≤1 D.a<-1或a>1 9.用反证法证明:“若m ∈Z 且m 为奇数,则()1122mm --±均为奇数”,其假设正确的是 ( )A. 都是偶数B. 都不是奇数C. 不都是奇数D.都不是偶数 10.命题P:若a.b ∈R ,则a b +>1是a b +>1的充分而不必要条件:命题q:函数y =的定义域是(][),13,-∞-+∞U .则 ( )A.“ p 或q ”为假B. “p 且q ”为真C. p 真q假 D. p 假q 真 11.若集合1A ,2A ,满足1A U 2A =A ,则称(1A ,2A ) 为集合A 的一种分析,并规定:当且仅当1A =2A 时,(1A ,2A )与(2A 1A ,)为集合A 的同一种分析,则集合的A={}123,,a a a 不同分析种数是 ( )A. 27B. 26C. 9D. 812.50名学生参加跳远和铅球两项测验,跳远和铅球两项及格的分别是40人和31人,两项均不及格的有4人,两项测验部分都及格的人数是 ( )A. 35B. 25C. 28D. 15 二.填空题:(20分) 13.设A={1,2},B={x |x ⊆A }若用列举法表示,则集合B 是14.若不等式210x ax -+≤和21ax x +->0均不成立,则a 的取值范围是15.含有三个实数的集合可表示为{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20052006a b +=16.以下命题:①“菱形的两条对角线互相平分”的逆命题;②{}210,x xx R +=∈=∅ 或{0}⊇∅;③对于命题p 且q,若p 假q 真,则p 且q 为假;④有两条相等且有一个角是60o“是”一个三角形为等边三角形的充要条件。

完整版)集合与常用逻辑用语测试题及详解

完整版)集合与常用逻辑用语测试题及详解

完整版)集合与常用逻辑用语测试题及详解本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间为120分钟。

第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1.(文)(2011·巢湖市质检)设U={1,2,3,4,5},A={1,2,3},B={2,3,4},则下列结论中正确的是()。

A。

A⊆BB。

A∩B={2}C。

A∪B={1,2,3,4,5}D。

A∩(∁U B)={1}答案:C解析:由集合的定义可知,XXX表示A是B的子集,即A中的每个元素都在B中出现。

显然,A不是B的子集,排除A选项。

XXX表示A和B的交集,即A和B中都出现的元素构成的集合。

根据A和B的定义可知,它们的交集为{2,3},因此排除B选项。

A∪B表示A和B的并集,即A和B中所有元素构成的集合。

根据A和B的定义可知,它们的并集为{1,2,3,4,5},因此选C。

A∩(∁U B)表示A和B的补集的交集,即除去B中所有元素后,A中剩余的元素构成的集合。

根据A和B的定义可知,它们的补集分别为{4,5}和{1},因此A∩(∁U B)={1},排除D选项。

2.(2011·安徽百校联考)已知集合M={-1,0,1},N={x|x=ab,a,b∈M且a≠b},则集合M与集合N的关系是()。

A。

M=NB。

MNC。

NMD。

M∩N=∅答案:C解析:根据集合N的定义可知,N中的元素是由M中的元素相乘得到的,其中a≠b。

因此,当a=-1时,b为0或1,x 为-1或0;当a=0时,x为0;当a=1时,b为-1或0,x为-1或0.综上所述,N={-1,0},因此M和N的关系是NM。

3.(2011·福州期末)已知p:|x|<2;q:x^2-x-2<0,则綈p是綈q的()。

A。

充分不必要条件B。

必要不充分条件C。

充要条件D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
于是有 , .从而可知 在 上单调递增,又 ,所以 , ,即 , .
⑵(本小问9分)
设 , ,则 .
令 , ,则
, .
所以 在 上单调递减,从而 ,
因此 在 上单调递减,于是 ,即 , .
结合⑴有 ,得 .
(11)(2012年卓越联盟)已知函数 ,其中 是非零实数, 。
(Ⅰ)求 的单调区间
(Ⅱ)若 ,设 , , , ,且 , , 。
2、(2013年卓越联盟)设函数 在 上存在导数 ,对任意的 有 ,且在 上 .若 ,则实数 的取值范围为()
A. B. C. D.
答案:B.
(2013年卓越联盟理)设 ,
⑴证明 ;
⑵若 ,证明: .
答案:⑴(本小问6分)
设 , ,则 .
令 , ,则 .
当 时,由于 ,所以 ,因此 在 上单调递增.
(1) ;
(2)若 则 显然,当 取最小;
若 则 当 取最小.

由(1)知
所以,

则令 ,得
即 时, 取最小值.
(3)将 代入 式右边,
等价于
由于 时, 所以下面只须证明 即可.
又 令 ,
则 ,注意到函数 是单调递增的,且
所以 .得证.
历年自主招生试题分类汇编——复数
6.(2013年北约)模长为1的复数 满足 ,求 .
【解】(1)当 时, ,所以 在 上递减,所以 .
(2)由 得 ,结合 ,及对任意 ,利用数学归纳法易得 对任意正整数 成立,由(1)知 ,即 ,
即 ,因为 ,所以 ,即 ,所以数列 递减,
下面证明 ,用数学归纳法证,设 ,则 ,
由(1)知当 时, ,即 ,故 在 递增,由归纳假设
得 ,要证明 只需证明 ,即 ,
历年自主招生试题分类汇编——概率统计
2.(2014年华约)乒乓球比赛,五局三胜制.任一局甲胜的概率是 ,甲赢得比赛的概率是 ,求 为多少时, 取得最大值.
【解】若共比赛了3局,则甲赢得比赛的概率为 ;
若共赛了4局,则最后一局甲胜,甲赢得比赛的概率为 ;
若共比赛了5局,则最后一局甲胜,甲赢比赛的概率为 ,因此
∴ 不整除 ,从而可知,最多能取671个数,满足要求。
评析:本题考查整除问题,而解答主要用到竞赛数学中的抽屉原则和剩余类,整除等简单的数论知识,体现出自主招生试题要求考生有一定的竞赛数学知识,并掌握数学竞赛的一些常用方法和技巧。
6.(2013年华约)已知 是互不相等的正整数, ,求 .
【解】本题等价于求使 为整数的正整数 ,由于 是互不相等的正整数,因此 ,不失一般性不妨设 ,则 ,于是 ,结合 为正整数,故 ,
解答:显然 ,注意到

所以
=
因此,当p≥ 时,{ }递增,当P≥ 时,{ }递减。
14、(2011年华约)将一枚均匀的硬币连续抛掷n次,以pn表示未出现连续3次正面的概率.
(I)求p1,p2,p3,p4;
(II)探究数列{pn}的递推公式,并给出证明;
(III)讨论数列{pn}的单调性及其极限,并阐述该极限的概率意义.
【证】(一法:数学归纳法)①当 时,左边 右边,不等式成立;
②假设 时,不等式 成立.
那么当 时,则 ,由于这 个正数不能同时都大于1,也不能同时都小于1,因此存在两个数,其中一个不大于1,另一个不小于1,不妨设 ,
从而 ,所以
其中推导上式时利用了 及 时的假设,故 时不等式也成立.
综上①②知,不等式对任意正整数 都成立.
当 时, ,即 ,于是 ,所以 ,
但另一方面 ,且为正整数,所以 矛盾,不合题意.
所以 ,此时 ,于是 ,即 ,
也所以 ,所以 ,又因为 ,所以 ;
于是 ,所以 ,即 ,又因为 ,所以 ,
经检验 符合题意,于是符合题意的正整数 有
=(2,3,5)、(2,5,3)、(3,2,5)、(3,5,2)、(5,2,3)、(5,3,2)
∴在 上有 。即 。
注记:也可用三角函数线的方法求解.
7.(2014年华约)已知 求证: .
【证明】原不等式等价于 .
当 ,上述不等式左边非正,不等式成立;
当 时,由 及贝努力不等式 ,
从而 ,即证.
1.(2014年卓越联盟) ,求 范围.
【解】由
所以由数轴标根法得 ,又因为 ,
所以 .
1、(2013年卓越联盟)设函数 .若 、 ,且 ,则
因此, 无实数解
综上所述,对任意正整数n,当n为偶数时 无解,当n为奇数 有唯一解 。
再证 ,事实上,由 的严格单调性,只需验证 ,注意到
- = ,由上述归纳法证明过程中, ,所以

因此 ,综上所述,原命题得证。
证明二:记 我们对N使用数学归纳法证明加强命题,方程 在N为偶数的时候实数上恒大于零,在N为奇数的时候,在实数上严格单调递增并且可以取遍所有实数。
(二法)左边展开得
由平均值不等式得

,即证.
(三法)由平均值不等式有
……①; ……②
①+②得 ,即 成立.
(四法)由 不等式得: , ,两式相加得: ,故 .
1.(2011年北约文) ,求证: .
1【解析】不妨设 ,则 ,且当 时, .于是 在 上单调增.∴ .即有 .
同理可证 .
,当 时, .于是 在 上单调增。
故只需证明 ,考虑函数 ,因为当 时 ,
所以 ,故 在 上递增,又 ,
所以 ,即 ,由归纳法知, 对任意正整数 成立.
注:此题的函数模型与2012年清华大学保送生考试试题的函数模型相似.
(14)(2012年华约)记函数 证明:当 ,且 。
证明一:
证明: ;
(Ⅲ)若 有极小值 ,且 ,证明 。
解答:(1) ,
当 时, 在 和 上分别单调递减;
当 时, 在 和 上分别单调递增;
在 和 上分别单调递减.
(2)由 知 .
由 , , 知 中至多有一个为负数.
①当 均大于零时, ,
由 在 上单调递增,
得 ,
所以 ;
②当 中有一个为负数时,不妨假设 ,
则由 ,得 ,所以 .
解析取 ,便能得到 =1.
下面给出证明, ,
于是
.∴ =1.
(5)(2012年华约)若复数 的实部为0, 是复平面上对应 的点,则点 的轨迹是( )
(A)一条直线(B)一条线段(C)一个圆(D)一段圆弧
解:设 ,解得 , ,因此 的轨迹是一条直线。
1、(2011年华约)设复数z满足|z|<1且 则|z| = ( )
(A)1(B) (C) (D)
9.(2014年卓越联盟)设 在 上可导,且对任意的 有
(1)证明: ;
(2)若 ,则 .
【解】(1)由题知 单调递增,利用拉格朗日中值定理可知:存在 ,
使得 ,于是
(2)若存在 ,则在 上 ,于是有
取 ,则 .但是由于 ,所以 ,矛盾.
同理在 时也可得矛盾.
结论成立.
(3)若所取出的4个球颜色相同,求恰好全黑的概率;
【解】(1)由题知恰有一个红球的概率为 ;
(2)易知 的所有可能取值为0,1,2,3,4,则由古典概型知, ,
, , ,
0
1
2
3
4
,即 的分布列为:
所以其数学期望为
(事实上由超几何分布期望公式可以直接得出期望为 ,无须繁杂计算)
(3)取出四个球同色,全为黑色的概率为 即求.
用数学归纳法证明 有唯一解 且严格单调递增, 无实数解,显然n=1时,此时 有唯一解 ,且严格单调递增,而 无实数解,现在假设 有唯一解 且严格单调递增, 无实数解,于是注意到 时,对任意的0≤k≤n有x+2k+1≤0,
于是
,所以
又因为 所以由 严格递增知 有唯一根0 ,
对于 有 ,所以(—∞, )上,递减,在( ,+∞)上,递增,所以
解答:由 得 ,已经转化为一个实数的方程。解得|z| =2(舍去), 。
1.(2010年华约)设复数 ,其中 为实数,若 的实部为2,则 的虚部为(A)
(A) (B) (C) (D)
(4)(2011年卓越联盟)i为虚数单位,设复数z满足|z|=1,则 的最大值为(C)
(A) -1(B)2- (C) +1(D)2+
解(I)显数 , ;又投掷四次连续出现三次正面向上的情况只有:正正正正或正正正反或反正正正,故 .
(II)共分三种情况:1)如果第 次出现反面,那么前 次不出现连续三次正面和前 次不出现连续三次正面是相同的,所以这个时候不出现连续三次正面的概率是 ;2)如果第 次出现正面,第 次出现反面,那么前 次不出现连续三次正面和前 次不出现连续三次正面是相同的,所以这个时候不出现连续三次正面的概率是 ;3)如果第 次出现正面,第 次出现正面,第 次出现反面.那么前 次不出现连续三次正面和前 次不出现连续三次正面是相同的,所以这时候不出现三次连续正面的概率是 .
,
所以 , ;
设 , ,则 ,
即 ,
所以 ,
又因为 ,所以 ,故 ,
所以令 时,即 ,得 ;
又因为 ,所以取 ,
易知当 时, 时, ,
所以当 时, 有唯一极大值,也是最大值.
4.(2013年华约)7个红球,8个黑球,从中任取4个球.
(1)求取出的球中恰有1个是红球的概率;
(2)求所取出球中黑球个数 的分布列及期望 ;
A. B. C. D.
答案:(文科)D.
历年自主招生试题分类汇编——初等数论
7.(2013年北约)最多有多少个两两不等的正整数,满足其中任意三数之和都为素数.
解析设满足条件的正整数为 个.考虑模3的同余类,共三类,记为 , , .
相关文档
最新文档