初二数学第二周测试题下学期无答案

合集下载

八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇下学期期中复习同步练习

八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇下学期期中复习同步练习

八年级数学下学期期中复习同步练习(答题时间:60分钟)一、选择题1. 如果三角形的两边分别为3和5,那么连接这个三角形三边中点所得三角形的周长可能是()A. 5.5B. 5C. 4.5D. 42. 如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A. S平行四边形ABCD=4S△AOBB. AC=BDC. AC⊥BDD. 平行四边形ABCD是轴对称图形3. 如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A. 1B. 2C. 3D. 44. 如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 80*5. 如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A. 4B. 3C. 52D. 2*6. 如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;其中正确的个数是()A. 0B. 1C. 2D. 3*7. 如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( )A. 53cmB. 25 cmC. 485 cmD. 245cm *8.如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为( )A. 3B. 3.5C. 2.5D. 2.8**9. 如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF ,则四边形BCDE 的面积是( )A. 32B. 33C. 4D. 34**10. 如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 最小的值是( )A. 2B. 3C. 4D. 5二、填空题11. 5082。

浙教版下学期八年级数学(下册)第二章一元二次方程测试题及答案

浙教版下学期八年级数学(下册)第二章一元二次方程测试题及答案

浙教版下学期八年级数学(下册)第2章一元二次方程测试题(时间:100分钟 满分:120分)1、下列方程是一元二次方程的是( )A .ax 2+bx +c =0 B .2x 2=0 C .xx 3=1 D .x 2+y =02、方程3x (x -4)=5(1-2x )的二次项系数、一次项系数、常数项分别为( ) A .3,-2,5 B .3,-2,-5 C .-3,-2,5 D .3, 2,53、关于x 的一元二次方程x 2-3px +p 2-2p +8=0的一个根为2,则实数p 的值是( ). A .2 B .6 C .2或6 D .-2或-64、若整式x 2-2x -15能分解成 (x -5)与 (x +3),则一元二次方程x 2-2x -15=0的根为( ).A .x 1=5,x 2=-3B .x 1=-5,x 2=-3C .x 1=5,x 2=3D .x 1=-5,x 2=3 5、已知方程3x (2x +5)= (2x +5),则其根为( ) A .31 B .0 C . 25- D .31,25- 6、如果一元二次方程ax 2+bx +c =0(a ≠0) 有两个相等的实数根,且满足a +b +c =0,则下列结论正确的是( )A .a =bB .c =bC .c =aD .a +b =c7、关于x 的一元二次方程x 2-(2m -3)x +m 2-6=0有两个不相等的实数根,那么m 的最大值是( ). A .-1 B .0 C .1 D .28、使用一面9m 墙为一边,再用17m 长的铁丝网围成三边,使其成一个面积为35m 2的长方形,求这个长方形的边长,设墙的对边长为x m ,可得方程为( )A 、x (17-x )=35B 、x ·217x-=35 C 、x (17-21x )=35 D 、x ·2217x -=35 9、有一个两位数它的十位上数与个位数之和是7,如把十位上数字和个位上数字调换所得两位数乘以原来的两位数就的1462求原来的两位数?( )A .34B .43C .34或43D .5210、若2b-为方程2x 2+ax +b =0的根(b ≠0),则下列代数式的值恒为常数的是( ) A .a b B .ba C .2(a +b ) D .b -a二、填空题(共10小题 每题3分 共30分)11、若关于x 的一元二次方程(k -3)x 2-6x -2=0 有实数根,则k 的取值范围是 . 12、方程(m -2)mmx -2+(m -3)x -2=0是一个一元二次方程,则m 的值是 .13、已知方程x 2-5kx -25=k 2的一个根是2,则k 的值是 ,方程的另一个根是 . 14、已知m ,n 是方程x 2+x -2019=0的两个根,则m 3-3mn +2020n 的值为 . 15、若方程x 2+(2k -1)x +k 2+2=0无实数根,则方程x 2-(3k +1)x +49k 2-3=0的根的情况为 . 16、如果两个不同的方程x 2+ax +b =0与x 2+bx +a =0只有一个公共根,那么a ,b 满足的关系式为 . 17、某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为xm ,n19、设a ,b 是一个直角三角形的两条直角边的长,且(a 2+b 2)(a 2+b 2-2)=63,则这个三角形的斜边长为 .20、若m 为实数,方程x 2-2x +m =0的一个根的相反数是方程x 2+2x -2=0的一个根,则x 2-2x +m =0的根是 .三、解答题(共6题 共60分) 21、(满分9分)解方程 (1)(2x +3)2=4(3x -4)2;(2) (3x -1)(x -2)=8;(4)2x 2-3x -1=0;22、(满分10分)已知关于x 的一元二次方程x 2+bx +a =0有两个相等的实数根,求4)2(4222-+-b a ab 的值.23、(满分10分)先阅读理解下面的材料,再按要求解答问题:解方程x 4-13x 2+36=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-13y+36=0 ①,解得y1=4,y2=9.当y=4时,x2=4,∴x=±2;当y=9时,x2=9,∴x=±3;∴原方程有四个根:x1=2,x2=-2,x3=3,x4=-3.(1)在由原方程得到方程①的过程中,利用______法达到______的目的,体现了数学的转化思想.(2)解方程(x2-2x)2-6(x2-2x) -16=0.24、(满分10分)关于x的一元二次方程为(m-2)x2-2mx+m+2=0.(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?25、(满分9分)将进货单价为50元的商品按60元售出时,就能卖出600个.已知这种商品每个涨价1元,其销售量就减少15个.为了赚得9000元的利润,每个商品售价应定为多少元?这时应进货多少个?26、(满分12分)已知关于x的一元二次方程2x2-3(k+1)x+k2+3k=0.(1)求证:无论k取何值,方程总有实数根.(2)若等腰三角形ABC的一边长a=2,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.参考答案一、选择题(共10小题 每3分 共30分)11、k ≥23-且 k ≠3 12、-1 13、-3,-7;-17,-37 14、2018 15、有两个不相等的实数根 16、a +b +1=0 17、2(1+x )+2(1+x )2=8 18、x 2-x -30=0 19、3 三、解答题(共6题 共60分)21、(1)(2x +3)2=4(3x -4)2;解:将原方程化为(2x +3)2-4(3x -4)2=0分解因式,得 [][])43(2)32()43(2)32(--+-++x x x x =0则(8x -5)( -4x +11)=0 则8x -5=0,或-4x +11=0解得x (2) (3x -1)(x -2)=8;解:将原方程化为3x 2-7x -6=0 分解因式,得(3x +2)(x -3)=0 则3x +2=0,或x -3=0 解得x x 2=3解:将原方程化为x 2-2x =3方程两边同加1,得x 2-2x +1=3+1,即(x -1)2=4. 则x -1=2,或x -1=-2, 解得x 1=3,x 2=-1 (4)2x 2-3x -1=0;解:∵a =2,b =-3,c =-1, ∴△=b 2-4ac =(-3)2-4×2×(-1)=17 ∴x解得x 22、解:∵x 2+bx +a =0有两个相等的实数根,∴△=b 2-4a =0, b 2=4a ,∵4)2(3222-+-b a ab =4443222-++-b a a ab =44441222-++-a a a a =121222=aa . 23、解:(1)换元,降次(2)设x 2-2x =y ,原方程可化为y 2-6y -16=0, 解得y 1=8,y 2=-2.由x 2-2x =8,得x 1=-2,x 2=4. 由x 2-2x =-2,得方程x 2-2x +2=0, b 2-4ac =4-4×2=-4<0,此时方程无实根. 所以原方程的解为x 1=-2,x 2=4. 24、解:(1)根据题意得m ≠2, △=(-2m )2-4(m -2)(m +2)=16, ∴x 1=)2(242-+m m =22-+m m ,x 2=)2(242--m m =1.(2)由(1)知x 1=22-+m m =1+22-m , ∵方程的两个根都是正整数, ∴22-m 是正整数, ∴m -2是整数, ∴m -2=1或2, ∴m =3或4.25、解:设涨价x 元能赚得9000元的利润, 即售价定为每个(x +60)元,应进货(600-10x )个, 依题意得:(60-50+x ) (600-10x )=9000,解得x 1=10 ,x 2=20,当x =10时,x +60=70,600-10x =500; 当x =20时,x +60=80,600-10x =400答:售价定为每个60元时应进货500个,或售价定为每个80元时应进货400个.26、【解】 (1)∵△=b 2-4ac =9(k +1)2-8(k 2+3k)=(k -3)2≥0, ∴无论k 取何值,方程总有实数根. (2)分两种情况: ①若b =c ,则方程2x 2-3(k +1)x +k 2+3k =0有两个相等的实数根, ∴△=b 2-4ac =(k -3)2=0, 解得k =3,此时方程为x 2-6x +9=0,解得x 1=x 2=3. ∴△ABC 的周长为8.②若b ≠c ,则b =a =2或c =a =2,即方程有一个根为2, 把x =2代入方程2x 2-3(k +1)x +k 2+3k =0,得 8-6(k +1)+k 2+3k =0, 解得k 1=1,k 2=2,当k =1时,方程为x 2-3x +2=0,解得x 1=1,x 2=2. ∴方程的另一个根为1. ∴△ABC 的周长为5.当k =2时,方程为2x 2-9x +10=0,解得x 1=2,x 2=25. ∴方程的另一个根为25. ∴△ABC 的周长为213. 综上所述,所求△ABC 的周长为8或5或213.。

最新2022学年第二学期八年级下学期期末教学质量检测数学试题(含答案)

最新2022学年第二学期八年级下学期期末教学质量检测数学试题(含答案)

八年级数学本试卷共三大题23小题,其4页,满分100分.考试时间90分仲,不能使用计算器.注意事项:1. 答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡指定的位置上.2. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在问卷上,3. 非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案:改动的答案也不能超出指定的区域.不准使用铅笔(除作图外),圆珠笔和涂改液,不按以上要求作答的答案无效。

一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项符合题目要求的. )1.设x1、x2是方程x²+x-1=0的两根,则x1+x2=(*)(A)-3(B)-1(C) 1(D) 32.若8与最简二次根式1 a是同类二次根式,则a的值为(*)(A) 7(B) 9(C) 2(D) 13.点(m. -1)在一次函数y=-2x+1的图象上,则m的值为(*).(A) m=-3(B) m=-1(C) m=1(D) m=24. 甲、乙两名同学在初二下学期数学6章书的单元测试中,平均成绩都是86分,方差分别是S²甲=4, S²乙=10,则成绩比较稳定的是(*)(A) 甲(B)乙(C)甲和乙一样(D)无法确定5.下列各比值中,是直角三角形的三边之比的是(*)(A) 1:2:3(B) 2:3:4(C) 3:4;6(D) 1:3:26.四边形ABCD中,已知AB// CD,下列条件不能判定四边形ABCD 为平行四边形的是(*)(A) AB=CD(B) AD=BC(C) AD∥BC(D)∠A+∠B= 180°7.下列各式中,运算正确的尼(*)(A)22-)(=-2(B)102=+8(C)82⨯=4(D) 2-22=8.如图,平行四边形ABCD的对角线AC、BD相交于点O, B.已知AD=5,BD=8, AC=6,则△OBC的面积为(*)(A) 5(B) 6(C) 8(D) 129.某家庭今年上半年1至6月份的月平均用水量5t,其中1至5月份月用水量(单位:t)统计表如图所示,根据信息该户今年上半年1至6月份用水量的中位数和众数分别是(*)(A)4,5(B)4.5,6(C)5, 6(D) 5.5, 610. 如图,已知一次的数y=kx+b的图象与x轴,y轴分别交于点(2, 0),点(0, 3).有下列结论:①关于x的方程k+b=0的解为x=2; ②当x>2时, y<0; ③当x<0时,y<3.其中正确的是(*)(A) ①②(B)①③(C)②③(D)①②③二、填空题(本大愿共6小题,每小题3分,共18分.)11.若关于x的一元二次方程x²- 2x+c= 0没有实数根。

八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇第十九章2函数函数的图象

八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇第十九章2函数函数的图象

初二数学第十九章 19.1函数(函数的图象)同步练习(答题时间:60分钟)微课程:函数图象的应用同步练习一、选择题1. (湖北黄石)如右图,已知某容器是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而成。

若往此容器中注水,设注入水的体积为y ,高度为x ,则y 关于x 的函数图象大致是( )yOx A.yOxB .yO x C . yO xD .*2. (湖北鄂州)一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间。

用x 表示注水时间,用y 表示浮子的高度,则用来表示y 与x 之间关系的选项是( )A B C D**3. (湖北仙桃)小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行。

他们的路程差s (米)与小文出发时间t (分)之间的函数关系如图所示。

下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③24=a ;④480=b 。

其中正确的是( )A. ①②③B. ①②④C. ①③④D. ①②③④t /分 9 a 720O b1915 s /米4. 早晨,小张去公园晨练,下图是他离家的距离y (千米)与时间t (分钟)的函数图象,根据图象信息,下列说法正确的是( )1y(千米)x(分钟)20OA. 小张去时所用的时间多于回家所用的时间B. 小张在公园锻炼了20分钟C. 小张去时的速度大于回家的速度D. 小张去时走上坡路,回家时走下坡路二、填空题5. 已知函数y =ax +b 的图象经过点M (2,0)和N (1,-6)两点,则a =_______,b =_____。

6. 如图,射线l 甲,l 乙分别表示甲,乙两名运动员在自行车比赛中所走路程S 与时间t 的函数关系图象,则甲的速度_______乙的速度(用“>”,“=”,“<”填空)。

八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇第十九章2一次函数的应用

八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇第十九章2一次函数的应用

八年级数学第十九章第2节一次函数(一次函数的应用)同步练习(答题时间:60分钟)微课程:实际问题中的一次函数同步练习一、选择题1.(黑龙江牡丹江中考)若等腰三角形的周长是100cm,则能反映这个等腰三角形的腰长y(cm)与底边长x(cm)之间的函数关系的图象是()2.(南通中考)小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了20km;(2)小陆全程共用了1.5h;(3)小李与小陆相遇后,小李的速度小于小陆的速度;(4)小李在途中停留了0.5h。

其中正确的个数有()A. 4个B. 3个C. 2个D. 1个3. 梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示。

下列四种说法:①一次购买种子数量不超过10千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折;④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱。

其中正确的个数是()A. 1个B. 2个C. 3个D. 4个4. 某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路。

若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A. 汽车在高速公路上行驶速度为100km/hB. 乡村公路总长为90km.C. 汽车在乡村公路上行驶速度为60km/hD. 该记者在出发后4.5h到达采访地5. 张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示。

2022-2023学年华师大版数学八年级第二学期期末达标测试卷(含答案)

2022-2023学年华师大版数学八年级第二学期期末达标测试卷(含答案)

第二学期期末达标测试卷一、选择题(本题共10小题,每小题4分,共40分)1.下列计算正确的是( )A.(2a2)3=6a6B.-a2b2·3ab3=-3a2b5C.ba-b+ab-a=-1 D.a2-1a·1a+1=-12.某市中小学开展了红色经典故事演讲比赛,某参赛小组6名同学的成绩分别为85,82,86,82,83,92,关于这组数据,下列说法错误的是( )A.众数是82 B.中位数是84 C.方差是84 D.平均数是85 3.下列不正确的是( )A.某种细胞的直径是0.000 067 cm,将0.000 067用科学记数法可表示为6.7×10-5B.若函数y=x+13-|x|有意义,则x≠±3C.分式ax2-25ay2bx-5by化为最简分式为ax+5aybD.(2 023-1)0-(12 024)-1=2 0254.已知一次函数y1=ax+b与反比例函数y2=kx的图象如图所示,当y1<y2时,x的取值范围是( )A.x<2 B.x>5 C.2<x<5 D.0<x<2或x>5(第4题) (第7题)5.已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A .k >1,b <0B .k >1,b >0C .k >0,b >0D .k >0,b <06.甲、乙两人同时分别从A 、B 两地沿同一条公路骑自行车到C 地.已知A 、C两地间的距离为110 km ,B 、C 两地间的距离为100 km ,甲骑自行车的平均速度比乙快2 km/h ,结果两人同时到达C 地.求两人的平均速度.为解决此问题,设乙骑自行车的平均速度为x km/h.由题意列出方程,其中正确的是( )A.110x +2=100x B.110x =100x +2 C.110x -2=100x D.110x =100x -27.如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,点D 在BC 上,以AC 为对角线的所有▱ADCE 中,DE 的最小值是( )A .2B .3C .4D .58.如图,点O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数y =k x(x <0)的图象经过顶点B ,则k 的值为( )A .-12 B .-27 C .-32 D .-36(第8题) (第9题) (第10题)9.如图,在正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE ,将△ADE沿AE 对折至△AFE 处,延长EF 交BC 于点G ,连结AG ,CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③S △EGC =S △AFE ;④∠AGB +∠AED =145°,其中正确的个数是( )A .1B .2C .3D .410.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的函数关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是( )A .①②③B .①②C .①③D .②③二、填空题(本题共6小题,每小题4分,共24分)11.函数y =12x -4中,自变量x 的取值范围是________.12.9+(-1)2 021+(6-π)0-(-12)-2 =________.13.已知点(3,5)在直线y =ax +b (a ,b 为常数,且a ≠0)上,则ab -5的值为________.14.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们成绩的平均数及方差如下表:甲乙平均数(环)9.59.5方差0.0350.015请你根据上表中的数据选一人参加比赛,较适合的人选是________.15.如图,在矩形ABCD 中,AB =9,AD =12,对角线AC ,BD 相交于点O ,过点O 作OE ⊥AC 交AD 于点E ,则ED 的长为________.(第15题)16.如图,点A ,B 是反比例函数y =12x的图象上的两个动点,过点A ,B 分别作AC ⊥x 轴,BD ⊥x 轴,分别交反比例函数y =-3x 的图象于点C ,D ,得四边形ACBD 是平行四边形.当点A ,B 不断运动时,现有以下结论:①▱ACBD 可能是菱形;②▱ACBD 不可能是矩形;③▱ACBD 可能是正方形;④▱ACBD 不可能是正方形.其中正确的是________.(写出所有正确结论的序号)(第16题)三、解答题(本题共9小题,共86分)17.(8分)解方程:x 3x -3-1x -1=1.18.(8分)化简2x x +1-2x +4x 2-1÷x +2x 2-2x +1,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值.19.(8分)如图,D 是△ABC 的边AB 上一点,CN ∥AB ,DN 交AC 于点M ,MA =MC ,连结AN ,CD .(1)求证:CD =AN ;(2)若AC ⊥DN ,∠CAN =30°,MN =1,求AM 的长.(第19题)20.(8分)饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温y (℃)与开机后用时x (分)满足一次函数关系,当加热到100℃时自动停止加热,随后水温开始下降,此过程中水温y (℃)与开机后用时x (分)成反比例关系,当水温降至20℃时,饮水机又自动开始加热……重复上述程序(如图所示),根据图中提供的信息,解答问题:(1)当0≤x <8时,求水温y (℃)与开机后用时x (分)的函数关系式;(2)求图中t 的值;(3)若在通电开机后立即外出散步,请你预测散步42分回到家时,饮水机内水的温度约为多少摄氏度?(第20题)21.(8分)如图,AC是平行四边形ABCD的对角线,满足AC⊥AB.(1)尺规作图:按要求完成下列作图,不写作法,保留作图痕迹,并标明字母.①作线段AC的垂直平分线l,分别交AD,BC于点E,F,②连结CE;(2)在(1)的条件下,已知∠ABC=64°,求∠DCE的度数.(第21题)22.(10分)2022年春季,安溪县初中数学学科教学联盟组编写“县本小单元分层作业”测试卷,现将某试点学校八年级甲、乙两位选做“强基”层次的同学的10次测试成绩,绘制统计图如图.(第22题)(1)根据图中提供的数据列出如下统计表:平均成绩(分)众数(分)甲80b乙a90则a=________,b=________.(2)现在要从这两位同学中选派一位参加数学素养竞赛,根据以上信息你认为应该选派谁?请简要说明理由.23.(10分)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元,今年该型号自行车每辆售价预计比去年降低200元,若该型号自行车的销售数量与去年相同,则今年的销售总额将比去年减少10%.(1)A型自行车去年每辆售价为多少元?(2)该车行今年计划新进一批A型自行车和新款B型自行车共60辆,且B型自行车的进货数量不超过A型自行车数量的2倍.已知A型自行车和B型自行车的进货价格分别为1 500元和1 800元,计划B型自行车销售价格为2 400元,应如何组织进货才能使这批自行车获利最多?24.(12分)如图,四边形ABCD 为正方形.点A 的坐标为(0,2),点B 的坐标为(0,-3),反比例函数y =k x的图象经过点C ,一次函数y =ax +b 的图象经过点A 、C .(1)求反比例函数与一次函数的表达式;(2)若点P 是反比例函数图象上的一点,△OAP 的面积恰好等于正方形ABCD 的面积,求点P 的坐标.(第24题)25.(14分)如图①,在正方形ABCD 和正方形BEFG 中,点A ,B ,E 在同一条直线上,P 是线段DF 的中点,连结PG ,PC .(1)探究PG 与PC 的位置关系(写出结论,不需要证明);(2)如图②,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且∠ABC =∠BEF =60°.探究PG 与PC 的位置关系,写出你的猜想并加以证明;(3)如图③,将图②中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的边BG 恰好与菱形ABCD 的边AB 在同一条直线上,问题(2)中的其他条件不变.你在(2)中得到的结论是否发生变化?写出你的猜想并加以证明.(第25题)答案一、1.C 2.C 3.D 4.D 5.A 6.A 7.B 8.C 9.C10.A二、11.x ≠2 12.-1 13.-13 14.乙 15.21816.①②④ 点拨:设A (a ,12a ),B (b ,12b),则C (a ,-3a ),D (b ,-3b),易知AC =BD ,∴-15a =15b.∴a =-b .∴-3a =3b ≠12b.∴BC 不与x 轴平行.∴AC 与BC 不可能垂直.∴▱ACBD 不可能是矩形,▱ACBD 不可能是正方形.故③错误,②④正确.∵随着|a |不断变小,AC 越来越大,BC 越来越小,∴AC 有可能与BC 相等,故①正确.故答案为①②④.三、17.解:去分母,得x -3=3x -3,解得x =0.检验:当x =0时,3x -3=-3≠0,所以x =0是原方程的解.18.解:原式=2x x +1-2(x +2)(x +1)(x -1)·(x -1)2x +2=2xx +1-2(x -1)x +1=2x -2x +2x +1=2x +1.因为不等式x ≤2的非负整数解有0,1,2,且当x =1时原式无意义,所以x 可取0或2.所以当x =0时,原式=20+1=2(或当x =2时,原式=22+1=23).19.(1)证明:∵CN ∥AB ,∴∠DAC =∠NCA .在△AMD 和△CMN 中,{∠DAM =∠NCM ,MA =MC ,∠AMD =∠CMN ,∴△AMD ≌△CMN .∴AD =CN .又∵AD ∥CN ,∴四边形ADCN 是平行四边形.∴CD =AN .(2)解:∵AC ⊥DN ,四边形ADCN 是平行四边形,∴四边形ADCN 是菱形,∴AD =AN ,∠CAD =∠CAN =30°.∴∠DAN =60°.∴△DAN 是等边三角形.∴AN =DN .又∵DN =2MN ,MN =1,∴AN =DN =2.∴AM =AN 2-MN 2= 3.20.解:(1)当0≤x <8时,设水温y (℃)与开机后用时x (分)的函数关系式为y =kx+b (k ≠0),将(0,20),(8,100)代入y =kx +b (k ≠0),得{b =20,8k +b =100,解得{k =10,b =20.∴当0≤x <8时,水温y (℃)与开机后用时x (分)的函数关系式为y =10x +20.(2)当8≤x ≤t 时,设水温y (℃)与开机后用时x(分)的函数关系式为y =m x (m ≠0),将(8,100)代入y =m x (m ≠0),得100=m 8,解得m =800,∴当8≤x ≤t 时,水温y (℃)与开机后用时x (分)的函数关系式为y =800x .当800x =20时,x =40,∴图中t 的值为40.(3)∵42-40=2(分)<8分,∴当x=2时,y=2×10+20=40.答:散步42分回到家时,饮水机内水的温度约为40℃.21.解:(1)如图.(第21题)(2)∵四边形ABCD是平行四边形,∴∠ABC+∠BAD=180°,AB∥CD.又∵∠ABC=64°,∴∠BAD=180°-∠ABC=180°-64°=116°.∵AC⊥AB,∴∠BAC=90°.∴∠DAC=∠BAD-∠BAC=116°-90°=26°.∵AB∥CD,∴∠ACD=∠BAC=90°.∵EF是AC的垂直平分线,∴AE=CE.∴∠EAC=∠ACE=26°.∴∠DCE=∠DCA-∠ECA=90°-26°=64°.22.解:(1)80;80(2)应该选派乙,理由如下:甲和乙的平均成绩一样,而甲成绩的众数是80分,乙成绩的众数是90分,即乙成绩的众数比甲大,所以应该选派乙.23.解:(1)设A型自行车去年每辆售价为x元,则今年每辆售价为(x-200)元,由题意,得80 000x=80 000×(1-10%)x-200,解得x=2 000.经检验,x=2 000是原方程的解.答:A型自行车去年每辆售价为2 000元.(2)设今年新进A 型自行车a 辆,获利y 元.由题意,得y =(2 000-200-1 500)a +(2 400-1 800)·(60-a )=-300a +36 000.因为B 型自行车的进货数量不超过A 型自行车数量的2倍,所以60-a ≤2a .所以a ≥20.因为y =-300a +36 000,-300<0,所以y 随a 的增大而减小,所以当a =20时,y 最大.此时B 型自行车的进货数量为60-20=40(辆).答:当新进A 型自行车20辆,B 型自行车40辆时,才能使这批自行车获利最多.24.解:(1)∵点A 的坐标为(0,2),点B 的坐标为(0,-3),∴AB =5.∵四边形ABCD 为正方形,∴点C 的坐标为(5,-3).∵反比例函数y =k x的图象经过点C ,∴-3=k 5,解得k =-15.∴反比例函数的表达式为y =-15x.∵一次函数y =ax +b 的图象经过点A 、C ,∴{b =2,5a +b =-3,解得{a =-1,b =2.∴一次函数的表达式为y =-x +2.(2)设点P 的坐标为(x ,y ).∵△OAP 的面积恰好等于正方形ABCD 的面积,∴12×OA ·|x |=52.∴12×2·|x |=25.解得x =±25.当x =25时,y =-1525=-35;当x =-25时,y =-15-25=35.∴点P 的坐标为(25,-35)或(-25,35).25.解:(1)PG 与PC 的位置关系是PG ⊥PC .(2)猜想:PG 与PC 的位置关系是PG ⊥PC .证明:如图①,延长GP 交DC 于点H .∵P 是线段DF 的中点,∴FP =DP .由题意可知DC ∥GF ,∴∠GFP =∠HDP .又∵∠GPF =∠HPD ,∴△GFP ≌△HDP .∴GP =HP ,GF =HD .∵四边形ABCD 是菱形,∴CD =CB .∵四边形BEFG 是菱形,∴GB =GF .∴GB =HD .∴CG =CH .又∵GP =HP ,∴PG ⊥PC .(3)猜想:在(2)中得到的结论仍成立.证明:如图②,延长GP 到点H ,使PH =PG ,连结CH ,CG ,DH .∵P 是线段DF 的中点,∴FP =DP .又∵∠GPF =∠HPD ,∴△GFP ≌△HDP .∴GF =HD ,∠GFP =∠HDP .由题意易知CD ∥EF ,∴∠PFE =∠PDC .又易知∠GFP +∠PFE =180°-60°=120°,∴∠CDH =∠HDP +∠PDC =∠GFP +∠PFE =120°.∵四边形ABCD 是菱形,∴CD =CB .∵点A ,B ,G 在一条直线上,∠ABC =60°,∴∠GBC =120°.∴∠CDH =∠GBC .∵四边形BEFG 是菱形,∴GF =GB ,∴HD =GB ,∴△HDC ≌△GBC ,∴CH =CG .又∵PH =PG ,∴PG ⊥PC .(第25题)。

江苏省南京秦淮外国语学校2023-2024学年八年级下学期3月月考数学试题(无答案)

初二数学练习一注意:1.选择题答案请用2B 铅笔填涂在答题卡相应位置上.2.非选择题答案必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.一、选择题(本大题共6小题,每小题2分,共12分)1.下列图形既是轴对称图形,也是中心对称图形的是( )A .B .C .D .2.已知四边形ABCD 是平行四边形,下列条件中能判定这个平行四边形为矩形的是()A .B .C .D .3.当)AB .C .D4.如图,正方形纸片ABCD 的四个顶点分别在四条平行线、、、上,这四条直线中相邻两条之间的距离依次为、、(,,),若,,则正方形ABCD 的面积S 等于( )(第4题图)A .34B .89C .74D .1095.如图,在一张矩形纸片ABCD 中,,点E ,F 分别在AD ,BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的点H 处,点D 落在点G 处,连接CE ,CH .有以下四个结论:①四边形CFHE 是菱形;②CE 平分;③线段BF 的取值范围为;④当点H 与点A 重合时,.以上结论中,其中正确结论的个数有( )A C ∠=∠AB ∠=∠AB BC =AC BD⊥0a <1l 2l 3l 4l 1h 2h 3h 10h >20h >30h >15h =22h =4AB =8BC =DCH ∠34BF ≤≤5EF =(第5题图)A .1个B .2个C .3个D .4个6.如图,已知菱形ABCD 与菱形AEFG 全等,菱形AEFG 可以看作是菱形ABCD 经过怎样的图形变化得到?下列结论:①经过1次平移和1次旋转;②经过1次平移和1次翻折;③经过1次旋转,且平面内可以作为旋转中心的点共有3个.其中所有正确结论的序号是( )(第6题图)A .②③B .①③C .①②D .①②③二、填空题(本大题共10小题,每小题2分,共20分)7.在整数20240320中,数字“0”出现的频率是______.8.直角三角形中,直角边a ,b ,斜边为c ,则______(填>,<,=).9.与最接近的整数是______.10.如图是某广告商制作甲、乙两种酒的价格变化的折线统计图,则酒的价格增长比较快的是______.(填“甲”或“乙”)(第10题图)11.在一个不透明的袋子中装有仅颜色不同的4个红球,6个黑球,现在再放入个黑球并摇匀.若随机摸出一个球是黑球的可能性大小是,则m 的值为______.12.在中,,,D 是AC 延长线上的的一点,,M 是边BC 上33a b +3c 7-()1m m >45Rt ABC △90BAC ∠=︒3AB AC ==1CD =的一点(不与端点B ,C 重合),以CD ,CM 为邻边作,连接AN ,并取AN 的中点P ,连接PM ,则PM 的取值范围是______.(第12题图)13.如图,A 、B 两点的坐标分别为、,C 是平面直角坐标系内一点.若四边形OABC 是平行四边形,则点C 的坐标为______.(第13题图)14.如图,在中,,,P 是内一点,若,,,则PB 的长为______.(第14题图)15.如图,四边形ABCD 为平行四边形,延长AD 到点E ,使,且,若是边长为3的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,则的最小值为______.(第15题图)CMND ()4,0()6,3ABC △90BAC ∠=︒AB AC =ABC △1PA =2PC =135APC ∠=︒DE AD =BE DC ⊥ADB △PM PN +16.如图,矩形ABCD 中,,,以点A 为旋转中心,逆时针旋转矩形ABCD ,旋转角为,得到矩形AEFG ,点B 、点C 、点D 的对应点分别为点E 、点F 、点G .设点P 为边FG 的中点,连接PB 、PE 、在矩形ABCD 旋转过程中,的面积存在最大值,这个最大值为______.(第16题图)三、解答题(本大题共10小题,共68分,请在答题卡指定区城内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:(1(218.工厂质检员对甲员工近期生产的产品进行抽检,统计合格的件数,得到表格:抽取件数(件)501002003005001000合格频数4994192285m 950合格频率0.980.940.960.950.95n(1)表格中m 的值为______,n 的值为______;(2)估计任抽一件该产品是不合格品的概率为______;(3)该工厂规定,若每被抽检出一件不合格产品,需在相应员工奖金中扣除给工厂2元的材料损失费,今天甲员工被抽检了460件产品,估计要在他奖金中扣除多少材料损失费?19.如图,在中,点O 是边BC 的中点,连接DO 并延长,交AB 的延长线于点E ,连接BD ,EC .(1)求证:四边形BECD 是平行四边形;(2)当,则当______°时,四边形BECD 是矩形.20.某市对一大型超市销售的甲、乙、丙3种大米进行质量检测.共抽查大米200袋,质量评定分为A 、B 两个等级(A 级优于B 级),相应数据的统计图如下:3AB =2BC =()0180a a ︒<<︒BEP △-ABCD 50A ∠=︒BOD ∠=根据所给信息,解决下列问题:(1)______,______;(2)已知该超市现有乙种大米750袋,根据检测结果,请你估计该超市乙种大米中有多少袋B 级大米?(3)对于该超市的甲种和丙种大米,你会选择购买哪一种?运用统计知识简述理由.21.(1)请用直尺(不带刻度)和圆规在图中作菱形BDEF ,要求点D 、E 、F 分别在边BC ,AC 和AB 上.(不写作法,保留作图痕迹);(2)若,,,则菱形BDEF 的边长为______.22.一些含根号的式子可以写成另一个式子的平方,如.设(其中a 、b 、m 、n 均为正整数),则有.∴,.这样可以把部分的式子化为平方式的方法.请你仿照上述的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若,用含m 、n 的式子分别表示a 、b .得:______,______.(223.如图,在矩形ABCD 中,,,点M 为边DC 中点,连接AM ,过B 作于点连接CP 并延长交AD 于点E .a =b =60ABC ∠=︒75BAC ∠=︒AB =(231+=+(2a m +=+2222a m n +=++222a m n =+2b mn =a +(2a m +=+a =b =6AB =4AD =BP AM ⊥(1)求证:.(2)求AE 的长.24.如图①,在四边形ABCD 中,,E 、F 分别是BC 、AD 的中点,连结EF 并延长,分别与BA 、CD 的延长线交于点M 、N .(1)求证:;(2)如图②,在四边形ADBC 中,AB 与CD 相交于点O ,,E 、F 分别是BC 、AD 的中点,连结EF ,分别交DC 、AB 于点M 、N ,判断的形状.25.如图,在正方形ABCD 中,,E 是射线AC 上的一点,连接DE ,过点E 作,交直线AB 于点F .以DE 、EF 为邻边作矩形DEFG ,连接AG.AE EP =AB CD =BME CNE ∠=∠AB CD =OMN △4AB =EF ED ⊥(1)求证:矩形DEFG 是正方形;(2)如图1,当E 点在对角线AC 上时,求的值;(3)当时,求DE 的长.26.我们知道,四边形有两组对边,两组对角,两条对角线,已经研究了,如果四边形满足下列条件之一:①两组对边分别平行;②两组对边分别相等;③一组对边平行且相等;④对角线互相平分,那么这个四边形是平行四边形.由此,进一步探究……(1)如图①,在四边形ABCD 中,,.求证:四边形ABCD 是平行四边形.(2)命题:如果四边形满足一组对边平行且另一组对边相等,那么这个四边形是平行四边形.如果这个命题是真命题,请证明;否则,请画出一个反例示意图,并标明所满足的条件.(3)命题:如果四边形满足一组对边相等且一条对角线平分另一条对角线,那么这个四边形是平行四边形.(Ⅰ)小明认为这是假命题,尝试画出反例,如图②,他先画出四边形ABCD 的一条边AB ,一条对角线BD .请你利用无刻度直尺和圆规在图②中画出反例.(保留作图痕迹,不写作法,可以有必要的文字说明)(Ⅱ)小明进一步探索发现,在四边形ABCD 中,,对角线AC 、BD 相交于点O ,且,,,对于满足条件的平行四边形ABCD 的个数随着AB 长度的变化而变化,直接写出平行四边形ABCD 的个数及对应的AB的长的取值范围.AG AE+CE =A C ∠=∠B D ∠=∠AB CD =OB OD =8BD =60AOB ∠=︒。

八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇下学期期末试卷

八年级数学人教新课标版(2012教材)下学期期末试卷(答题时间:90分钟) 一、选择题 1. 如果2(21)a =1−2a ,则( )A. a <12B. a ≤12C. a >12D. a ≥122. 某次器乐比赛设置了6个获奖名额,共有ll 名选手参加,他们的比赛得分均不相同。

若知道某位选手的得分。

要判断他能否获奖,在下列ll 名选手成绩的统计量中,只需知道( )A. 平均数B. 众数C. 中位数D. 无法判断 3. 计算(2-1)(2+1)2的结果是( ) A. 2+1 B. 3(2-1) C. 1D. -1 4. 如图,正方形OABC 的边长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A. 1B.2 C. 1.5 D. 2 5. 一条直线y =kx +b ,其中k +b =-5、kb =6,那么该直线经过( ) A. 第二、四象限B. 第一、二、三象限C. 第一、三象限D. 第二、三、四象限*6. 你喜欢看篮球比赛吗?美国休斯敦火箭队为了能够重塑昔日辉煌,在这个夏天的转会市场上引爆了一个“重磅炸弹”,他们用弗朗西斯交换来两届得分王麦格雷迪,下表为休斯球龄(年)1 2 3 6 7 9 10 12 13 人数 41 2 3 1 1 2 2 1 A. 1,6 B. 6,1 C. 1,1 D. 6,3*7. 直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )A. x >-1B. x <-1C. x <-2D. 无法确定*8. 如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B ′处,点A 对应点为A ′,且B ′C =3,则AM 的长是( )A. 1.5B. 2C. 2.25D. 2.5**9. 把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是( ) A. 1<m <7 B. 3<m <4 C. m >1 D. m <4**10. 如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A. 1B. 2C. 4-22D. 32-4二、填空题 11. 某班七个兴趣小组人数分别为:3,3,4,x ,5,5,6,已知这组数据的平均数是4,则这组数据的中位数是________。

初二数学下试题及答案

DCBA 二、填空题(每小题3分:共36分) 7.化简:111+++x x x = . 8.分式方程112=-x 的解为 .9.mm :用科学记数法表示是 mm .10.点(4:-3)关于原点对称的点的坐标是 _____________. 11.如图:在梯形ABCD 中:AD ∥BC :AC =BD :AB =5cm : 则DC =___cm.12.把命题“对等角相等”改写成“如果…那么…”的形式:______________________________________________ .13.命题“若b a =:则22b a =”的逆命题是 命题(选填“真”或“假”). 14.若正比例函数kx y =(k ≠0)经过点(1-:2):则k 的值为_______.15.已知四边形ABCD 中:90A B C ∠=∠=∠=︒:若添加一个条件即可判定该四边形是正方形:那么这个条件可以是____________.16.甲、乙两人进行射击比赛:在相同条件下:各射击10次:他们的平均成绩均为7环:10次射击的成绩的方差分别是S 2甲 = 3:S 2乙 =1.5:则成绩比较稳定的是___________.(填“甲”或“乙”)。

17.如图:已知AB 、CD 相交于点O :AD=BC :试添加一个条件:使得△AOD ≌△COB :你添加的条件是 (只需写一个).18.将一个正三角形纸片剪成四个全等的小正三角形:再将其中的一个按同样的方法剪成四个更小的正三角形:……如此继续下去:结果如下表:所剪次数 1 2 3 4 … n正三角形个数 471013…n aD B CAO第17题(第11题)则10a = . 三.解答题(共90分)19.(8分)计算:130512)2(--⎪⎭⎫⎝⎛+--π20.(8分)先化简再求值: 12-x x ÷(1+ 11-x ) :其中x=-2 .21.(8分)如图:菱形ABCD 中:点E 、F 分别是BC 、CD 边的中点.求证:AE=AF .22.(8分)小青在八年级上学期的数学成绩如下表所示.测验类别 平时测验期中考试 期末考试 测验1 测验2 测验3 课题学习 成绩887286989081(1)计算小青该学期平时测验的平均成绩: (2)如果学期总评成绩根据如图所示的权重计算:请计算小青该学期的总评成绩.A FD CB EDCBA23.(8分)如图:已知平行四边形ABCD .(1)用直尺和圆规作出∠ABC 的平分线BE :交AD 的延长线于点E :交DC 于点F(保留作图痕迹:不写作法):(2)在第(1)题的条件下:求证:△ABE 是等腰三角形24.(8分)下面两图是某班在“五·一”黄金周期间全体同学以乘汽车、步行、骑车外出方式旅游的人数分布直方图和扇形分布图.从这两个分布图所提供的数字:请你回答下列问题: ⑴补上人数分布直方图中步行人数的空缺部分:⑵若全校有2500名学生:试估计该校步行旅游的人数.FE D CB A 25.(8分)如图:在平行四边形ABCD 中:点E 、F 在BD 上:且BF=DE. ⑴直接写出图中一对全等的三角形:⑵延长AE 交BC 的延长线于G :延长CF 交DA 的延长线于H (请自己补全图形): 求证:四边形 AGCH 是平行四边形.26. (8分)如图:在直角坐标平面内:函数),0(为常数m x xmy >=的图象经过A(1:4):B(a :b):其中a>1:过点B 作y 轴垂线:垂足为C :连接AC 、AB.⑴求m 的值:⑵若△ABC 的面积为4:求点B 的坐标.27. (13分)甲加工A型零件60个所用时间和乙加工B型零件80个所用时间相同:每天甲、乙两人共加工35个零件:设甲每天加工x个.(1)直接写出乙每天加工的零件个数(用含x的代数式表示):(2)求甲、乙每天各加工多少个:(3)根据市场预测估计:加工A型零件所获得的利润为m元/ 件(3≤m≤5):加工B型零件所获得的利润每件比A型少1元。

2022-2023学年第二学期初二数学名校优选培优训练专题01 数据的收集、整理、描述

2022-2023学年第二学期初二数学名校优选培优训练专题测试专题01 数据的收集、整理、描述姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022春•旺苍县期末)某学习小组为了解本城市100万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟,对于这个数据收集与处理的问题,下列说法正确的是()A.该调查的方式是普查B.本城市只有40个成年人不吸烟C.本城市一定有20万人吸烟D.样本容量是502.(2分)(2022春•朔州期末)为节约用电,某市根据每户居民每月用电量分为三档频数户收费.第一档电价:每月用电量低于240度,每度0.48元;第二档电价:每月用电量为240~400度,每度0.53元;第三档电价:每月用电量超过400度,每度0.78元小明同学对该市有1000居民的某小区月用电量(单位:度)进行了抽样调查,绘制了如图所示的统计图.下列说法不合理的是()A.本次抽样调查的样本容量为50B.估计该小区按第一档电价交费的居民户数最多C.该小区按第二档电价交费的居民有240户D.该小区按第三档电价交费的居民比例约为6%3.(2分)(2021•河北)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“()”应填的颜色是()A.蓝B.粉C.黄D.红4.(2分)(2020秋•桂林期末)在一个不透明的袋子里,有若干完全相同的蓝色玻璃球,现将只有颜色不同的10个同款红色玻璃球放入袋中,充分混合后随机倒出20个,其中红色玻璃球有2个.由此可估计袋子里原有蓝色玻璃球大约()A.50个B.80个C.90个D.100个5.(2分)(2022春•鼓楼区校级月考)为了考查一批日光灯管的使用寿命,从中抽取了30只进行试验,在这个问题中,下列说法正确的有()①总体是指这批日光灯管的全体;②个体是指每只日光灯管的使用寿命;③样本是指从中抽取的30只日光灯管的使用寿命;④样本容量是30只.A.1个B.2个C.3个D.4个6.(2分)(2020春•西城区期末)甲、乙两座城市某年四季的平均气温如图所示,下列说法正确的是()A.甲城市的年平均气温在30℃以上B.乙城市的年平均气温在0℃以下C.甲城市的年平均气温低于乙城市的年平均气温D.甲、乙两座城市中,甲城市四季的平均气温较为接近7.(2分)(2020•东城区一模)党的十八大以来,全国各地认真贯彻精准扶贫方略,扶贫工作力度、深度和精准度都达到了新的水平,为2020年全面建成小康社会的战略目标打下了坚实基础.以下是根据近几年中国农村贫困人口数量(单位:万人)及分布情况绘制的统计图表的一部分.201720182019年份人数地区东部30014747中部1112181西部1634916323(以上数据来源于国家统计局)根据统计图表提供的信息,下面推断不正确的是()A.2018年中部地区农村贫困人口为597万人B.2017﹣2019年,农村贫困人口数量都是东部最少C.2016﹣2019年,农村贫困人口减少数量逐年增多D.2017﹣2019年,虽然西部农村贫困人口减少数量最多,但是相对于东、中部地区,它的降低率最低8.(2分)(2021•贵阳模拟)改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高9.(2分)(2019秋•大竹县期末)某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是()A.80B.144C.200D.9010.(2分)(2019•合肥模拟)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如统计图表:身高情况分组表(单位:cm)组别身高A x<155B155≤x<160C160≤x<165D165≤x<170E x≥170根据图表提供的信息,样本中,身高在160≤x<170之间的女学生人数为()A.8B.6C.14D.16评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022•自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池.一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是鱼池.(填甲或乙)12.(2分)(2021秋•青冈县期末)学校以年级为单位开展广播操比赛,全年级有13有个班级,每个班级有50名学生,规定每班抽25名学生参加比赛,这时样本容量是.13.(2分)(2022春•高邑县期中)阳光体育运动关乎每个学生未来的幸福生活,今年四月份,我区某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班级2﹣3名选手参赛,现将80名选手比赛成绩(次/min)进行统计.绘制如图所示的频数分布直方图,则图中a的值为.14.(2分)(2021秋•鲤城区校级期末)为了解某市参加2014年中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.样本容量是.15.(2分)(2021春•孝感期末)红旗学校睿智兴趣小组在学习了《数据的分析》后,对本校九年级学生数学学业水平调研考试成绩进行了抽样调查.抽样成绩评定为A、B、C、D四个等级(注:等级A、B、C、D分别代表优秀、良好、合格、不合格),从九年级学生中随机抽取40名学生的数学成绩进行统计分析,并绘制成如图所示扇形统计图.若该校九年级学生有720名,请你估计这次数学学业水平调研考试中,成绩达到合格以上(含合格)的人数大约有名.16.(2分)(2021春•栾城区期中)对某班最近一次数学测试成绩(得分取整数)进行统计分析,全班共50人,将50分以上(不含50分)的成绩由低到高分成五组,并绘制成如图所示的频数分布直方图,根据直方图提供的信息,在这次测试中,成绩为及格(60分以上,不含60分)的在全班学生成绩中所占百分比为.17.(2分)(2021春•丰台区校级期末)如图是某国产品牌手机专卖店去年1至5月高清大屏手机销售额折线统计图,根据图中信息,可以判断相邻两个月销售额变化最大的差的绝对值为万元.18.(2分)(2021春•齐齐哈尔期末)为了估计池塘里有多少条鱼,先从湖里捕捞100条鱼坐上标记,然后放回池塘去,经过一段时间,待有有标记的鱼完全混合于鱼群后,第二次再捕捞100条鱼,发现有5条有标记,那么你估计池塘里有多少条鱼.19.(2分)(2022春•新乐市校级月考)某校抽取八年级学生人数的10%进行体质测试(成绩为整数),并绘制成如图6所示的不完整的统计图.已知86分及以上为优秀;76分﹣85分为良好;60分75分为及格;59分及以下为不及格.(1)在抽取的学生中不及格人数占抽取总人数的百分比是;(2)若抽取的学生中不及格学生的总分恰好等于某一个良好等级学生的分数,该校八年级学生中优秀等级的大约有人.20.(2分)(2022春•让胡路区校级期末)一个口袋中有红球、白球共20个,这些球除颜色外其他都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口袋中有红球个.评卷人得分三.解答题(共9小题,满分60分)21.(2022春•新华区校级期中)在信息快速发展的社会,“信息消费”已成为人们生活的重要部分,我市的一个社区随机抽取了部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图,已知A、B两组户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.(1)A组的频数是,B组对应扇形的圆心角的度数是;(2)补全直方图(需标明各组频数);(3)若该社区有30000户住户,请估计月信息消费额不少于200元的户数是多少?月消费额分组频数分布直方图组别消费额(元)A10≤x<100B100≤x<200C200≤x<300D300≤x<400E x≥40022.(2022春•晋州市校级期末)为了进一步了解某校八年级学生的身体素质情况,体育老师抽测了该校八年级(1)班50名学生一分钟的跳绳次数,以测试数据为样本,绘制出部分频数分布表和如图所示的不完整的频数分布直方图.组别次数x频数(人数)第1组80≤x<1006第2组100≤x<1208第3组120≤x<140a第4组140≤x<16018第5组160≤x<1806(1)本次调查为(填“普查”或“抽样调查”),样本容量为;(2)a=;频数分布直方图的组距为;(3)请把频数分布直方图补充完整;(4)若在一分钟内跳绳次数少于120次的为测试不合格,则该校八年级共1000人中,一分钟跳绳不合格的人数大约有多少?23.(2022春•雨花区校级期末)为了了解2月份某小区家庭用电情况,随机抽取了该小区部分家庭2月份电费金额进行调查,并将数据进行了如下整理,请根据所提供的信息,解答下列问题:月用电费(元)频数(户)频率10≤x<100120.24100≤x<20018n200≤x<300m0.20300≤x<40060.12400≤x<50040.08(1)求m,n,并把频数分布直方图补充完整;(2)求在被调查的家庭中,该小区2月份所用电费少于300元的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区2月份电费不少于300元的家庭大约有多少户?24.(2022春•鞍山期末)某学校开展“读书节”活动,为了解学生每周的课外阅读时间情况,随机调查了部分学生,对被抽查学生每周的课外阅读时间x(单位:时)进行分组整理,并绘制了如图所示不完整的频数分布表和频数分布直方图.阅读时间/时组中值频数百分比0≤x<211010%2≤x<432121%4≤x<654040%6≤x<878≤x≤10944%根据图中提供的信息,解答下列问题:(1)本次共随机调查了名学生;(2)请补全频数分布直方图;(3)估计该学校学生每周平均课外阅读时间;(4)请估计该校1000名学生中每周的课外阅读时间不小于6时的人数.25.(2021秋•安居区期末)某学校为了丰富学生课余生活,开展了“第二课堂”活动,推出了以下四种选修课程:A、绘画;B、唱歌;C、演讲;D、书法.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如下两幅不完整的统计图,请结合统计图中的信息解决下列问题:(1)这次抽查的学生人数是多少人?(2)将条形统计图补充完整;(3)在扇形统计图中,求选课程D的人数所对的圆心角的度数;(4)如果该校共有1200名学生,请你估计该校报课程B的学生约有多少人?26.(2021秋•双峰县期末)尚志市某中学为了了解学生的课余生活情况,学校决定围绕“A:欣赏音乐、B:体育运动、C:读课外书、D:其他活动中,你最喜欢的课余生活种类是什么?(只写一类)“的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查问卷适当整理后绘制成如图所示的不完整的条形统计图,其中喜欢欣赏音乐的学生占被抽取学生的10%,请你根据以上信息解答下列问题:(1)在这次调查中一共抽取了多少名学生?(2)通过计算,补余条形统计图;(3)已知该校有学生2400人,请根据调查结果估计该校喜欢体育运动的学生有多少名?27.(2022春•临湘市期末)某校为加强学生安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分100分)进行统计,请根据尚未完成的频率和频数分布直方图,解答下列问题:分数段频数频率50.5~60.5160.0860.5~70.5400.270.5~80.5500.2580.5~90.5m0.3590.5~100.524n(1)这次抽取了名学生的竞赛成绩进行统计,其中m=,n=;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?28.(2022•永善县模拟)某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)扇形统计图中“足球”所对应扇形的圆心角为度;(4)该校共有1 200名学生,请估计全校有多少学生喜爱篮球?29.(2018•衢州)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?答案与解析一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022春•旺苍县期末)某学习小组为了解本城市100万成年人中大约有多少人吸烟,随机调查了50个成年人,结果其中有10个成年人吸烟,对于这个数据收集与处理的问题,下列说法正确的是()A.该调查的方式是普查B.本城市只有40个成年人不吸烟C.本城市一定有20万人吸烟D.样本容量是50解:A.该调查的方式是抽样调查,此选项说法错误;B.本城市成年人不吸烟的约有100×=20(万人),此选项错误;C.本城市大约有20万成年人吸烟,此选项错误;D.样本容量是50,此选项正确;故选:D.2.(2分)(2022春•朔州期末)为节约用电,某市根据每户居民每月用电量分为三档频数户收费.第一档电价:每月用电量低于240度,每度0.48元;第二档电价:每月用电量为240~400度,每度0.53元;第三档电价:每月用电量超过400度,每度0.78元小明同学对该市有1000居民的某小区月用电量(单位:度)进行了抽样调查,绘制了如图所示的统计图.下列说法不合理的是()A.本次抽样调查的样本容量为50B.估计该小区按第一档电价交费的居民户数最多C.该小区按第二档电价交费的居民有240户D.该小区按第三档电价交费的居民比例约为6%解:本次抽样调查的样本容量=4+12+14+11+6+3=50(户),故A不符合题意.估计该小区按第一档电价交费的居民户数占=60%,第二档占=34%,第三档占=6%,故B,D不符合题意.该小区按第二档电价交费的居民约为1000×34%=340(户),故C符合题意,故选:C.3.(2分)(2021•河北)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“()”应填的颜色是()A.蓝B.粉C.黄D.红解:根据题意得:5÷10%=50(人),(16÷50)×100%=32%,则喜欢红色的人数是:50×28%=14(人),50﹣16﹣5﹣14=15(人),∵柱的高度从高到低排列,∴图2中“()”应填的颜色是红色.故选:D.4.(2分)(2020秋•桂林期末)在一个不透明的袋子里,有若干完全相同的蓝色玻璃球,现将只有颜色不同的10个同款红色玻璃球放入袋中,充分混合后随机倒出20个,其中红色玻璃球有2个.由此可估计袋子里原有蓝色玻璃球大约()A.50个B.80个C.90个D.100个解:设袋子中蓝色玻璃球的个数为x,根据题意,得:=,解得x=90,经检验x=90是分式方程的解,所以估计袋子中蓝色玻璃球的个数约为90个,故选:C.5.(2分)(2022春•鼓楼区校级月考)为了考查一批日光灯管的使用寿命,从中抽取了30只进行试验,在这个问题中,下列说法正确的有()①总体是指这批日光灯管的全体;②个体是指每只日光灯管的使用寿命;③样本是指从中抽取的30只日光灯管的使用寿命;④样本容量是30只.A.1个B.2个C.3个D.4个解:本题中的总体是指这批日光灯管的全体的使用寿命,样本容量是30,所以①④不正确.个体是指每只日光灯管的使用寿命,样本是指从中抽取的30只日光灯管的使用寿命,所以②和③正确.故选:B.6.(2分)(2020春•西城区期末)甲、乙两座城市某年四季的平均气温如图所示,下列说法正确的是()A.甲城市的年平均气温在30℃以上B.乙城市的年平均气温在0℃以下C.甲城市的年平均气温低于乙城市的年平均气温D.甲、乙两座城市中,甲城市四季的平均气温较为接近解:由折线图可知,甲的年平均气温==20.25℃.故选项A不符合题意,乙的年平均气温==3.5℃,故选项B,C不符合题意.故选:D.7.(2分)(2020•东城区一模)党的十八大以来,全国各地认真贯彻精准扶贫方略,扶贫工作力度、深度和精准度都达到了新的水平,为2020年全面建成小康社会的战略目标打下了坚实基础.以下是根据近几年中国农村贫困人口数量(单位:万人)及分布情况绘制的统计图表的一部分.年份201720182019人数地区东部30014747中部1112181西部1634916323(以上数据来源于国家统计局)根据统计图表提供的信息,下面推断不正确的是()A.2018年中部地区农村贫困人口为597万人B.2017﹣2019年,农村贫困人口数量都是东部最少C.2016﹣2019年,农村贫困人口减少数量逐年增多D.2017﹣2019年,虽然西部农村贫困人口减少数量最多,但是相对于东、中部地区,它的降低率最低解:A、2018年中部地区农村贫困人口为:1660﹣147﹣916=597(万人).故A的说法正确;B、由统计表可知B选项说法正确;C、∵4335﹣3046=1289,3046﹣1660=1386,1660﹣551=1109,∴1109<1289<1386,故C不正确,D、∵≈0.843,≈0.837,≈0.802,∴0.802<0.837<0.843,∴D说法正确.∴只有C推断不正确.故选:C.8.(2分)(2021•贵阳模拟)改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高解:2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C 错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所提高,故D正确;故选:C.9.(2分)(2019秋•大竹县期末)某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知乙类书有90本,则丙类书的本数是()A.80B.144C.200D.90解:总数是:90÷45%=200(本),丙类书的本数是:200×(1﹣15%﹣45%)=200×40%=80(本)故选:A.10.(2分)(2019•合肥模拟)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如统计图表:身高情况分组表(单位:cm)组别身高A x<155B155≤x<160C160≤x<165D165≤x<170E x≥170根据图表提供的信息,样本中,身高在160≤x<170之间的女学生人数为()A.8B.6C.14D.16解:女生的人数是:4+12+10+8+6=40(人),则身高在160≤x<170之间的女学生人数为40×(25%+15%)=16(人).故选:D.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022•自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池.一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是甲鱼池.(填甲或乙)解:由题意可得,甲鱼池中的鱼苗数量约为:100÷=2000(条),乙鱼池中的鱼苗数量约为:100÷=1000(条),∵2000>1000,∴初步估计鱼苗数目较多的是甲鱼池,故答案为:甲.12.(2分)(2021秋•青冈县期末)学校以年级为单位开展广播操比赛,全年级有13有个班级,每个班级有50名学生,规定每班抽25名学生参加比赛,这时样本容量是325.解:25×13=325,样本容量是325,故答案为:325.13.(2分)(2022春•高邑县期中)阳光体育运动关乎每个学生未来的幸福生活,今年四月份,我区某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班级2﹣3名选手参赛,现将80名选手比赛成绩(次/min)进行统计.绘制如图所示的频数分布直方图,则图中a的值为4.解:根据题意得:a=80﹣8﹣40﹣28=4,故答案为:4.14.(2分)(2021秋•鲤城区校级期末)为了解某市参加2014年中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.样本容量是1600.解:为了解某市参加2014年中考的32000名学生的体质情况,抽查了其中1600名学生的体重进行统计分析.样本容量是1600,故答案为:1600.15.(2分)(2021春•孝感期末)红旗学校睿智兴趣小组在学习了《数据的分析》后,对本校九年级学生数学学业水平调研考试成绩进行了抽样调查.抽样成绩评定为A、B、C、D四个等级(注:等级A、B、C、D分别代表优秀、良好、合格、不合格),从九年级学生中随机抽取40名学生的数学成绩进行统计分析,并绘制成如图所示扇形统计图.若该校九年级学生有720名,请你估计这次数学学业水平调研考试中,成绩达到合格以上(含合格)的人数大约有504名.解:由题意,720×(25%+25%+20%)=504(名).故答案为:504.16.(2分)(2021春•栾城区期中)对某班最近一次数学测试成绩(得分取整数)进行统计分析,全班共50人,将50分以上(不含50分)的成绩由低到高分成五组,并绘制成如图所示的频数分布直方图,根据直方图提供的信息,在这次测试中,成绩为及格(60分以上,不含60分)的在全班学生成绩中所占百分比为82%.解:在这次测试中,成绩为及格(60分以上,不含60分)的在全班学生成绩中所占百分比为×100%=82%,故答案为:82%.17.(2分)(2021春•丰台区校级期末)如图是某国产品牌手机专卖店去年1至5月高清大屏手机销售额折线统计图,根据图中信息,可以判断相邻两个月销售额变化最大的差的绝对值为10万元.解:1、2月销售额变化的差的绝对值为7,2、3月销售额变化的差的绝对值为5,3、4月销售额变化的差的绝对值为10,4、5月销售额变化的差的绝对值为4,故答案为:10.18.(2分)(2021春•齐齐哈尔期末)为了估计池塘里有多少条鱼,先从湖里捕捞100条鱼坐上标记,然后放回池塘去,经过一段时间,待有有标记的鱼完全混合于鱼群后,第二次再捕捞100条鱼,发现有5条有标记,那么你估计池塘里有多少条鱼2000条.解:设湖中有x条鱼,则100:5=x:100,解得x=2000.故答案为:2000条.19.(2分)(2022春•新乐市校级月考)某校抽取八年级学生人数的10%进行体质测试(成绩为整数),并绘制成如图6所示的不完整的统计图.已知86分及以上为优秀;76分﹣85分为良好;60分75分为及格;59分及以下为不及格.(1)在抽取的学生中不及格人数占抽取总人数的百分比是4%;(2)若抽取的学生中不及格学生的总分恰好等于某一个良好等级学生的分数,该校八年级学生中优秀等级的大约有100人.解:(1)在抽取的学生中不及格人数所占的百分比是1﹣44%﹣32%﹣20%=4%,故答案为:4%.(2)因为一个良好等级学生分数为76~85分,而不及格学生平均分为40分,由此可以知道不及格学生仅有2人,将一个良好等级的分数当成78分估算出此结果也可,抽取优秀等级学生人数是:2÷4%×20%=10人,八年级优秀人数约为:10÷10%=100人.故该校八年级学生中优秀等级的人数大约是100人.故答案为:100.20.(2分)(2022春•让胡路区校级期末)一个口袋中有红球、白球共20个,这些球除颜色外其他都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回,不断重复这一过程,共摸了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

兰州交大东方中学2005—2006学年度第二学期 初二年级第二周数学考试试卷 时间: 分钟 满分:100分 总分 一、填空题:
1、用平方差公式计算:(a -1)(―a ―1)= ;
2、如果平行四边形的边长为8,一条对角线长为6,那么它的另一条对角线长m 的取值范围是 ;
3、如果不等式(a+1)x >a+1的解集是x <1,则a 的范围是 ;
4、若一次函数y=(2-m )x+m 的图象经过一、二、四象限,则m 的的取值范围是 ;
5、一件原价80元的衣服,现销价25%出售,如果再征收10%的税,则衣服售价 应为 元. 二、计算题 1、解不等式,并把解集在数轴上表示出来:12110312+--x x <1412-+x
2、已知:0|4|)13(2=-++-b b a , 求不等式)(72b x ax -->13的解集.
3、化简:
[))((22y x y x x -+-][22))((y x y y x +---],
4、计算:572×0.0435+(11
3-)2004×(323)2005
三、解答题: 1、如图,在△ABC 中,AD 平分∠BAC ,
AB+BD=AC.求∠B ∶∠C 的值.
A
B D
C 第1 题图
2、如图:已知梯形ABCD 中,AD ∥BC ,E 为CD 的中点,EF ⊥AB 于F.求证:梯形ABCD 的面积=EF ·AB.
3、如图,梯形ABCD 是由三个三角形拼成的,各直角边的长度如图所示.(1)请你运用两种方法计算梯形ABCD 的面积; (2)根据(1)的计算,探索a ,b ,c 三者之间
的关系,并用式子表示出来.
4、如图:已知四边形ABCD 是平行四边形,∠BCD 的角平分线CF 交边AB 于F ,∠ADC 的角平分线DG 交AB 于G .
(1)说明AF=GB ;
(2)请你在已知条件的基础上再添加一个条件,使得△EFG 为等腰直角三角形,并说明理由.
A B C D E F
第2题图 A B A
C D
b a b
c a c A 第3题图 B
F G
5、某公司在甲、乙两个仓库分别有农用车12辆和6辆,现需要调往A县10辆,B县8辆。

已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元;从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元。

(1)设从仓库乙调往A县的农用车x辆,求总运费y关于x的函数关系式;
(2)若要求总运费不超过900元,问共有几种调运方案?
(3)求出总运费最低的调运方案,最低运费是多少元?。

相关文档
最新文档