数学模型实验2
数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
数学建模实验报告

数学建模实验报告一、实验目的1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握数学建模分析和解决的基本过程。
2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验题目(一)题目一1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。
设每个乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直到电梯中的乘客下完时,电梯需停次数的数学期望。
2、问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。
所以选择采用计算机模拟的方法,求得近似结果。
(2)通过增加试验次数,使近似解越来越接近真实情况。
3、模型建立建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下,故没列只有一个1)。
而每行中1的个数代表在该楼层下的乘客的人数。
再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。
例如:给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14、解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5、实验结果ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。
数学建模实验报告

《数学建模实验》实验报告学院名称数学与信息学院专业名称提交日期课程教师实验一:数学规划模型AMPL求解实验内容1. 用AMPL求解下列问题并作灵敏度分析:一奶制品加工厂用牛奶生产A1和A2两种奶制品,1桶牛奶可以在甲类设备上用12小时加工成3公斤A1或者在乙类设备上用8小时加工成4公斤A2,且都能全部售出,且每公斤A1获利24元,每公斤A2获利16元。
先加工厂每天能得到50桶牛奶的供应,每天工人总的劳动时间为480小时,并且甲类设备每天至多加工100公斤A1,乙类设备的加工能力没有限制,试为该厂制定一个计划,使每天的获利最大。
(1)建立模型文件:milk.modset Products ordered;param Time{i in Products }>0;param Quan{i in Products}>0;param Profit{i in Products}>0;var x{i in Products}>=0;maximize profit: sum{i in Products} Profit [i]* Quan [i]*x[i];subject to raw: sum{i in Products}x[i] <=50;subject to time:sum{i in Products}Time[i]*x[i]<=480;subject to capacity: Quan[first(Products)]*x[first(Products)]<=100;(2)建立数据文件milk.datset Products:=A1 A2;param Time:=A1 12 A2 8;param Quan:=A1 3 A2 4;param Profit:=A1 24 A2 16;(3) 建立批处理文件milk.runmodel milk.mod;data milk.dat;option solver cplex;solve;display x;(4)运行运行结果:CPLEX 11.0.0: optimal solution; objective 33602 dual simplex iterations (1 in phase I)x [*] :=A1 20A2 30;(5)灵敏度分析:model milk.mod;data milk.dat;option solver cplex;option cplex_options 'sensitivity';solve;display x;display x.rc, x.down, x.up;display raw, time, capacity;display raw.down, raw.up,raw.current, raw.slack;得到结果:【灵敏度分析】: x.rc x.down x.up:=A1 -3.55271e-15 64 96A2 0 48 72;raw = 48time = 2capacity = 0raw.down = 43.3333raw.up = 60raw.current = 50raw.slack = 0某公司有6个建筑工地,位置坐标为(a i, b i)(单位:公里),水泥日用量d i (单位:吨)1) 现有j j j吨,制定每天的供应计划,即从A, B两料场分别向各工地运送多少吨水泥,使总的吨公里数最小。
数学建模实验二:微分方程模型Matlab求解与分析

实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。
二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。
其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。
(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。
数学模型实验报告2

教师签名:
实验小结: 本次试验主要让我们掌握线性方程组建模,利用 MATLAB 来计算线性方程,从而解决 实际问题,是一个非常实用的解决实际问题的方法。十分值得学习。
教师评语: 1. 实验结果及解释: ( 准确合理、 较准确、 不合理 ) ; 2. 实验步骤的完整度: ( 完整、 中等、 不完整 ) ; 3. 实验程序的正确性: ( 很好、 较好、 中等、 较差、 很差 ) ; 4. 卷面整洁度: ( 很好、 评定等级: ( ) 较好、 中等、 较差、 很差 ) ; 日期:
X4-X11+X12=500
X5+X8=310
Байду номын сангаас
X5-X6+X10=400
(2)使用 MATLAB 求线性方程组:
实验目的: 掌握线性方程组建模,并会用它解决一些实际问题;熟悉科学计算软件 MATLAB 求 线性方程组的命令。 实验仪器: 1、支持 Intel Pentium Ⅲ及其以上 CPU,内存 256MB 以上、硬盘 1GB 以上容量的 微机; 软件配有 Windows98/2000/XP 操作系统及 MATLAB 软件等。 2、了解 MATLAB 等软件的特点及系统组成,在电脑上操作 MATLAB 等软件。 实验内容、步骤及程序: 实验内容 问题一:某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路 每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和 离开的车数相等, 整个图中进入和离开的车数相等 。
31 31
左上方框里填写学号后两位,学习委员按此顺号(报告展开排序)交给老师
数学模型实验报告
专业 姓名 实验时间 实验名称 信息与计算科学 史博强 2017 年 9 班级 同组人 月 23 日 初等模型 实验地点 k7-403 1班 组别 指导教师 许小芳
数学建模与数学实验课后习题答案

P594•学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432 人住在C 宿舍。
学生要组织一个10人的委员会,使用Q 值法分配各 宿舍的委员数。
解:设P 表示人数,N 表示要分配的总席位数。
i 表示各个宿舍(分别取 A,B,C ), p i 表 示i 宿舍现有住宿人数, n i 表示i 宿舍分配到的委员席位。
首先,我们先按比例分配委员席位。
23710 A 宿舍为:n A ==2.365 1002 333"0 B 宿舍为:n B =3.323 1002 432X0 C 宿舍为:n C =4.3111002现已分完9人,剩1人用Q 值法分配。
经比较可得,最后一席位应分给 A 宿舍。
所以,总的席位分配应为: A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。
QA23722 3= 9361.5 Q B33323 4 = 9240.7 Q C4322 4 5=9331.2商人们怎样安全过河傻麴删舫紬削< I 11山名畝臥蹄峨颂禮训鋤嫌邂 韻靖甘讹岸讎鞍輯毗匍趾曲展 縣確牡GH 錚俩軸飙奸比臥鋪謎 smm 彌鯉械即第紘麵觎岸締熾 x^M 曲颁M 删牘HX …佛讪卜过樹蘇 卜允棘髒合 岡仇卅毘冋如;冋冋1卯;砰=口 於广歎煙船上觸人敦% V O J U;xMmm朗“…他1曲策D 咿川| thPl,2卜允隸策集合 刼為和啊母紳轉 多步贱 就匚叫=1入“山使曲并按 腿翻律由汩3』和騒側),模型求解 -穷举法〜编程上机 ■图解法S={(x ?jOI x=o, j-0,1,2,3;X =3? J =0,1,2,3; X =»*=1,2}J规格化方法,易于推广考虑4名商人各带一随从的情况状态$=(xy¥)~ 16个格点 允许状态〜U )个。
点 , 允许决策〜移动1或2格; k 奇)左下移;&偶,右上移. 右,…,必I 给出安全渡河方案评注和思考[廿rfn片,rfl12 3xmm賤縣臓由上题可求:4个商人,4个随从安全过河的方案。
建模实验报告

建模实验报告摘要:本实验主要针对建模方法进行研究与探索,分别采用了数学模型、统计模型和物理模型进行建模实验。
实验结果表明,不同的建模方法对于问题的解决和分析具有不同的优势和适用性,选择合适的建模方法能够有效提高问题的解决效率和精确度。
1.引言建模是指将实际问题转化为数学模型、统计模型或物理模型等形式的一种方法。
通过建模,我们可以抽象出实际问题中的关键因素和变量,进一步分析和解决问题。
本实验将重点研究数学模型、统计模型和物理模型的建模方法,并通过实验验证其有效性和适用性。
2.数学模型的建模方法数学模型是以数学的形式描述实际问题的模型。
在本实验中,我们采用了几种常见的数学建模方法,包括代数方程模型、微分方程模型和最优化模型。
2.1 代数方程模型代数方程模型是一种通过代数方程来描述问题的模型。
我们可以采用一系列代数方程来表示问题中的变量和关系,进而通过求解方程组来得到问题的解。
在实验中,我们以一个简单的线性方程组作为例子,通过代数方程模型计算方程组的解。
2.2 微分方程模型微分方程模型是一种通过微分方程来描述问题的模型。
微分方程可以描述问题中的变量和其变化率之间的关系。
在实验中,我们以一个经典的弹簧振动模型为例,通过微分方程模型求解系统的振动频率和振幅。
2.3 最优化模型最优化模型是一种通过寻找最优解来描述问题的模型。
最优化模型可以用于解决各种优化问题,如线性规划、整数规划等。
在实验中,我们以一个简单的线性规划问题为例,通过最优化模型求解问题的最优解。
3.统计模型的建模方法统计模型是一种通过统计理论和方法来描述问题的模型。
在本实验中,我们主要研究了回归分析和时间序列分析两种常见的统计建模方法。
3.1 回归分析回归分析是一种通过建立变量之间的回归关系来描述问题的模型。
在实验中,我们以一个销售数据的回归分析为例,通过建立销售额和广告投入之间的回归关系,预测未来的销售额。
3.2 时间序列分析时间序列分析是一种通过统计和数学方法来描述时间序列的模型。
北京工业大学、薛毅、数学模型作业二、作业2、实验二

实验二解:(1)将线性方程组写成矩阵形式dXdt =AX,A=a11a12a21a22=1001若det(A)≠0,则X0=(0,0)T,是唯一平衡点。
p=-(a11+a22)=-2,q=det(A)=1,因为p<0,q>0,所以平衡点不稳定。
(2)将线性方程组写成矩阵形式dXdt =AX,A=a11a12a21a22=−1002若det(A)≠0,则X0=(0,0)T,是唯一平衡点。
p=-(a11+a22)=-1,q=det(A)=-2,因为p<0,q<0,所以平衡点不稳定。
(3)将线性方程组写成矩阵形式dXdt =AX,A=a11a12a21a22=01−20若det(A)≠0,则X0=(0,0)T,是唯一平衡点。
p=-(a11+a22)=0,q=det(A)=2,因为p=0,q>0,所以平衡点不稳定。
(4)将线性方程组写成矩阵形式dXdt =AX,A=a11a12a21a22=−100−2若det(A)≠0,则X0=(0,0)T,是唯一平衡点。
p=-(a11+a22)=3,q=det(A)=2,因为p>0,q>0,p2>4q,所以平衡点稳定。
解:f(N)=R-KN,令f(N)=0,则N=k/Rf`(N)=-K<0,则N=k/R是稳定的。
当N<k/R时f(N)>0,N`(t)>0,N(t)递增;N>k/R时f(N)<0,N`(t)<0,N(t)递减ð2N ðt2=∂f∂N∙ðNðt=-K(R-KN),表明N=k/R为拐点,当N<k/R时N``(t)<0,N>k/R时N``(t)>0从图中可以看出N=k/R是营养平衡值,无论大于或小于这个值,细胞都会向这个点调整,偏离越大调整速率越大,接近平衡值时速率变小。
解:列满足条件的微分方程∂N=r1N−r2N12求平衡点,令f N=r1N−r2N1=0,解得N1=0,N2=r22r12ð2N ðt =∂f∂N∙ðNðt=(r1−12r2N−12)(r1N−r2N12),解得N=r224r12从图中可以看出N1=0不稳定,N2=r22r12是稳定的解:令f x=r1−xNx−Ex=0得平衡点x1=N1−Er,x2=0f`(x1)=E-r,f`(x2)= r-E.若E<r,则有f`(x1)<0,f`(x2)>0.则x1是稳定的,x2是不稳定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模实验
二.微分方程实验
1. 微分方程稳定性分析
绘出下列自治系统相应的轨线,并标出随t 增加的运动方向,确定平衡点,并按稳定的、渐近稳定、或不稳定的进行分类:
(1)⎪⎩⎪⎨⎧==;,y dt
dy x dt dx (2)⎪⎩⎪⎨⎧=-=;2,y dt dy x dt dx (3)⎪⎩⎪⎨⎧-==;2,x dt dy y dt dx (4)⎪⎩⎪⎨⎧-=-=;
2,
y dt dy x dt dx
(1) 选取平衡点,由,0)(,0)(====y y f x x f 可知为(0,0)
系数矩阵为
,1001⎥⎦
⎤
⎢⎣⎡=A 易得特征值
,
121==λλ则
,01.,02)(2121>==<-=+-=λλλλq p 对照稳定性情况表,平衡点是不稳定的。
(2) 根据(1)题所求方法,取平衡点(0,0),易得特征值
,02,01,2,121<-=<-==-=q p λλ对照稳定性情况表,可知平衡点是不稳定的。
(3) 取平衡点(0,0),易得特征值,04142.1,0,4142.1,4142
.121>==-==q p i i λλ对照稳定性情况表,可知平衡点是不稳定的。
(4) 取平衡点(1,0),易得特征值,022,03,2,121<=>=-=-=q p λλ对照稳定性情
况表,可知平衡点是稳定的。
2. 种群增长模型
一个片子上的一群病菌趋向于繁殖成一个圆菌落。
设病菌的数目为N ,单位成员的增长率为r1,则由Malthus 生长率有
.1N r dt
dN
=但是,处于周界表面的那些病菌由于寒冷而受到损伤,它们死亡的数量与N 1/2成比例,其比例系数为让。
求N 满足的微分方程,不用求解,图示其解族,方程是否有平衡接,如果有,是否为稳定? 解:
由题可得,N 满足的微分方程为:,)(21
21N r N r dt
dN
N f -==
求取平衡点,令0)(=N f ,可得平衡点为(0,2
122/r r ),
由)).(21(212121212
2N r N r N r r dt
N d --=-,令,022
=dt N d 可求得21224/r r N =, 令2
12221224/,/,0r r N r r N N ===把第一象限划分为三部分,且分别有
.0,0;0,0;0,0222222><<>>>dt
N
d dt dN dt N d dt dN dt N d dt dN 则微分方程的解族图形如下所示,其中,0=N 是不稳定的,2
122/r r N =是稳定的。
解:
(1) 构建方程组⎩
⎨⎧--+-=--+-=)]1([)()]
1([)(2211222222111111x b x b c a x x f x b x b c a x x f ,令,0)(,0)(21==x f x f
易得平衡点)0,(),,0(),0,0(1
11
12222210c b a c p c b a c p p -- 对于P 0,系数矩阵
⎥⎦
⎤⎢⎣⎡--=⎥⎦⎤⎢
⎣⎡--------=221
`1221121222211
222
121111100a c a c x c b x c b a c x c b x c b x c b x c b a c A , )(2211a c a c p -+--=,已知2211,a c a c >>,所以p<0,该点不稳定。
对于P 1,系数矩阵
⎥⎥⎥⎥⎦
⎤
⎢⎢⎢⎢⎣⎡------=⎥⎦⎤⎢⎣
⎡--------=211122221212211221121222211222
1211111))(()(0)(b a c b b b a c b c c a c a c x c h x c b a c x c b x b x c b x c b a c A λ,
),)
)(().()((,))(()(2
111221221121112212211b a c b b c c a c a c q b a c b b c c a c a c p -----=--+--
-=由题可知,,该点是稳定的。
即),0())(),((2
22
221c b a c t x t x t -→∞→时,,说明物种1最终会灭亡。
对于P 2,系数矩阵
⎥⎥⎥⎥⎦
⎤⎢⎢
⎢⎢⎣⎡
-------=⎥⎦⎤⎢⎣
⎡--------=1211221
11211221121222211222
1211111)(0)()(c c a c a c b a c b a c x c h x c b a c x c b x b x c b x c b a c A λ ),)().((,)()(2
211221112112211c c
a c a c a c q c c a c a c a c p -----=--
-+--= 由题可知,,该点是稳定的。
即)0,(
))(),((1
11
121c b a c t x t x t -→∞→时,,物种2最终要灭亡。
方程组⎩⎨⎧==0)(0)(2
1x f x f 为线性方程组,在平面上匹配两条直线21,l l 将第一象限分为三个
区域。
(1) 当
22
11c a c a >
时,随着时间的增加,物种1将会灭亡,物种2将达到稳定值2
22
2c b a c -。
(2)当
2211c a c a <
时,随着时间的增加,物种1最终能达到稳定值1
11
1c b a c -,物种2最终要灭亡。
4.蝴蝶效应与混沌解
解:
(1)编写Lorenz函数,Matlab程序如下:
Function dx=lorenz(t,x,b,a,c)
dx=[-b*x(1)+x(2)*x(3);
-a*x(2)+a*x(3);
-x(1)*x(2)+c*x(2)-x(3)];
调用ode45函数进行求解,利用plot函数进行绘图,如下所示:
(2) 适当调整参数,将βρα,,值各减1,初始值832110)0(x )0(),0(-=不变,x x ,得到
如下图示:
从图中我们可以看出,图形对参数和初始值的变化敏感很高,随着参数和初始值的轻微变化而改变很大。
解:
(1) 由题可得,微分方程为:⎪⎪⎩
⎪⎪⎨⎧==--=0)0('1)0(222
2x x dt dx h x k mg dt
x d m
其中,去m=1,g=9.8,用Matlab 求的数值解,并作出x(t)的图形: 分别为h=0和h=0.1时,
(2) 由题可知,受附加力后,微分方程为:⎪⎪⎩
⎪⎪⎨⎧==+--=0)0('1)0(sin 222
2x x wt B dt dx h x k mg dt
x d m ,
其中,B=1,w=1,1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6,2.8,3.0,用Matlab 求取数值解并作图: 如下非别为h=0以及h=0.1时的图形,
(3) 如上图所示,在不考虑外力以及摩擦力时,简谐振动会一直进行下去;而当h=0.1
时,振幅逐渐减小并趋近于0,但是周期不变。
在施加一个外力后,振幅发生变化,并且去外力的频率有关系,这就是受迫运动。
解:
(1) 按三段时间利用Matlab 对数据分别拟合,确定增长率r 1,r 2,r 3,图形如下,增长率如图
中所显示:
(2)采用Logistic模型,对所有数据利用Matlab进行拟合,代码如下
t = 0 : 10 : 190;
x = [3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5];
f = inline('p(1)./(1+p(2)*exp(-p(3).*t))','p','t');
p = lsqcurvefit (f, [300, 50, 0.02], t, x);
得出人口的最大容量N m为360.3560(百万),增长率r为0.0234
图形如下所示:
改变参数,t=200,可以得到1990年人口总数为预测为241.7704(百万)。