《二次函数的应用》课件之二

合集下载

二次函数的应用(2)——抛物线型问题

二次函数的应用(2)——抛物线型问题

∴水面宽度将增加 2 6 4米.
8.如图,隧道横截面为抛物线,其最大高度为 6 米,OM 为 12 米.
(1)求这条抛物线的解析式; (2)若在隧道 C,D 处装两个路灯,且路灯的高度为 4 米,求 C, D 之间的距离.
解:(1)由题意,得 M 12,0,P6,6
设抛物线的解析式为 y a x 62 6
设抛物线的解析式为 y a x 2 x 2
∵过点C(0,2)
∴2=a0 20 2
,a 1
2Байду номын сангаас
∴抛物线的解析式为y 1 x 2 x 2 ,即 y 1 x2 2
2
2
(2)由题意,得 1= 1 x2 2
2
解得 x1 6,x2 6
(1)求这条抛物线的函数关系式; (2)水池的半径至少要多少米,才能使喷出的水流不落在池 外?
(1)顶点 A1, 4
设抛物线的函数关系式为 y a x 12 4
∵过(0,3) ∴ 3=a 0 12 4 ∴ a 1
∴抛物线的函数关系式为 y x 12 4
PPT课程
主讲老师:
全一册下
第二章 二次函数
第13课 二次函数的应用(2)——抛物线型问题
一、知识储备
1.求抛物线 y=x2-8x 与 x 轴的交点坐标. 解:令 y 0 ,得 0=x2 8x 解得 x1 0,x2 8
∴该抛物线与x轴的交点坐标为0,0,8,0
2.抛物线的顶点为(6,3)且过点(0,0),求它的解析式.
(2)当 x=9 y=-112(9-6)2+3=2.25<2.5 ∴射中球门
5.(例 2)如图,铅球在 A 点被推出,出手时球离地面 1 米, 铅球飞行轨迹是抛物线,当铅球飞行的水平距离为 4 米时达到最高 点 B,最高点离地面 3 米.

《二次函数的应用》优秀PPT课件下载

《二次函数的应用》优秀PPT课件下载

直线x=-4
坐标是
是 -1
.当x= -4 时,函数有最 大 值,
5.二次函数y=2x2-8x+9的对称轴是 直线x=2 ,顶点坐标 是 (2 ,1).当x= 2 时,函数有最 小 值,是 1 .
某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调 查,销售量与单价满足如下关系:在一段时间内,单价是13.5元时, 销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助 分析,销售单价是多少时,可以获利最多?
22.5 二次函数的应用
1.让学生进一步熟悉,点坐标和线段之间的转化. 2.让学生学会用二次函数的知识解决有关的实际问题.
3.掌握数学建模的思想,体会到数学来源于生活,又服务
于生活.
1. 二次函数y=a(x-h)2+k的图象是一条 抛物线 的对称轴是 直线x=h
b 直线x 2a
4ac b 2 4a
25 之和的最小值是 2 (或12.5)
cm2.
3.(兰州·中考) 如图,小明的父亲在
相距2米的两棵树间拴了一根绳子,给小 明做了一个简易的秋千.拴绳子的地方距
地面高都是2.5米,绳子自然下垂呈抛物
线状,身高1米的小明距较近的那棵树0.5 米时,头部刚好接触到绳子,则绳子的最 低点距地面的距离为 0.5 米.
,它
,顶点坐标是_________. (h,k) 抛物线 ,它 ,顶点坐标是___________. 低 点,函数
b 4ac b 2 2a , 4a
2.二次函数y=ax2+bx+c的图象是一条 的对称轴是
当a>0时,抛物线开口向 上 ,有最
有最 小 值,是
向 下 ,有最

九年级数学《二次函数的应用(2)》课件

九年级数学《二次函数的应用(2)》课件

不计其他因素,那么水池的半径至少要多少米,才能使喷
出的水流不致落到池外?(2)若水流喷出的抛物线形状与
(1)相同,水池的半径 为3.5米,要使水流不落到
· (1,2.25)
池外,此时水流的最大高度 应达到多少米?
· 1.25
(精确到0.1米)

感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
复习回顾
二次函数y=ax2+bx+c (a≠0)
1、顶点坐标是(
b 2a
,4ac b 2 )
4a
4ac b 2
2、当a>0时,函数y的值有最_小__值为____4_a____。
4ac b 2 当a<0时,函数y的值有最_大__值为_____4_a_____。
例:一名运动员掷铅球,千秋刚出手时离地面
的高度为 5 m,铅球运行时距离地面的最大高 3
度是 3 m,此时铅球沿水平方向行了 4 m。已
知铅球运行的路线是抛物线,求铅球落地时运
行的水平距离。
某工厂大门是一抛物顶部C离地
面高度为4.4m.现有一辆满载货物的汽
车欲通过大门,货物顶部距地面2.8m,
装货宽度为2.4m.请判断这辆汽车能否
顺利通过大门.
y
· 2.2
-2·
·
2x
如图,公园要建造圆形喷水池,在水池中央垂直于水面
处安装一柱子OA,O恰在水面中心,OA=1.25m。由柱
子顶端A处的喷头向外喷水,水流在各个方向沿形状相同
的抛物线落下,为使水流形状较为漂亮,要求设计成水流
在离OA距离为1米处达到距水面最大高度2.25米。(1)如果

山东省九年级鲁教版(五四制)数学上册课件:36二次函数的应用(2)(共16张PPT)

山东省九年级鲁教版(五四制)数学上册课件:36二次函数的应用(2)(共16张PPT)

.最大面积的求法
(1)确定自变量x及其取值范围 (2)将面积表示以x为自变量的二 次函数
(3)利用 或 求最大面积. (4)一般地,因为抛物线 的顶点是 最高(低)点,所以当x= 时, 函数有最大(小)值为
议一议
还记得本章一开始的“种多少棵橙子树”的问题吗?
增种橙子树的数量x(棵)与橙子总产量y(个)之
例2:
某旅社有客房120间,每间房的日租金为160元, 每天都客满.经市场调查发现,如果每间客房的日租 金每增加10元时,那么客房每天出租数会减少6间. 不考虑其他因素,旅社将每间客房的日租金提高到 多少元时,客房日租金的总收入最高?
大家自己动手做一做 吧,相信你是最棒的!
分析:有客房120间,每间房的日租金为160元,每天 都. 客满.如果每间客房的日租金每增加10元时,那么客房 每天出租数会减少6间.
件.
厂家批发单价是多少时,可以获利最多?
分析:服装厂生产某品牌的T恤衫,每件的成本是10元. 根. 据市场调查,以单价13元批发给经销商,经销商愿意经 销5000件,并且表示每件降价0.1元,愿意多经销500件.
解:设批发单价为x元(0<x≤13元),那么 销售量可表示为 : 5000+5000(13-;x)
每件小商品的利润为: X-10 元;
所获总利润可表示为: (X-10) [5000还+5有00其0(1他3-x解)]法元吗;?
即y=-5000x2+120000x-700000=-5000(x-12)2+20000
∵-5000<0 ∴当销售单价为
12 元时,可以获得最大利润,
最大利润是 20000
元.
则 y=〔 800-10(30-x) 〕·x

二次函数的应用2 课件

二次函数的应用2  课件
解: y=w(x-20) =( - 2x + 80 )(x-20) = - 2x2 +120x - 1 600 = - 2(x - 30)2 + 200
因为30<35 ≤x≤ 50,且 a = - 2 < 0,在对称轴右侧y 随x 增大而减小。所以当 x = 35 时,y 最大值 = 182 . 答 :当干果销售单价定为每袋 35 元时,销售这种 干果每天的利润最大,最大利润为 182 元.
解: y=w(x-20) =( - 2x + 80 )(x-20) = - 2x2 +120x - 1 600 = - 2(x - 30)2 + 200
∴顶点(30,200),因为 20 ≤x≤ 40,且 a < 0, 所以当 x = 30 时,y 最大值 = 200 . 答 :当干果销售单价定为每袋 30 元时,销售这种 干果每天的利润最大,最大利润为 200 元.
每天的利润=每袋利润×每天的销售量
=(每袋单价-进价)×每天的销售量
y=(x-20)× w
二、探究新知
例:某超市按每袋 20 元的价格购进某种干果 . 在销售 过程中发现,该种干果每天的销售量 w(袋)与销售 单价 x(元)满足 w = - 2x + 80(20 ≤x≤ 40). 如果销售这种干果每天的利润为 y(元),那么销售单 价定为多少元时,每天的利润最大?最大利润是多少?
w=(x-40) ( 2 ×40+300 ) =(x-40)(1500-20x)
=-20x2+2300x+60000 =-20(x-57.5)2+6125 (40<x<60)
∴顶点(57.5,6125),当x=57.5时,y最大值=6125. 答:当定价为57.5元时可以使利润最大,且最 大利润为6125元.

1.5二次函数的应用(第2课时)课件(共9张ppt)

1.5二次函数的应用(第2课时)课件(共9张ppt)

2. 某产品每件成本10元,试销阶段每件产品
的销售价 x(元与产品的日销售量 y(件)之间的关系如下: 若日销售量y是销售价x的一次函数。 x(元) 15 20 30 … (1)求出日销售量y(件)与销售价x y(件) 25 20 10 … (元)的函数关系式; y=-x+40 (2)要使每日的销售利润最大,每件产品的销售价应定为 多少元?此时每日销售利润是多少元?
例2、某商品进价为每件40元,售价为每件60元,每星期 可卖出300件,市场调查反映:每涨价1元,每星期少卖 出10件;每降价1元,每星期可多卖出18件,如何定价才 调整价格有涨价、降价两种情况 能使利润最大? 有几种调整价格的方法? 涨价: 设每件涨价x元,则每星期售出商品的利 y 润y也随之变化,我们先来确定y与x的函 6250 10x 6000 数关系式。涨价x元时则每星期少卖____ x)件,销额为 件,实际卖出(300-10 ________ (60 +x)(300-10_ x) 元,买进商品需付 _________ 0 5 30 x 40(300-10x) 元。因此,所得利润为 _____________ y= (60+x)(300-10x)-40(300-10x) 元 _____________________________ 即:y=-10x2+100x+6000(0≤x≤30) 当x=5时,y最大=6250 y=-10(x-5)2+6250
5 5 当x= 3 时,(降价 3 元)y最大=6050 1 答:定价为58 3 元时,利润最大,最大利润为6050元
1. 某个商店的老板,最近进了价格为30元 的书包。起初以40元每个售出,平均每个月能售出200个。后 来,根据市场调查发现:这种书包的售价每上涨1元,每个月 就少卖出10个。请你帮忙,如何定价才使他的利润最大? 设每件涨价x元,利润为y元。 y=(10+x)(200-10x)=-10x2+100x+2000=-10(x-5)2+2250

《二次函数的应用》PPT课件


-b
4ac-b2
当横坐标为__2_a_时,纵坐标有最大(小)值___4_a ___
例1.修建有一条边靠墙的矩形菜园,不靠墙的的三边的长度之 和为60m.应怎样设计才使菜园面积最大?最大面积是多少?
解:如图,设菜园的宽为x(m),矩形菜园的面积为 y(m2)则菜园的长为(60-2 x )(m)依题意y与x之间的 函数解析式为
用画函数图象的方法 解二元一次方程组的主要步
骤:
1、变成函数式 2、画图像
3、找交点
4、写出解
例1、用画图像的方法解二元一次方程组:
{ x+y=5 5x-2y=4
解:由x+y=5,得y=-x+5. 由5x-2y=4,得y= 5 x-2.
2
在同一直角坐标系中,画出一次函
数y=-x+5与y=
5 2
x-2的图像。
解:设AM的长为x(m),则BM的长为(2-x)m,以AM和MB为边的两块正方形面积之
和为y.依题意得y与x之间的函数解析式为
D
2m
C
y=x2+(2-x)2
=2x2-4x+4
=2(x2-2x)+4
=2(x2-2x+1-1)+4 =2(x-1)2+2
A Xm M
B
∵a=2>0∴当x=1时,y有最小值,最小值为2.
=-(x-5)2+25 ∵a=-1<0 ∴当x=5时,y有最大值,最大值为25. 所以,当矩形的一边长为5m时,广告牌面积最大,最大面积为 25m2
4、如图所示,已知等腰直角△ABC的直角边长与正
方形MNPQ的边长均为20cm,AC与MN在同一直线
上,开始时点A与点N重合,让△ABC以每秒2cm

《二次函数的应用》二次函数PPT(第2课时)



y=(x-10)(5000+
.
× )
=-5 000x2+120000x-700000.
∵a=-5 000<0,
∴当x=−


= 时,最大值 = (元)
因此,厂家批发单价是12元时可以获利最多.
典例精析
某旅社有客房120间,每间房的日租金为160 元时、每天都客满.经市
总收入
y元

;
典例精析
解:设每间客房日租金提高到x个10元,则每天客房出租数会减少6x元,
日租金的总收入为y元。由题意,得
y=(160+10x)(120-6x)
整理,得y=-60(x-2)2+19440.
∵x≥0,且120-6x≥0
∴0≤x≤20
∴当x== 时,最大值 =
160+2×10=180元
对于问题的解决至关重要。所以,大家再利用二次函数的知识
解决实际问题时,要注意“数形结合”思想的运用。
课堂练习
1. 某种商品的成本是120元,试销阶段每件商品的售价x(元)与产品的销
售量y(件)满足当x=130时,y=70,当x=150时,y=50,且y是x的
一次函数,为了获得最大利润S(元),每件产品的销售价应定为( A )
关系式为
y=2000-5(x-100)
. 每月利润w(元)与衬衣售价x(元)之间
的函数关系式为 w=[2000-5(x-100)](x-80) .(以上关系式只列式不化简).
课堂练习
5. 某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:
y=ax2+bx-75.其图象如图.
(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?

二次函数的应用ppt课件


∴Q的坐标为(4,0);∠GCF=90°不存在,
综上所述,点Q的坐标为(4,0)或(9,0).
2.4
二次函数的应用(2)
北师大版 九年级数学下册


00 名师导学
01 基础巩固
02 能力提升
C O N TA N T S
数学
返回目录
◆ 名师导学 ◆
知识点 最大利润问题
(一)这类问题反映的是销售额与单价、销售量以及利润与每
(3)存在.∵y= x +2x+1= (x+3) -2,∴P(-3,-2),
3
3
∴PF=yF-yP=3,CF=xF-xC=3,
∴PF=CF,∴∠PCF=45°.
同理,可得∠EAF=45°,∴∠PCF=∠EAF,
∴在直线AC上存在满足条件的点Q.
设Q(t,1)且AB=9 2,AC=6,CP=3 2.
∵以C,P,Q为顶点的三角形与△ABC相似,
数学
返回目录
①当△CPQ∽△ABC时,
+6 3 2
∴ = ,∴ = ,∴t=-4,∴Q(-4,1);

6
9 2
②当△CQP∽△ABC时,
+6 3 2
∴ = ,∴ = ,∴t=3,∴Q(3,1).
9 2
6
综上所述,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形
数学
返回目录
◆ 基础巩固◆
一、选择题
1.在一个边长为1的正方形中挖去一个边长为 x(0<x<1)的小
正方形,如果设剩余部分的面积为y,那么y关于x的函数表达式
B

(
)
2
2

5.7《二次函数的应用(2)》教学课件


当x=2时,代入y=0.2x² -0.2x+2.6,得y=3,与B 点纵坐标相等,这说明点B在经过A,C,D三点的 二次函数的图像上,即这条抛物线上相应的点 的纵坐标反映了该镇第2年的财政收入. 当x=5时,代入y=0.2x² -0.2x+2.6,得y=6.6,E点纵坐 标为6.9,相差0.3(亿元),这说明点E虽不在经过 A,C,D三点的抛物线上,但比较接近,即这条抛物 线上相应的点的纵坐标可以近似的反映该镇第5年的 财政收入. 由此可知,二次函数y=0.2x² -0.2x+2.6可以近似的反映该镇最近5年的财政收 入情况发展趋势,因此可以利用前5年的发展趋势预测第6年的财政收入. 当x=6时,代入y=0.2x² -0.2x+2.6,得x=8.6,所以,可以预测2010年该镇 的财政收入约为8.6亿元.
回顾思考
1、如何运用二次函数求实际问题中的最大值或最小值? 设、列、解、验、答 2、首先应当求出函数解析式和自变量的取值范围, 然后通过配方变形,或利用公式求它的最大值或最 小值. 注意:通过函数关系式求得的最大值或最小值对 应的自变量的值必须在实际问题自变量的取值范围 内.
例题探究
例3 运动员掷一枚铅球,铅球抛出时离地面的高度为 5/3m,抛出后,铅球行进的路线是一抛物线,行进时里 离地面的最大高度是3m,此时铅球沿水平方向行进了4m. 求铅球从抛出到落在地面走过的水平距离?
4
令y=0,得-1/12(x-4)² +3=0.
解之得 x1=-2,x2=10 代入实际问题中检验,x1=-2(m)不符合题意,舍去;x2=10符合题意. 所以,铅球从抛出到落地走过的水平距离为10m.
开启
智慧
1、恰当的建立平面直角坐标系,构造出符合题意的二次函 数(一次函数、反比例函数)是解决此类问题的关键. 2、此类问题进一步体现了数学建模思想方法的应用,同学 们要认真掌握!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)如果各磁道的存储单元数目与最内磁道相同.最 内磁道的半径r是多少时,磁盘的存储量最大?
y x 2值 最大
(1) 请用长20米的篱笆设计一个矩形的菜园。 (2)怎样设计才能使矩形菜园的面积最大? y
30
A
D
25
20 15 10 5 -1 0 1 2
x
B (0<x<10)
3 4 5 6 7 8 9 1o
O
D
B
C
3.用一块宽为1.2m的长方形铁板弯起两边做 一个水槽,水槽的横断面为底角120º 的等 腰梯形。要使水槽的横断面积最大,它的 侧面AB cm×60 cm的正方形地砖在运输过程中受
损,断去一角,量得AF=30cm,CE=45 cm。现准备从五边形 地砖ABCEF上截出一个面积为S的矩形地砖PMBN。 (1)设BN=x,BM=y,请用含x的代数式表示y,并写出x的取 值范围; (2)请用含x的代数式表示S,并在给定的直角坐标系内画出该 函数的示意图; (3)利用函数图象回2答:当x取何值时,S有最大值?最大值 是多少?
6.如图,在平面直角坐标系中,四边形OABC为菱形,点C 的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发, 沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形 OABC的两边分别交于点M、N(点M在点N的上方).
(1)求A、B两点的坐标;
(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤6), 试求S 与t的函数表达式; (3)在题(2)的条件下,t为何值时,S的面积最大?最大面积 是多少?
解: (1) ∵ AB为x米、篱笆长为24米
∴ 花圃宽为(24-4x)米
∴ S=x(24-4x) =-4x2+24 x (0<x<6)
A B
2
D C
(2)当x=

b 2a
3
时,S最大值=
4 ac b 4a
=36(平方米)
(3) ∵墙的可用长度为8米
∴ 0<24-4x ≤6 4≤x<6 ∴当x=4cm时,S最大值=32 平方米
做一做P62 5
何时窗户通过的光线最多
某建筑物的窗户如图所示,它的上半部是半圆,下 半部是矩形,制造窗框的材料总长(图中所有的黑线 的长度和)为15m.当x等于多少时,窗户通过的光线最 多(结果精确到0.01m)?此时,窗户的面积是多少?
解 : . 4 y 7 x x 15. 得, y 1由
y
1B A 1
O
x
议一议
4
“二次函数应用” 的思 路
回顾上一节“最大利润”和本节“最大面积”解 决问题的过程,你能总结一下解决此类问题的基本 思路吗?与同伴交流. 1.理解问题; 2.分析问题中的变量和常量,以及它们之间的关系; 3.用数学的方式表示出它们之间的关系; 4.做数学求解;
5.检验结果的合理性,拓展等.
例2:有一根直尺的短边长2cm,长边长10cm,还有一块锐角 为45°的直角三角形纸板,其中直角三角形纸板的斜边长为 12cm.按图14—1的方式将直尺的短边DE放置在与直角三角形 纸板的斜边AB上,且点D与点A重合.若直尺沿射线AB方向平 行移动,如图14—2,设平移的长度为x(cm),直尺和三角形 纸板的重叠部分(图中阴影部分)的面积为S cm 2). (1)当x=0时,S=_____________; 当x = 10时,S =______________; (2)当0<x≤4时,如图14—2,求S与x的函数关系式; (3)当6<x<10时,求S与x的函数关系式; (4)请你作出推测:当x为何值时,阴影部分的面积最大?并写 出最大值.
C C F G C C
F A E B 图14—1
A
x
D
E 图14—2
B
A 备选图一 B
A 备选图二
B
(D)
1.某工厂为了存放材料,需要围一个周长160米的 矩形场地,问矩形的长和宽各取多少米,才能使 存放场地的面积最大。 2.窗的形状是矩形上面加一个半圆。窗的周长等 于6cm,要使窗能透过最多的光线,它的尺寸应 该如何设计? A
2 7.二次函数y=ax +bx+c的图象的一部分如图所示, 已知它的顶点M在第二象限,且经过点A(1,0)和 点B(0,1)。(04杭州)
(1)请判断实数a的取值范围,并说明理由; -1<a<0 (2)设此二次函数的图象 与x轴的另一个交点为C, 当△AMC的面积为△ABC 的 5 倍时,求a的值。 4
B M A
F
N
P
C
E
D
图3
5.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A 出发,沿AB边向点B以1cm/秒的速度移动,同时, 点Q从点B出发沿BC边向点C以2cm/秒的速度移动。 如果P、Q两点在分别到达B、C两点后就停止移动, 回答下列问题: D C (1)运动开始后第几秒时, △PBQ的面积等于8cm2 Q (2)设运动开始后第t秒时, 五边形APQCD的面积为Scm2, 写出S与t的函数关系式, 并指出自变量t的取值范围; A B P t为何值时S最小?求出S的最小值。
y
C
x
如图,用长20米的篱笆围成一个一面靠 墙的长方形的菜园,设菜园的宽为x米,面 积为y平方米。 D A (1)求y与x的函数关系式及 自变量的取值范围; B C
(2)怎样围才能使菜园的面积最大? 最大面积是多少?
如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道 篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。 (1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大可用长度为8米,则求围成花圃的最大面积。
如图,在一个直角三角形的内部作一个矩形ABCD, 其顶点A和点D分别在两直角边上,BC在斜边上.
(1).设矩形的一边BC=xm,那么AB 边的长度如何表示? (2).设矩形的面积为ym2,当x取何 值时,y的最大值是多少?
M
30m
C
G
H
D P┐
B N
A 解 : 1 . 由勾股定理得MN 50m, PH 24m. 40m 12 设AB bm, 易得b x 24. 12 2 12 25 12 2 x 25 300. 2. y xb x x 24 x 24 x 25 25 25 2 b 4ac b 或用公式 : 当x 25时, y最大值 300. 2a 4a
想一想P62 1
何时面积最大
如图,在一个直角三角形的内部作一个矩形ABCD, 其中AB和AD分别在两直角边上.
M
(1).设矩形的一边AB=xm,那么AD 边的长度如何表示? (2).设矩形的面积为ym2,当x取何 值时,y的最大值是多少?
30m
D ┐ A
C
40m
B
N
想一想P63 3
何时面积最大
探究:计算机把数据存储在磁盘上,磁盘是带有磁 性物质的圆盘,磁盘上有一些同心圆轨道,叫做 磁道,如图,现有一张半径为45mm的磁盘.
(1)磁盘最内磁道的半径为r mm,其上每 0.015mm的弧长为1个存储单元,这条磁道有多 少个存储单元?
(2)磁盘上各磁道之间的宽度必须不小于0.3mm,磁 盘的外圆周不是磁道,这张磁盘最多有多少条磁道?
2
15 7 x x
.
x
x
4 2 x 15 7 x x x 2.窗户面积S 2 xy 2 x y 2 4 2 2 7 2 15 7 15 225 x x x . 2 2 2 14 56 2 b 15 4ac b 225 或用公式 : 当x 1.07时, y最大值 4.02. 2a 14 4a 56
相关文档
最新文档