接触网课程设计报告

合集下载

接触网课设

接触网课设

接触网工程课程设计报告专业:电气工程及其自动化班级:电气1003姓名:叶佩凡学号: 201009253指导教师:张廷荣兰州交通大学自动化与电气工程学院2013 年7月15日1基本题目及分析题目:接触线张力的分析与研究。

接触线的张力对高速运行时的接触悬挂的性能有重要影响。

对于高速接触悬挂的要求是弹性小而且均匀,根据关系式()j c l T T k η⎡⎤=+⨯⎣⎦,这就要求接触线的张力尽可能大。

加大接触线的张力可以有效地提高接触线的波动速度,同时相应地提高列车运行速度。

加大接触线的张力以后,可以得到两个附加效果:第一可以相应地限制高速运行时的动态抬升量。

根据法国的试验,一般运行在300km/h 时,总抬升量在100mm 以内;第二个附加效果可以提高弹性系数的不均匀度,使跨中的弹性得以有效降低,约为0.5mm/N ,而悬挂点处约为0.4mm/N ,从而使弹性在整个跨距内趋于一致,大大降低了弹性不均匀系数。

2接触线张力的分析与研究2.1 加大接触线张力途径的综合分析加大接触线的张力有两种途径:其一是增大其截面积;其二是提高使用拉力(或拉应力)。

关于接触线的横截面尺寸,考虑到在空间敷设的可能性和可行性,规定了相应极限值,即允许采用的接触线的最大横截面积为150mm 2,就是这样的横截面积在安装过程中也会形成硬弯,甚至会有产生断裂点的危险性,这些硬弯或断裂点会导致接触线局部磨损加快。

在拉应力恒定时,接触线横截面积的增大相应地减少弹性。

为了保持较小的弹性,因此力求用尽可能大的横截面的接触线。

增大接触线的横截面积,可以有效提高拉断力,增大载流量,相应地降低温升,所以适当增加横截面积是有利的。

但是,过大地增大接触线的横截面积会产生两个负面效果:其一是使接触线线密度增加,从而降低了波动速度,这是极为有害的;其二是架设时的不均匀性及平直性的危险增加。

所以,德国在研制Re330型接触悬挂时,仍然把接触线的截面积限制在120mm 2以下。

接触网保护课程设计

接触网保护课程设计

接触网保护课程设计一、课程目标知识目标:1. 学生能理解接触网的基本概念、组成及工作原理;2. 学生能掌握接触网保护装置的种类、原理及功能;3. 学生能了解接触网故障类型及危害;4. 学生能掌握接触网保护参数的设置及调整方法。

技能目标:1. 学生能够运用所学知识,分析接触网故障原因;2. 学生能够根据实际情况,选择合适的接触网保护装置;3. 学生能够通过实践操作,掌握接触网保护参数的设置与调整;4. 学生能够运用所学知识,解决接触网保护中的实际问题。

情感态度价值观目标:1. 培养学生对接触网保护工作的兴趣和责任感;2. 增强学生团队合作意识,培养沟通协调能力;3. 培养学生严谨、务实的学习态度,树立安全意识;4. 提高学生对我国高速铁路事业的认同感和自豪感。

课程性质:本课程为专业基础课程,以理论教学和实践操作相结合的方式进行。

学生特点:学生具备一定的电气基础知识,但对接触网保护了解较少。

教学要求:注重理论与实践相结合,强化学生动手操作能力,培养学生解决实际问题的能力。

通过课程学习,使学生能够掌握接触网保护的基本知识,具备一定的故障分析和处理能力。

二、教学内容1. 接触网基本概念:接触网的结构、功能及工作原理;2. 接触网保护装置:种类、原理、功能及应用;- 绝缘监察装置- 避雷器- 自动重合闸装置- 故障测距装置3. 接触网故障类型及危害:短路故障、接地故障、断线故障等;4. 接触网保护参数设置与调整:保护定值、时间特性、动作特性等;5. 接触网保护案例分析:分析典型故障案例,掌握故障处理方法;6. 接触网保护实践操作:模拟实际操作,进行保护装置的设置与调整。

教学内容安排与进度:第一周:接触网基本概念及保护装置介绍;第二周:接触网故障类型及危害;第三周:接触网保护参数设置与调整;第四周:接触网保护案例分析与实践操作。

教材章节关联:《电气化铁道接触网》第三章:接触网保护;《高速铁路接触网技术》第七章:接触网保护与故障处理。

接触网课程设计(段嘉旭)

接触网课程设计(段嘉旭)

接触网技术课程设计报告班级:电气083学号:200809242姓名:段嘉旭指导教师:张廷荣2012 年 2 月28 日1.基本题目1.1 题目直线地区锚段长度的计算1.2题目分析在区间或站场上,为满足供电方面和机械方面的要求,将接触网分成若干一定长度且相互独立的分段,这种独立的分段叫做锚段。

划分锚段的目的主要是:加补偿器;缩小机械事故范围;使吊弦的偏移不致超过许可值以及改善接触线的受力情况等。

划分锚段的主要依据是在气象条件发生变化时,使接触网内所产生的张力增量不超过规定值。

锚段长度的决定和跨距长度一样,也必须进行相应的计算。

高速电气化铁路,接触网基本上全部采用全补偿链形悬挂,对于全补偿链形悬挂,其锚段长度的计算方法及理论基础与半补偿链形悬挂的情况相同。

2.题目:直线地区锚段长度的计算2.1 半补偿链形悬挂张力增量计算及其锚段长度的计算2.1.1锚段长度的确定直线区段锚段长度的确定仅按在极限温度下,中心锚结与补偿器之间接触线的张力差不大于其额定张力的±15%来要求。

即不考虑承力索的张力差变化。

曲线区段锚段长度的确定按在极限温度下,中心锚结与补偿器之间的张力差,接触线不大于其额定张力的±15%,承力索不大于其张力差的±10%来要求。

同时由于全补偿链形悬挂中,接触线弛度的变化很小,因温度变化而耗损于弛度变化方向的纵向位移更小,故在计算中可令ε为零。

2.1.2 已知条件我国电气化铁路广泛采用承力索线胀系数cα=11.55×10-61/℃,承力索弹性系数Ec=18500Kg/mm2,承力索计算横截面积Sc=70mm2;接触线胀系数jα=17×10-61/℃,接触线弹性系数E j=12600Kg/mm2,接触线计算横截面积S j=100mm2;吊弦及定位器处于正常位置时的温度t d=2minmax tt+=15℃,结构高度h=1.2m,计算中ε取零。

悬挂合成自重负载:q=1.555Kg/m2.1.3 张力增量计算过程及其锚段长度的确定 (1)直线区段接触线张力增量计算1、接触线无弛度时相应跨距下承力索弛度: 通过查表3-2可得,00.5475F =根据023C h F =-可得:吊弦的平均长度231.20.54750.835C m =-⨯=2、计算温度差,确定计算条件:0001max 401525d t t t ∆=-=-= 0002min 101525d t t t ∆=-=--=-由于|1t ∆|=|2t ∆|,所以以2Δt 为计算条件。

接触网课程设计36

接触网课程设计36

接触网课程设计36一、课程目标知识目标:1. 学生能理解接触网的基本概念,掌握其组成、分类及功能;2. 学生能掌握接触网的主要参数及其对铁路运行的影响;3. 学生能了解接触网的设计原则和标准,以及在我国的应用情况。

技能目标:1. 学生能运用所学知识,分析接触网的故障原因,并提出解决措施;2. 学生能通过实际操作,学会接触网的基本检查和维护方法;3. 学生能运用相关软件,进行接触网参数的简单计算和优化。

情感态度价值观目标:1. 学生培养对铁路电气化技术的兴趣,激发学习热情;2. 学生树立安全意识,重视接触网运行安全,关注铁路行业的发展;3. 学生培养团队协作精神,提高沟通与交流能力。

课程性质:本课程为铁路电气化专业基础课程,旨在帮助学生掌握接触网的基本知识、技能和情感态度。

学生特点:学生具备一定的物理、电学基础知识,但对接触网的专业知识了解较少,需要通过本课程的学习,提高专业素养。

教学要求:结合学生特点,注重理论与实践相结合,通过案例分析、实际操作等教学方式,提高学生的专业知识和技能。

在教学过程中,关注学生的情感态度,培养其安全意识、团队协作精神和沟通能力。

将课程目标分解为具体的学习成果,以便进行教学设计和评估。

二、教学内容1. 接触网基本概念:介绍接触网的定义、作用、发展历程;2. 接触网组成与分类:分析接触网的各个组成部分,包括接触线、承力索、绝缘子、支柱等,以及不同类型的接触网;3. 接触网参数:讲解接触网的主要参数,如接触线高度、拉出值、弓网关系等,及其对铁路运行的影响;4. 接触网设计原则与标准:阐述接触网设计的基本原则、技术标准和规范要求;5. 接触网故障分析:分析接触网常见故障类型、原因及处理方法;6. 接触网检查与维护:介绍接触网的检查方法、维护周期和注意事项;7. 接触网参数计算与优化:运用相关软件,进行接触网参数的简单计算和优化;8. 接触网案例分析:分析实际接触网故障案例,提出解决措施。

接触网课程设计

接触网课程设计

接触网课程设计一、课程目标知识目标:1. 学生能理解接触网的基本概念,掌握其结构、原理和分类。

2. 学生能掌握接触网的主要设备及其功能,了解接触网的运行维护要求。

3. 学生能了解接触网在我国高速铁路及城市轨道交通中的应用和发展。

技能目标:1. 学生能运用所学知识,分析接触网故障原因,并提出解决措施。

2. 学生能通过实际操作,掌握接触网设备的检查、维护和保养方法。

3. 学生能运用专业软件,进行接触网参数的计算和优化。

情感态度价值观目标:1. 培养学生对接触网工程的兴趣,激发他们投身铁路事业的热情。

2. 培养学生的团队合作精神,使他们学会在工程实践中相互协作、共同解决问题。

3. 增强学生的安全意识,让他们明白接触网安全对铁路运输的重要性。

课程性质:本课程为专业实践课程,以理论教学为基础,结合实际操作,培养学生的专业素养和实际操作能力。

学生特点:学生为高中年级学生,具备一定的物理和数学基础,对接触网有一定了解,但对实际操作和维护知识掌握较少。

教学要求:结合学生特点和课程性质,采用理论教学与实践操作相结合的方式,注重培养学生的动手能力和解决实际问题的能力。

通过课程学习,使学生掌握接触网的基本知识,具备一定的工程实践能力。

二、教学内容1. 接触网基础理论:- 接触网的定义、结构、原理及分类。

- 接触网的主要技术参数及标准。

- 接触网在我国铁路及城市轨道交通中的应用案例。

2. 接触网设备及其功能:- 接触线、承力索、悬挂索等主要设备的作用及结构。

- 避雷器、接地装置、绝缘子等辅助设备的功能及原理。

- 接触网设备的运行维护要求及故障处理方法。

3. 接触网运行与维护:- 接触网运行的基本要求及安全措施。

- 接触网设备的检查、维护和保养方法。

- 接触网故障诊断与处理流程。

4. 接触网参数计算与优化:- 接触网参数的基本概念及计算方法。

- 接触网优化设计的原则及方法。

- 应用专业软件进行接触网参数计算与优化实例。

5. 实践教学环节:- 接触网设备认识实习。

接触网doc

接触网doc

接触网工程课程设计评语:考勤(10)守纪(10)设计过程(40)设计报告(30)小组答辩(10)总成绩(100)专业:电气工程及其自动化班级:电气1001姓名:李树攀学号: 201009032指导教师:李红兰州交通大学自动化与电气工程学院2013 年7月15日目录1题目 (1)2设计方案 (1)2.1支柱的分类 (1)2.2选择支柱 (1)2.3原始参数及分析 (1)3支柱容量计算 (3)3.1垂直负载 (3)3.2水平负载 (3)3.2.1支柱本身的风负载 (3)3.2.2线索传给支柱的风负载 (4)3.2.3之字值形成的水平分力 (4)3.3垂直于线路方向力矩 (4)3.4顺线路方向的力矩 (4)4基础类型选择 (5)5小结 (5)参考文献 (5)附录一 (6)附录二 (7)1题目支柱选用,结合使用环境进行支柱材质选择,结合悬挂结构进行支柱高度计算,结合使用位置及悬挂要求进行容量计算,根据要求选择支柱型号,并根据地质条件设计基础。

2设计方案2.1支柱的分类接触悬挂是被支柱支持在铁路线上方的,支柱有很多种,按其材料、支持装置形式、用途以及负载条件进行分类。

目前采用的有预应力钢筋混凝土柱和钢柱。

根据支柱上的支持装置的不同,支柱可分为腕臂支柱、软横跨支柱、硬横跨支柱和定位支柱。

按其用途,可分为中间支柱、转换支柱和锚柱。

2.2选择支柱区间腕臂柱多采用预应力钢筋混凝土支柱,其优点是节约钢材,生产周期短,运输方便,解决了因混凝土收缩而开裂的问题和挠度问题。

由于钢柱用钢量大,造价高,耐腐蚀性差,且维修不便。

所以本设计主要说明腕臂支柱的选择要求,根据环境变化和经济方面的考虑采用预应力混凝土支柱。

如图1所示。

200280⨯290550⨯2300550033001110085002600图1预应力钢筋混凝土支柱2.3原始参数及分析表1 风速不均匀系数计算风速(m/s ) 20以下 20~30 31~35 35以上 风速不均匀系数a1.000.85 0.750.70腕臂支柱选择混凝土柱,型号为6.27.838H+,跨距为50m 。

接触网技术课程设计报告1

接触网技术课程设计报告1

接触网技术课程设计报告班级:电气084学号: 200809329姓名:王艺霏指导教师:于晓英评语:年月日1.基本题目1.1 题目计算某地区的跨距,已知条件为:最大风速为30m/s ,触线水平面内支持扰度j γ=50mm ,无冰负载,接触线j T =9800N ;d=11.8mm,R=500m 。

1.2 题目分析跨距就是两相邻支柱间的距离,跨距有经济跨距和技术跨距两个概念。

单从经济观点考虑问题所决定的跨距为经济跨距;而按技术要求决定的跨距称为技术跨距。

在一般情况下,经济跨距总是要大于技术跨距的,因此,技术跨距总是研究的中心核心问题。

技术跨距是根据接触线在受横向水平力 (如风力) 作用时,对受电弓中心线所产生的许可偏移而决定的。

对于简单接触悬挂,驰度也是决定跨距的重要因素。

通过计算接触线驰度,来校验跨距长度是否满足跨距的要求。

2.跨距长度的计算为了简化计算,以简单接触悬挂的受风偏移状态为例来计算说明,并假设跨距两端是死固定,同时认为在受风以后,不考虑导线的弹性伸长。

2.1 接触线水平偏移的分析当风作用在接触线上时,接触线产生顺风方向的偏移,如图1 所示。

如图中表示的是接触线在跨距内任一点的横断面,接触线在垂直负载和水平风负载的作用下移动一定距离,根据相似的关系,水平偏移的计算如下:图 1接触线的水平受风偏移即y j bj pj gv qvj j q p y b =vj j q p yb = (1)接触线在跨距内任意点的弛度y 值为:jv T x l x q y 2)(-⋅=(2)将y 值代入式(1)中得j b jj T x l x p 2)(-⋅=(3)当2/l x =时,具有最大水平风偏移,即jj j T l p b 82max ⋅=(4)2.2 直线区段接触线水平偏移及最大跨距在直线区段上,当接触线布置成之字形时,根据相邻定位点之字值得大小,分别按一下两种情况进行计算。

(1) 等之字值布置接触线 (直线区段) 等之字值风偏分析图如图 2 所示:图 2 等之字值布置跨中任意点接触线相对受电弓中心的偏移值有1y 、2y 组成:j b =1y +2y其中max j ba xl1y 2yajj T x l x p y 2)(1-⋅=lx l a y )2(2-=式中a ——接触线之字值(mm)j p ——接触线单位长度上的风负载(kN/m) j T ——接触线张力(kN)l ——跨距长度(m)由此可得接触线在跨距长度内任意点对线路中心的偏移值j b 为lx l a T x l x p b jj j )2(2)(-+-⋅=(5) 令 0=dxdb j 解得:lp aT l x j j⋅-=22 将x 值再代入式(5),整理可得:222max 28l p Ta T l pb j jj j ⋅+⋅=(6) (2) 不等之字布置接触线 (直线区段) 不等之字布置风偏分析如图3所示:图 3 不等之字值布置可按等之字值得计算方法令a 为两定点之字值得平均值,此时:由图3可得:max j baxl1y 2y 1a a3y2a 221a a a +=222121113a a a a a a a y -=+-=-= (7) 于是有 j b =1y +2y +3y ;将不等之字值布置时形成的偏移分量代入式(6)中,并将3y 代替式中a 值,就可求得接触线在跨距内最大偏移值max j b ,得22)(82122212max a a l p T a a T l p b j jJj j -+⋅++⋅=(8)如果取式(6)中的jx j b b =max ,并求解出l ,可得到接触线在直线上的最大跨距)(222max a b b p T l jx jx jj -++=(9)式中max l ——最大计算跨距值(m)j T ——接触线的张力(kN)j P ——接触线单位长度的风负载(kN/m)jx b ——接触线的许可偏移值(m)a ——接触线之字值(在曲线区段上为拉出值)(mm) 2.3 曲线区段接触线水平偏移及最大跨距接触线在曲线区段上布置成割线的形式,拉出值为a ,其曲线区段上的受风偏移如图(4)所示。

接触网课程设计-高速电气化铁路接触网电分相形式探讨

接触网课程设计-高速电气化铁路接触网电分相形式探讨

接触网技术课程设计报告班级:电气****学号: *********姓名:某某某指导教师:某某某2012 年02 月24 日自动化与电气工程学院接触网技术课程设计目录1 基本题目 (1)1.1 题目 (1)1.2 题目分析 (1)2.题目:高速电气化铁路接触网电分相形式探讨 (1)2.1 概述 (1)2.2 电气化铁路接触网电分相的分类 (1)2.3绝缘锚段关节 (2)2.4 锚段关节转换跨距和动车受电弓间距的确定 (4)2.5常用电分相形式 (5)2.6电分相设置要求 (7)2.7 目前电分相常见问题 (8)3.结论与体会 (8)参考书目 (9)1 基本题目1.1 题目高速电气化铁路接触网电分相形式探讨。

1.2 题目分析电分相是为了满足接触网不同相供电而在两相交接处设立的分相隔离装置,电分相类型和材质的不同对机车受电弓取流的稳定性、受电弓的质量、列车最高速度和牵引变电所继电保护等都有影响。

当今电气化铁路不断提速,对行车安全要求很高,因此选用好电分相才对列车行车安全、稳定非常重要,本文列举并分析了国内常用的电分相形式,对电分相有一个全面的介绍,希望能对今后高速铁路接触网电分相的认识和学习有所帮助。

2题目:高速电气化铁路接触网电分相形式探讨2.1 概述目前我国电气化铁路电力机车和动车都采用单相供电,为平衡电力系统各相负荷,牵引供电一般实行三相电源相序轮换供电,即电气化铁道牵引变电所向接触网供电的馈线是不同相的,保证铁路牵引供电网实现相与相之间电气隔离,在不同相供电臂的接触网对接处设置了绝缘结构,称电分相。

我国高速铁路电分相一般设置在牵引变电所出口处及供电臂末端、铁路局分界处,主要由接触网部分、车载装置、地面信号装置等组成。

我国早期电气化铁路采用结构复杂的接触网八跨、六跨、五跨等双绝缘锚段关节组成的电分相(简称关节式电分相)。

在20世纪80~90年代电气化工程改造中普遍采用绝缘材料制作的结构简单的器件式电分相。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:接触场平面设计设计题目:站场平面设计院系:电气工程系专业:铁道电气化年级: 2011级姓名:浩学号: 20116687 指导教师:王老师西南交通大学峨眉校区2015年 1月8 日课程设计任务书专业铁道电气化姓名浩学号 20116687开题日期: 2014年月日完成日期: 2015 年月日题目接触场平面设计一、设计的目的通过该设计,使学生初步掌握接触场平面设计的设计步骤和方法,熟悉有关平面设计图纸的使用;基本掌握站场平面设计需要考虑的元素;锻炼学生综合运用所学知识的能力,为今后进行工程设计奠定良好的基础。

二、设计的容及要求1.负载计算。

2.最大跨距计算。

3.半补偿链形悬挂安装曲线计算。

4.半补偿链形悬挂锚段长度及力增量曲线决定。

5.平面设计:(1)基本要求;(2)支柱布置;(3)拉出值及之字值标注;(4)锚段关节;(5)咽喉区放大图;(6)接触网分段。

6.站场平面表格填写:侧面限界、支柱类型、地质情况、基础类型、安装参考图号。

三、指导教师评语四、成绩指导教师 (签章)年月日接触网课程设计任务书一、原始资料1.悬挂形式:正线全补偿简单链形悬挂,站线半补偿简单链形悬挂。

2.气象条件:学号尾数1的为第一典型气象区,学号尾数2的为第二典型气象区,学号尾数3的为第三典型气象区,学号尾数4的为第四典型气象区,学号尾数5的为第五典型气象区,学号尾数6的为第六典型气象区,学号尾数7的为第七典型气象区,学号尾数8的为第八典型气象区,学号尾数0、9的为第九典型气象区。

3.悬挂数据:学号尾数0、1的结构高度为1.1米,学号尾数2的结构高度为1.2米,学号尾数3的结构高度为1.3米,学号尾数4的结构高度为1.4米,学号尾数5的结构高度为1.5米,学号尾数6、7的结构高度为1.6米,学号尾数8、9的结构高度为1.7米。

站线:承力索JT70,Tcmax=1500kg;接触线CT85,Tjm=1000kg。

正线:承力索JT70,Tcm=1500kg;接触线CT110,Tjm=1000kg。

e=4m4.土壤特性:(1)女生:安息角(承载力)Φ=30º,挖方地段。

(2)男生:安息角(承载力)Φ=30º,填方地段。

二、设计容1.负载计算2.最大跨距计算3.半补偿链形悬挂安装曲线计算4.半补偿链形悬挂锚段长度及力增量曲线决定5.平面设计(1)基本要求(2)支柱布置(3)拉出值及之字值标注(4)锚段关节(5)咽喉区放大图(6)接触网分段6.站场平面表格填写支柱编号、侧面限界、支柱类型、地质情况、基础类型、安装参考图号三、验算部分1.各种类型支柱校验2.缓和曲线跨距校验四、使用图纸按学号最后两位相加之和的末位数使用站场0---站场9的图纸五、课程设计于任务书下达后六周交老师,延期交以不及格论处,特殊情况申请延期除外。

第一章 负载计算1.1 计算的条件 1.1.1 气象条件的确定第Ⅶ典型气象区,查表可知:最高温度:max 40t C =+︒ 最低温度:min 40t C =-︒ 覆冰温度:5b t C =-︒ 最大风速时的温度:5v t C =-︒ 最大风速:max 30V m s = 覆冰时的风速:15b V m s = 覆冰厚度:10b mm = 覆冰密度:3900/b kg m γ=1.1.2技术条件的确定70JT -:10.5c d mm =,0.599g kg m =,S=65.81 2mm正线:CT110:12.34A mm =,12.34B mm =,0.992g kg m =, S=1112mm 站线:CT85:A=10.8mm ,B=10.76mm ,g=0.769kg/m 吊弦:30.510/d g KN m -=⨯风速不均匀系数a ,最大风速时:0.85a =;覆冰时: 1.00a = 风负载体型系数k ,链形悬挂: 1.25k =1.2负载计算 1.2.1自重负载1、承力索JT —70的自重负载:330.5999.8110 5.8810/c g KN m --=⨯⨯=⨯2、接触线CT110的自重负载:331100.9929.81109.7310/j g kN m--=⨯⨯=⨯3、接触线CT85的自重负载:33850.7699.81107.5410/j g kN m--=⨯⨯=⨯4、吊弦及线夹的自重负载:30.510/d g kN m -=⨯1.2.2 冰负载1、承力索的覆冰重力负载:9093()103.1490010(10.510)9.8110 5.6810/cb b H g b b d g kN mπγ---=⨯⨯+⨯⨯=⨯⨯⨯+⨯⨯=⨯2、接触线的覆冰重力负载:911093()10222101012.3412.343.14900()9.8110 2.40410/222jb b H b b A Bg g kN mπγ---+=⨯⨯+⨯⨯+=⨯⨯+⨯⨯=⨯ 98593()10222101010.8010.763.14900()9.8110 2.18710/222jb b H b b A Bg g kN mπγ---+=⨯⨯+⨯⨯+=⨯⨯+⨯⨯=⨯1.2.3 风负载1、最大风速时承力索单位长度的风负载:26max 2630.615100.6150.85 1.253010.510 6.1710/cv c p a K v d kN m---=⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯=⨯2、最大风速时接触线单位长度的风负载:26110max 2-6-30.615A 10=0.6150.85 1.253012.3410=7.2610kN/m j v p a K v -=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯2685max 2-6-30.615A 10=0.6150.85 1.253010.8510=6.38110kN/m j v p a K v -=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 3、覆冰时承力索单位长度的风负载:26262630.615100.615(2)100.6151 1.2510(10.5210)10 2.3410/cbv b cb b c p a K v d a K v d b kN m----=⨯⨯⨯⨯⨯=⨯⨯⨯⨯+⨯=⨯⨯⨯⨯+⨯⨯=⨯4、覆冰时接触线单位长度的风负载:261102-6-30.615(A+b)10=0.6151 1.2510(12.3410)10=1.71710kN/m j bv b p a K v -=⨯⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯26852-6-30.615(A+b)10=0.6151 1.2510(10.8010)10=1.59910kN/m j bv b p a K v -=⨯⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯1.2.4 合成负载在计算链形悬挂的合成负载时(是对承力索而言的),其接触线上所承受的水平风负载,被认为是传给了定位器而予以忽略不计。

1、无冰、无风时的自重合成负载:正线: 330110(5.889.730.5)1016.1110/c j d q g g g kN m--=++=++⨯=⨯站线:33085(5.887.540.5)1013.9210/c j d q g g g kN m--=++=++⨯=⨯2、最大风速时的合成负载:正线:33max 1017.5210/v q kN m--===⨯站线:33max 1015.2310/v q kN m--===⨯3、覆冰时的合成负载:正线:331024.3110/b q kN m --====⨯ 站线:331021.9110/b q kN m --====⨯4、合成负载对铅垂线间的夹角:正线:00333arctanarctan()()2.3410arctan5.5216.1110(5.68 2.404)10cb cbb c j d cbo jb p p g g g g g g g ϕ---==+++++⨯==︒⨯++⨯站线:00333arctanarctan()()2.3410arctan6.1313.9210(5.68 2.187)10cb cbb c j d cbo jb p p g g g g g g g ϕ---==+++++⨯==︒⨯++⨯第二章 最大跨距计算2.1 计算的条件1、直线区段“之”字值a =300mm曲线区段拉出值选用表 表2.12、接触线力:100010/10j jm T T g kg N kg KN ==⨯=链形悬挂接触线当量系数m 取0.9接触线单位长度上的风负载:31107.2610/j p kN m-=⨯385 6.38110/j p kN m-=⨯接触线的最大风偏移值:直线区段:max 500j b mm = 曲线区段: max 450j b mm = 支柱在接触线水平面受风时的位移(扰度):50j mm γ=2.2 最大跨距的计算1、在直线区段上:正线:max269.34l m ===站线:max273.96l m ===故对于直线区段,最大跨距取max 65l m =第三章 简单链形悬挂安装曲线计算3.1(站线)半补偿链型悬挂有载承力索的安装曲线3.1.1 计算条件承力索JT-70:max 1500c T kg =,即承力索最大允许力:max 15c T KN =;承力索计算截面积:265.81S mm =;承力索弹性系数105c E GPa =;线胀系数611710c K α--=⨯;承力索自重负载3c 5.8810g kN m -=⨯接触线CT-85:1000jm T kg =,即接触线最大允许力:10j T KN =;接触线计算截面积:286mm S =;接触线弹性系数120j E GPa =;线胀系数611710j K α--=⨯η—经验系数,与材质特性有关,铜承力索为0.75由悬挂点到最近的简单支柱吊弦间的距离(m )4e m =无冰无风时的合成负载:m kN g g g q d j c /1092.1330-⨯=++=max 40t C =+︒ min 40t C =-︒ 5b t C =-︒ max min010102t t t C +=-=-︒当量跨距m l D 60=ϕ=22(2)D D l e l -=0.751 3.1.2 计算与绘制步骤1、 半补偿链型悬挂临界负载:2min 2min 2max 00)(24t Db c jlj W l t t Z T T q q +-⋅+-=αϕ 其中 j c T T Z ϕ+=max max 00min c jt T T q q W ϕ+= 由于0c T 还是未知数,对于铜承力索,用下式近似算出:kN T T c c 25.111575.0max 0=⨯==η 故kN T T Z j c 51.2210751.015max max =⨯+=+=ϕm kN T T q q W c jt /1021.2325.1110751.01092.131092.1333300min ---⨯=⨯⨯⨯+⨯=+=ϕ2min 2min 2max 00)(24t Db c jlj W l t t Z T T q q +-⋅+-=αϕ 232263)1021.23(60)405(51.2210172425.1110751.01092.13---⨯++-⨯⨯⨯⨯+⨯⨯⨯-=m kN /1019.413-⨯=由于:3341.1910/21.9110/lj b q kN m q kN m --=⨯>=⨯,所以取最低温度时条件为计算的起始条件。

相关文档
最新文档