原子荧光分析技术讲座—电子技术

合集下载

原子荧光分析技术讲座—电子技术

原子荧光分析技术讲座—电子技术

原子荧光分析技术讲座—电子技术1、原子荧光法原理分光光度法原子汲取法等离子发射光谱法聚光原子荧光原子化器2、方法特点测定Hg、As、Bi、Se、Sb、Be、Te、Ge(Sn、Pb、Cu)等最可靠、最有前途的方法。

不使用SnCl2作还原剂,而使用NaBH4(KBH4)作还原剂。

要紧特点:(1)光谱干扰少;(2)基体影响影响易于消除;(3)通过氢化物发生达到分离与富集的目的;(4)根据所测元素的还原性质不一致,可进行价态分析;(5)气相干扰少;(6)线性范围宽,测汞可达三个数量级;(7)灵敏度远远高于冷原子汲取法。

3、测定过程中的注意事项由于灵敏度很高,防止试剂、器皿的沾污与扣除空白是实验成败的关键之一(这点比其他方法更为重要)。

(1)小的光电倍增管电压,可减少噪声水平;(2)观测高度直接影响测量灵敏度与数据的稳固性,建议使用6~8mm(不一致仪器标尺可能不一致);(3)载气及流量:原子荧光法只能使用Ar气,这点与冷原子荧光法不一致,Ar 气纯度很重要,达到1%时,会导致Hg(As、Bi、Se、Sb、Te、Ge)灵敏度降低约5%;(4)载气流量过大会冲稀测定成分的浓度,过小不能迅速将测定成分带入石英炉,通常以0.4~0.6L/min为宜;(5)屏蔽气体:屏蔽气体可防止周围空气进入火焰产生荧光淬灭,通常在0.6~1.6L/min范围选择;(6)仪器都有峰高与峰面积测量的功能,用峰高好;(7)选择最佳延迟时间与积分时间是得到最佳测量效果的重要因素;(8)还原剂:NaBH4是强还原剂,务必避光储存(溶液也应避光),如发现浑浊,须经热酸浸泡并洗净的玻璃砂过滤(注意承接滤液瓶的洗净)。

NaBH4(或者KBH4)通常在含NaOH(KOH)0.5~1%的介质中才能稳固;NaBH4(或者KBH4)在酸介质中才能起到还原作用,因此,测定水样(溶液)的酸性务必足以中与NaBH4(或者KBH4)溶液中的碱后还应保持至少1mol/L的酸性;NaBH4(或者KBH4)浓度对汞的测量结果影响很大,测汞时以0.4%左右为最佳;(9)石英炉温度对测汞的灵敏度与精度影响较为明显,800~900℃经历效应小,精度高,但灵敏度下降约5倍,而350灵敏度较高。

原子荧光培训课件

原子荧光培训课件

多元素同时分析技术瓶颈及解决方案探讨
光谱干扰与分离
多元素同时分析时,光谱干扰是 主要的技术瓶颈之一。采用多道 分光系统、光栅或滤光片等方法 ,实现不同元素光谱的分离,降
低干扰。
灵敏度与检出限
多元素同时分析时,各元素的灵 敏度和检出限可能存在差异。通 过优化仪器参数、改进样品处理 方法等方式,提高各元素的检测
原子荧光法具有灵敏度高、线性范围宽、干扰小等特点,是水质监测中重金属元素分析的有效方法。
详细描述
原子荧光法是一种基于原子荧光的分析方法,具有较高的灵敏度和选择性。在水质监测中,原子荧光 法可用于分析铜、锌、铅、镉等重金属元素,以及砷、锑等非金属元素。通过原子荧光法,可以实现 对水样中重金属元素的快速、准确分析,为水质监测提供可靠的数据支持。
以进一步了解大气污染的来源和分布情况,为大气污染治理提供科学依据。
土壤污染状况调查中重金属元素分析
总结词
原子荧光法在土壤污染状况调查中具有广泛的应用, 可实现对土壤中重金属元素的快速、准确分析。
详细描述
土壤污染状况调查中,重金属元素的分析是必不可少 的环节。原子荧光法可以用于分析土壤中的铜、锌、 铅、镉等重金属元素,以及砷、锑等非金属元素。通 过原子荧光法,可以实现对土壤样品的快速、准确分 析,了解土壤的污染状况和分布情况,为土壤污染治 理提供科学依据。同时,原子荧光法还可以用于评估 土壤的生态风险和环境影响,为环境保护工作提供有 力支持。
添加剂监管
对于食品添加剂的监管,除了关注其功能性外,还需要对其 安全性进行评估。通过原子荧光技术对食品添加剂中的荧光 物质进行分析,可以了解其潜在的风险和危害,为食品添加 剂的监管和使用提供科学依据。
食品包装材料中有害物质迁移研究

原子荧光光谱分析技术在

原子荧光光谱分析技术在
原子荧光光谱分析技术
目录
CONTENTS
• 原子荧光光谱分析技术概述 • 原子荧光光谱仪组成及工作原理 • 样品前处理与实验操作技巧 • 原子荧光光谱法在元素分析中的应用 • 原子荧光光谱法与其他分析方法比较 • 原子荧光光谱法发展趋势及挑战
01 原子荧光光谱分析技术概述
CHAPTER
原子荧光光谱分析技术定义
原子化系统
原子化器
将样品中的待测元素转化 为气态原子,通常采用火 焰、石墨炉或电热蒸发等 方式。
燃气系统
为原子化器提供必要的燃 气,如乙炔、空气等,以 维持火焰燃烧。
样品引入系统
将待测样品引入原子化器, 通常采用气动雾化、超声 波雾化等方式。
分光系统
单色器
反射镜和聚焦镜
将复合光分解为单色光,通常采用光 栅或棱镜作为分光元件。
• 原子荧光光谱分析技术:一种基于原子能级跃迁产生的荧 光信号进行元素定性和定量分析的方法。
原子荧光光谱分析技术原理
原子激发
通过特定波长的光源照射样品 ,使样品中的目标元素原子被
激发至高能态。
荧光发射
被激发的原子在回落到低能态 时,以光子的形式释放出能量 ,产生特定波长的荧光。
信号检测
通过光电倍增管等检测器接收 荧光信号,并将其转换为电信 号进行放大和处理。
04 原子荧光光谱法在元素分析中的应用
CHAPTER
金属元素分析
痕量金属元素分析
原子荧光光谱法具有高灵敏度和 低检出限的特点,适用于痕量金 属元素的分析,如铅、汞、镉等。
多元素同时分析
通过选择合适的激发光源和荧光 检测器,可以实现多种金属元素 的同时分析,提高分析效率。
金属元素形态分析
原子荧光光谱法不仅可以测定金 属元素的总量,还可以结合其他 技术,如色谱分离技术,对金属 元素的形态进行分析。

原子荧光光谱精讲

原子荧光光谱精讲

4.检测器

常用的是日盲光电倍增管,在多元素原子荧光分析仪中, 也用光导摄象管、析象管做检测器。检测器与激发光束成 直角配置,以避免激发光源对检测原子荧光信号的影响。
5.氢化物发生器 • • • • (1) (2) (3) (4) 间断法 连续流动法 断续流动法 流动注射氢化物技术
4.原子荧光法测定原理 • 在一定实验条件下,荧光强度与被测元素的浓度成正比。 据此可以进行定量分析(线性关系,只在低浓度时成立) • 随着原子浓度的增加,由于谱线展宽效应、自吸、散射等 因素的影响会使得曲线出现弯曲
5.氢化物(蒸气)发生原子荧光法 • 1)原理 • 氢化物发生进样方法,是利用某些能产生初生态氢的还原 剂或化学反应,将样品溶液中的待测组分还原为挥发性共 价氢化物,然后借助载气流(氩气)将其导入原子光谱分 析系统进行测量。
2) 谱线简单、干扰小;
3) 线性范围宽(可达 3 ~ 5个数量级);
4) 易实现多元素同时测定(产生的荧光向各个方向发射)。
缺点 存在荧光淬灭效应、散射光干扰等问题。
二、原子荧光光谱法的基本原理
1.原子荧光的产生过程
+ e
e
原子荧光
基态的原子蒸气吸收特定波长光辐射的能量而被激发到较高的激发态, 然后受激原子去活化回到较低的激发态或基态时便发射出一定波长的辐射 ———原子荧光
氢化物发生的优点: 分析元素能够与可能引起干扰的样品基体分离,消除了干 扰。 与溶液直接喷雾进样相比,氢化物法能将待测元素充分预 富集,进样效率接近100%。 连续氢化物发生装置易实现自动化。 不同价态的元素氢化物发生的条件不同,可进行价态分析。
氢化物反应种类 • 1)金属酸还原(Marsh反应) • 2)硼氢化物酸还原体系

原子荧光分光光度计讲义PPT文档共17页

原子荧光分光光度计讲义PPT文档共17页
2)仪器条件:AFS230原子荧光分光光度计灯电 流:60mA;负高压:300V;其它条件都为仪器 默认即可;标准曲线浓度为 0,1.0,2.0,4.0,8.0,10.0,ug/L。用5%的盐酸作载流, 1.5%的硼氢化钾作还原剂,进行测定。
2、原子荧光法测定农产品中汞
1)前处理:按照GB/T5009.17-2003的方法,取样品0.3-0.5 克,不要超过0.5克。置于微波消解管中,加入5ml硝酸, 1ml过氧化氢,拧紧消解管盖子,放置30-60min,再置于 微波消解仪中,分三步完成消解步骤。第一步让温度升至 100度左右保持10分钟,第二步让温度升至150度保持10 分钟,第三步让温度升至180度保持5分钟。完成消解后, 取出冷却,用0.02%的重铬酸钾溶液转移至25ml比色管中, 并用其定容。摇匀后上机测定。
(四)原子荧的干扰
原子荧光的主要干扰是猝灭效应。这种 干扰可采用减少溶液中其它干扰离子的浓 度避免。
其它干扰因素有光谱干扰、化学干扰、物 理干扰等。
克服干扰的途径有加入络合剂、降低硼氢化 钾浓度、加入氧化还原电位高于干扰离子 的元素、分离干扰元素等方法。
(五)氢化物原子荧光分光光度法
氢化物原子荧光分光光度法的原理是待测元 素和强还原剂(硼氢化钾)反应后,以气态的形 式进入原子化器,经特制的光源激发后再返回至 基态或低能态,返回时发射出特种波长的光,这 种光强和元素的浓度成正比。
(2)谱线简单、干扰少。
(3)分析校准曲线线性范围宽,可达3 ~ 5 个数量级。
(4)可以多元素同时测定
(七)氢化物原子荧光分光光度计的基本组成部分:
1.激发光源.
是原子荧光分光光度计的主要组成部分,理想的光源应有发射强度高、无自吸;稳定性好, 噪声小;发射谱线窄且纯度高、价格便宜且使用寿命长等条件。目前有空心阴极灯、无 极放电灯、等离子体光源、激光光源等,其中空心阴极灯应用最为广泛。

原子荧光培训课件

原子荧光培训课件
软件进行数据分析。
结果解读
介绍如何根据实验数据结果进 行解读,包括不确定度的计算
和结果报告的撰写等。
THANK YOU.
02
样品处理
包括仪器设备、试剂、样品等准备步 骤。
涉及样品的溶解、稀释、酸度控制等 步骤。
03
原子荧光光谱仪操作 步骤
包括灯电流、泵浦时间、负高压等关 键参数的调整和注意事项。
实验数据分析和处理方法
数据记录
介绍实验过程中需要记录的各 项数据及记录规范。
数据处理
包括数据的整理、清洗、计算 和修正等步骤,以及如何利用
测量参数二
荧光波长:荧光波长是荧光光谱分析中的重要参数。不同元素具有不同的荧光波长,这是 区分不同元素的主要依据。
测量参数三
荧光量子效率:荧光量子效率是被测元素在特定条件下发射荧光的概率。它是决定荧光强 度的关键因素。
原子荧光光谱法的应用
应用一
环境监测:原子荧光光谱法可以应用于环境监测领域,如水和土壤中重金属 元素的测定。通过测定水和土壤样品中重金属元素的含量,可以评估环境的 质量和污染程度。
Байду номын сангаас
04
原子荧光标准参考物质
标准参考物质的定义与作用
标准参考物质定义
具有一种或多种足够均匀和确定的本品含量水平的物质,用于校准仪器、验证测 量方法或确定材料赋值。
标准参考物质的作用
用于评价和校准原子荧光光谱仪的测量准确性和测量范围,保证测量结果的准确 性和可靠性。
原子荧光标准参考物质的制备
制备流程
原子荧光的基本原理
原子荧光是原子能级跃迁过程中产生的,当原子吸收特征波 长的光辐射后,原子从高能级跃迁到较低能级,同时发出与 原吸收光波波长相同或不同的辐射。

原子荧光分析法

原子荧光分析法原子荧光分析法是一种精密的元素分析技术,通过该技术可以对样品中的元素进行定量和定性分析。

该技术的原理基于原子在吸收射线(通常为X射线或UV光)后重新辐射发光的特性。

该技术的应用范围十分广泛,最初在地球科学领域得到了广泛使用,并在微量元素、稀土元素和有机物质等领域中得到了广泛应用。

一、原理原子荧光分析法的原理如下:在样品经过预处理之后,将其放置在一个荧光池中,使用一个电子枪或激光束来激发荧光。

当样品中的原子吸收光束后再重新辐射,就会产生一个荧光峰。

这一峰的位置和幅度可以用来确定样品中的元素种类和含量。

二、应用原子荧光分析法在土壤科学、地球化学、化学和生物科学等领域被广泛使用。

它可以用于分析土壤和岩石中的轻重金属,也可以用于化学分析中的元素定量和定性分析。

原子荧光分析法在环境工程和材料科学中也有重要的应用。

例如,它可以用于分析水污染物中的镉、铅和铬等有害元素。

它也可以用于确定纺织品、电子产品和其他大量消费品中的元素成分。

三、优缺点原子荧光分析法具有以下一些优点:1.能够准确确定样品中的元素含量;2.易于使用;3.对于重金属元素具有很高的灵敏度;4.分析速度较快,可同时分析数百种元素。

然而,原子荧光分析法也存在一些缺点:1.需要高昂的设备成本;2.部分元素会因为吸收和辐射之间的能级限制而无法被检测到;3.常常需要进行样品前处理。

四、总结总体来说,原子荧光分析法是一种精密的元素分析技术,其优点在于准确和灵敏度高,并且可以用于广泛的应用领域。

虽然设备成本较高且需要进行样品前处理,但是其高效率和高精度的优点对于需要进行元素分析的领域来说十分重要。

原子荧光光谱分析法


CHAPTER 02
原子荧光光谱法基本原理
原子能级与跃迁
1 2 3
基态与激发态
原子中的电子按一定的能级分布,处于最低能级 的电子态称为基态,吸收能量后跃迁到较高能级 的电子态称为激发态。
能级跃迁
原子中的电子在吸收或发射特定频率的光子时, 会在不同的能级之间发生跃迁。这种跃迁是原子 荧光光谱分析的基础。
荧光寿命
荧光寿命是指原子在激发态停留 的平均时间。荧光寿命的长短决 定了荧光的强度和持续时间。
荧光光谱特性
01
荧光光谱
荧光光谱是指荧光强度随发射光子频率(或波长)的变化关系。通过测
量荧光光谱,可以获得关于原子能级结构和跃迁特性的信息。
02 03
斯托克斯位移
斯托克斯位移是指荧光光谱中发射光子的频率低于吸收光子的频率的现 象。这是由于在退激发过程中,原子会损失一部分能量给周围环境,导 致发射的光子能量降低。
多元素荧光光谱仪的研制
研制具有多通道检测能力的荧光光谱仪,实现对不同元素的独立检 测和同时测定。
多元素分析方法的建立
建立基于多元素荧光探针和荧光光谱仪的多元素分析方法,为复杂 样品的多元素分析提供有效手段。
现场、在线、实时监测技术的应用
便携式荧光光谱仪的研制
开发便携式、小型化的荧光光谱仪,实现现 场、在线、实时监测的可行性。
荧光探针性能优化
通过改变荧光团的结构、引入辅助基团等手段,优化荧光探针的性 能,提高其抗干扰能力和稳定性。
荧光探针的筛选与评估
建立荧光探针筛选和评估体系,对大量候选探针进行快速筛选和性 能评估,加速高性能荧光探针的开发和应用。
多元素同时测定技术的发展
多元素荧光探针的设计
开发能够同时识别多种元素的荧光探针,实现多元素的同时测定 ,提高分析效率。

原子荧光培训课件

高灵敏度、低检出限、抗干扰性能强、测量范围广泛等。
原子荧光分析前的样品处理
样品采集与保存
采集具有代表性的样品,避免 样品污染和变质。
样品前处理
将样品进行合适的稀释、浓缩或 分离,以便进行原子荧光分析。
干扰消除
采用化学或物理方法消除样品中的 干扰物质,提高分析的准确性。
原子荧光分析的操作步骤
检出限和精密度
标准曲线法
通常采用标准曲线法进行定量分析。将已知浓度的标准样品 制作成荧光强度与元素浓度之间的标准曲线,然后测量待测 样品荧光强度,根据标准曲线计算元素浓度。
03
原子荧光分析方法
原子荧光分析方法的分类与特点
分类
包括原子荧光光谱法(AFS)和原子荧光光谱法联用技术(AFS-ICP-MS) 等。
特点
展,提高国际竞争力。
THANKS
感谢观看
定期保养
包括更换灯丝、清洗光学系统 等。
常见故障排除
遇到常见故障时,应先检查仪 器的工作状态,如光源是否点 亮、进样系统是否正常等,若 仍无法解决问题,可联系专业 技术人员进行指导或维修。
05
原子荧光光谱仪的应用
在环境监测领域的应用
01
水质监测
02
大气监测
原子荧光光谱法可测定水中的砷、锑 、铋、镉、硒等多种元素,适用于江 、河、湖、海等水体的监测。
精密度表示测量结果的重复性,准确 性则表示测量值与真实值之间的差异 。
要点三
稳定性
检测器的稳定性包括长期稳定性和短 期稳定性,长期稳定性通常受光源和 光学系统漂移等因素影响,短期稳定 性则受样品基质和进样条件等因素影 响。
原子荧光检测器的维护与保养
日常维护
包括清洁仪器表面、检查进样 系统是否正常等。

原子荧光光谱分析法ppt课件

2021/4/18
2.原子荧光的产生类型
三种类型:共振荧光、非共振荧光与敏化荧光 (1)共振荧光
共振荧光:气态原子吸收共振线被激发后,激发态原子
再发射出与共振线波长相同的荧光;见图A、C;
热共振荧光:若原子受热激发处于亚 稳态,再吸收光辐射进一步激发,然后再
发射出相同波长的共振荧光;见图B、D;
由于相应于原子的激发态和基态之间 的共振跃迁的几率一般比其它跃迁的几率 大得多,所以共振跃迁产生的谱线是对分 析最有用的共振荧光。
荧光量子效率:单位时间内,荧光辐射的量子数与被吸收 的量子数之比
= f / a
f 发射荧光的光量子数; a吸收的光量子数之比;
2021/4/18
4.待测原子浓度与荧光的强度的关系
当光源强度稳定、辐射光平行、自吸可忽略 ,发射荧光 的强度 If 正比于基态原子对特定频率吸收光的吸收强度 Ia ;
信号处理器
光电转换
信号处理器
原子荧光
光源灯或 激光
原子发射 光源+样品
分光系统
光电转换
信号处理器
本章小结
本章主要讲述了原子荧光光谱法的基本原理、 仪器基本装置、光谱定量分析方法。
1.原子荧光光谱分析法是利用原子在辐射激发下 发射的荧光强度来定量分析的方法。
(1)三种类型原子荧光:共振荧光、非共振荧光与 敏化荧光
如锌原子:213.86nm
2021/4/18
(2)非共振荧光
当荧光与激发光的波长不相同时,产生非共振荧光; 分为:直跃线荧光、阶跃线荧光、anti-Stokes荧光三种;
直跃线荧光(Stokes荧光):跃回到高于基态的亚稳态
时所发射的荧光;荧光波长大于激发线波长(荧光能量间隔
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原子荧光分析技术讲座—电子技术
1、原子荧光法原理
分光光度法
原子汲取法
等离子发射光谱法
聚光原子荧光
原子化器
2、方法特点
测定Hg、As、Bi、Se、Sb、Be、Te、Ge(Sn、Pb、Cu)等最可靠、最有前途的方法。

不使用SnCl2作还原剂,而使用NaBH4(KBH4)作还原剂。

要紧特点:
(1)光谱干扰少;
(2)基体阻碍阻碍易于消除;
(3)通过氢化物发生达到分离和富集的目的;
(4)依照所测元素的还原性质不同,可进行价态分析;
(5)气相干扰少;
(6)线性范围宽,测汞可达三个数量级;
(7)灵敏度远远高于冷原子汲取法。

3、测定过程中的注意事项
由于灵敏度专门高,防止试剂、器皿的沾污和扣除空白是实验成败的关键之一(这点比其他方法更为重要)。

(1)小的光电倍增管电压,可减少噪声水平;
(2)观测高度直接阻碍测量灵敏度和数据的稳定性,建议使用6~8mm(不同仪器标尺可能不同);
(3)载气及流量:原子荧光法只能使用Ar气,这点与冷原子荧光法不同,Ar气纯度专门重要,达到1%时,会导致Hg(As、Bi、Se、Sb、Te、Ge)灵敏度降低约5%;
(4)载气流量过大会冲稀测定成分的浓度,过小不能迅速将测定成分带入石英炉,一般以0.4~0.6L/min为宜;
(5)屏蔽气体:屏蔽气体可防止周围空气进入火焰产生荧光淬灭,一般在0.6~1.6L/min范围选择;
(6)仪器都有峰高和峰面积测量的功能,用峰高好;
(7)选择最佳延迟时刻和积分时刻是得到最佳测量效果的重要因素;
(8)还原剂:NaBH4是强还原剂,必须避光保存(溶液也应避光),如发觉浑浊,须经热酸浸泡并洗净的玻璃砂过滤(注意承接滤液瓶的洗净)。

NaBH4(或KBH4)一般在含NaOH(KOH)0.5~1%的介质中才能稳定;NaBH4(或KBH4)在酸介质中才能起到还原
作用,因此,测定水样(溶液)的酸性必须足以中和NaBH4(或KBH4)溶液中的碱后还应保持至少1mol/L的酸性;NaBH4(或KBH4)浓度对汞的测量结果阻碍专门大,测汞时以0.4%左右为最佳;
(9)石英炉温度对测汞的灵敏度和精度阻碍较为明显,800~900℃经历效应小,精度高,但灵敏度下降约5倍,而350灵敏度较高。

下表是推举使用的原子荧光法测汞的条件。

原子荧光法测汞的条件
由于原子荧光仪器生产厂家不同,测量条件也存在差异,下表的测量条件仅供参考。

相关元素的国内、国际饮用水标准(mg/l)
氢化物的沸点、检出限及适用浓度范围
低浓度水样Hg的频率分布直方图
高浓度水样Hg的频率分布直方图
问题的回答与分析
1、检出限(D.L.)
在给定置信度(90~95%)内,能检出的最小浓度(量)。

“检出”是定性的。

空白、仪器操作。

D.L.与灵敏度的关系。

D.L.=3倍空白的RSD(3.143)
(4,4.6,5,6倍)
2、定量下限
4×D.L.(EPA)
10×D.L.(JIS)
3、校正曲线
●工作曲线
●标准曲线
●何时重做?何时只做1~2点?
●特例:生物样品中Hg、As、PCB、PCDDs、PCDFs
4、数据的五性
代表性、准确性、周密性、完整性、可比性。

它们之间的关系。

D.L.附近,浓缩或放宽要求。

5、高含量时的稀释方法选择
低含量时的浓缩注意事项
6、试样前处理
●地表水
●污水、海水
●食品、生物(失水、HClO4)
●临床(尿、血、人发)
●矿物、土壤(王水、逆王水、HF、HClO4)
●固体废物(干燥时损失)、(高压釜、微波消解)
7、工作条件的选择
(1)光源
●无级放电灯:输出功率0~100W,反射功率1~5W
不同灯条件各异:Hg<As<Sb<Bi
输出(W)反射(mW)
Hg 8~12 0~2
As 10~15 0~2
Sb 18~22 0~3
Bi 30~35 0~4 寿命,表面不热
高强度灯:
脉冲供电,~2 mA,峰值达60 mA
(2)倍增管:
负高压尽量小
(3)原子化炉:
高温灵敏度↓、噪声↑、干扰↓
低温原子化不充分。

(4)观测高度:
6~8mm(标尺不同)
(5)载气:
400~600ml/min,1%O2 As、Bi、Hg、Se、Te↓(6)屏蔽气体:600~1600nl
(7)其它
●峰面积测量:粒度好,
●峰高测量:基体复杂时好,
二者比较
●读数延迟时刻:改善信噪比2~35
●积分时刻:7~10s
8、提高检测能力的方法
(1)灯电流,光电倍增管电压
(2)加入增敏剂:
K3Fe(CN)6
亚硝基R盐
络合剂等
(3)萃取分离:
APDC-MIBK
DDTC-MIBK
Te、As、Se、Hg:
KI-苯
疏基棉 Fe(OH)↓交换树脂。

(4)时常校正曲线
(5)空白与室温
9、干扰及消除
(1)干扰的检查:标准加入曲线
(2)Sn2+、Ni2+、Co2+、Cd2+、Zn2+、Fe2+、Cu2+。

相关文档
最新文档