电子课程设计报告
电子技术综合课程设计实习报告

电子技术综合课程设计实习报告一、实习目的与要求本次电子技术综合课程设计实习旨在让我们更好地将所学的理论知识与实际操作相结合,提高我们的实践能力和创新能力。
实习要求我们设计一个具有实际应用价值的电子系统,要求系统具有稳定性、可靠性、易于操作等特点。
二、实习内容与过程1. 选题与方案确定:在实习开始阶段,我们首先进行了选题。
在教师的指导下,我们选择了设计一个数字频率计作为实习项目。
接下来,我们查阅了相关资料,分析了数字频率计的工作原理,并确定了设计方案。
2. 电路设计与仿真:根据设计方案,我们开始了电路设计。
首先,我们设计了数字频率计的原理图,包括时钟电路、计数电路、显示电路等。
然后,利用Multisim软件对电路进行了仿真,验证了电路的功能和稳定性。
3. 器件选型与采购:在电路设计过程中,我们需要对所需的电子元件进行选型。
在教师的建议下,我们选择了性能稳定、成本合理的元件。
随后,我们进行了元件的采购。
4. 电路调试与优化:在元件采购回来后,我们开始了电路的搭建和调试。
在调试过程中,我们发现了一些问题,如信号干扰、计数误差等。
针对这些问题,我们进行了电路的优化,提高了系统的性能。
5. 系统测试与总结:在电路调试完成后,我们对数字频率计进行了系统测试,验证了其功能和性能指标。
最后,我们对整个实习过程进行了总结,分析了收获和不足之处。
三、实习成果与分析通过本次实习,我们成功设计并实现了一个数字频率计,该频率计具有以下特点:1. 功能完善:数字频率计能够准确测量输入信号的频率,并显示频率值。
2. 稳定性高:通过电路的优化,我们降低了信号干扰,提高了系统的稳定性。
3. 易于操作:数字频率计的操作界面简单直观,便于用户使用。
4. 性能指标满足要求:数字频率计的测量精度、计数范围等性能指标均满足实习要求。
通过本次实习,我们不仅提高了自己的实践能力,还培养了团队合作精神。
在实习过程中,我们学会了如何查阅资料、分析问题、解决问题。
《电子课程设计》实验报告指尖陀螺实验报告

《电子课程设计》实验报告指尖陀螺实验报告物理与电子信息工程学院 20__-2021 学年第二学期《电子课程设计》实验报告实验名称:指尖陀螺专业:电子信息科学与技术班级:姓名:学号:指导老师:2021 年 6 月 19 日实验一三叶指尖陀螺一.实验器材单极性霍尔元件、贴片场效应管、贴片三极管、三极管、拨动开关、电解电容、瓷片电容、电阻、二极管、导线、底座、螺丝、外壳、正负极片、轴承。
二.电路原理图三.电路原理旋陀螺是由一个双向或多向的对称体作为主体,在主体中间嵌入一个轴承的设计组合,整体构成一个可平面转动的装置,也可以在双向或多向的对称体镶嵌上相同重量的配置。
根据离心力的原理当物体在做非直线运动时(非牛顿环境,例如圆周运动),因物体一定有本身的质量存在,质量造成的惯性会强迫物体继续朝着运动轨迹的切线方向(原来那一瞬间前进的直线方向)前进,使得指旋陀螺在配置的离心力做用下,带动中间轴承高速旋转。
四.电路说明可以拿在手指上旋转的陀螺,旋转起来可以显示文字,可以显示图片。
采用三片 CR1220 纽扣电池串联在一起后供电,经过稳压芯片稳压到 5V 电压后提供给单片机,带有电管理电路。
由单片机控制 24 个贴片 LED 根据字模数据高速闪烁发光,利用人眼的视觉暂留现象,在 24 个 LED 的旋转范围内呈现出文字或图片的效果。
指尖陀螺采用霍尔元件检查起点和测量指尖陀螺转速,由于在指尖陀螺转动的期间,转速变化较大。
在指尖陀螺显示过程中还加入了显示适配程序,自动根据转速调节显示字体或者图片的宽度。
避免由于转速的变化产生的失真现象。
此套件显示稳定,清晰,功耗低,装配简单,带有程序下载接口。
带有上位机改字软件,对暂时还不熟悉单片机程序的同学可以直接用上位机改字,若已经熟悉单片机使用则可以通过资料中的范例程序编写自己想要显示的内容。
五.操作步骤1.手工贴片 2.焊接电路 3.拷入程序 4.放入电池 5.检查实物是否焊接完好六.实物图七.总结通过这次电子作品的制作使我们的专业技能得到了很大的锻炼和提高。
电力电子技术课程设计报告

电力电子技术课程设计报告一、引言电力电子技术是现代电力系统中不可或缺的一部分。
它涉及到将电能转换为不同形式以满足不同需求的技术。
本文将介绍一个基于电力电子技术的课程设计报告,旨在帮助读者了解该设计的步骤和思考过程。
二、设计目标我们的设计目标是实现一个具有高效能转换和可靠性的电力电子系统。
该系统能够将直流电能转换为交流电能,并能够在不同负载条件下提供稳定的电力输出。
三、系统设计1. 选取合适的电力电子器件为了实现电能的转换,我们需要选取合适的电力电子器件。
在这个设计中,我们选择使用开关管作为主要的电力电子器件。
开关管具有快速开关和可控的特性,适合用于电能转换。
2. 设计电力电子控制电路为了控制开关管的工作,我们需要设计一个电力电子控制电路。
这个电路主要由控制芯片、传感器和驱动电路组成。
控制芯片用于生成控制信号,传感器用于监测电流和电压等参数,驱动电路用于控制开关管的导通和关断。
3. 进行系统建模和仿真在进行实际电路设计之前,我们需要对系统进行建模和仿真。
这可以帮助我们验证设计的正确性,并且可以提前发现潜在的问题和改进的空间。
我们可以使用电路仿真软件来进行系统建模和仿真。
4. PCB设计和元器件选型在完成系统建模和仿真后,我们需要进行PCB设计和元器件选型。
PCB设计是将电路设计转化为实际电路板的过程。
在PCB设计中,我们需要考虑电路的布局和走线,以及选择适当的元器件。
5. 制作和调试电路板在完成PCB设计后,我们可以开始制作电路板。
制作电路板可以通过将电路设计转移到电路板上,并使用电路板制作设备进行制作。
制作完成后,我们需要进行电路板的调试,以确保电路的正常工作。
6. 测试和优化系统性能在完成电路板的制作和调试后,我们需要对系统进行测试和优化。
测试可以帮助我们评估系统的性能,并发现潜在的问题。
根据测试结果,我们可以进行优化,以提高系统的效率和可靠性。
四、总结本文介绍了一个基于电力电子技术的课程设计报告的步骤和思考过程。
《电子技术》课程设计报告-数字电子钟设计

《电子技术》课程设计报告-数字电子钟设计一、背景介绍数字电子钟是一个实时的计时器,它可以按照设定的时刻精确地表示时间。
它使用微处理器和时钟芯片来处理时间。
因此,它可以被视为一个微处理器系统,系统中含有存储器、计数器、报警功能等。
最新的电子时钟如石英钟使用特制石英晶片来制定时钟。
由于石英可以产生完美的电振动,因此可以更准确地检测时钟改变。
二、数字电子钟的设计原理1、时钟驱动电子时钟的操作需要一定的时间和精度,主要是依靠特殊的驱动器来实现的。
驱动器有石英、硅、力学和光学等多种。
其中石英芯片是电子时钟的核心部件并且最常用。
可以让电子时钟每秒产生32千分之一秒的精度。
2、晶振电路晶体振荡器电路是将电能转换成振荡信号和时钟信号的基础电路。
在电子时钟中,晶振电路可以将3.3V的DC电源转换成正弦波信号。
3、控制电路控制电路是接收电子时钟信号,并将其转换为可读取的数字信号的电路。
它通过检测当前的时钟值与它预设的标准值,来决定是否需要重新设定。
4、显示电路为了使时间显示准确,显示电路需要有一定的能力,它可以将控制电路经过变换后的数字转化为可视的数字或符号信号,比如LED。
我们首先使用PIC16F628A微控制器来控制数字电子钟,PIC16F628A是一款常用的单片机,在实现数字电子钟的最基本功能时天然的具有很多优势,即具有丰富的I/O口及高性能的CPU。
而在驱动这个数字电子时钟时,我们选择了普通的石英晶振,其工作电压为3.3V,频率为32.768kHz。
它的作用是将电源电压转换成正弦波信号,然后此信号可以被PIC单片机读取,从而实现全电子时钟功能。
在处理每秒钟走过的时间时,我们使用计数器根据晶振输入的时钟信号逐渐计数,而当计数器计数到一定值时,PIC单片机就知道一秒的时间已经过去,然后继续进行计算.最后,我们选用一个4位共阳极数码管来将这些数据转化为显示数字的动作,它从数据地址上读取数据,然后一次送到一位,就可以实时显示电子时钟的实时时间。
电子技术课程设计报告智力竞赛抢答器

亀子信息耄控制工龄一、课程设计名称智力竞赛抢答器、内容摘要用74LS系列常用集成电路设计的智力竞赛抢答器,并详细分析电路工作原理。
抢答器作为一种电子产品,早已广泛应用于各种智力和知识竞赛场合,但目前所使用的抢答器存在分立元件使用较多,造成每路的成本偏高,而现代电子技术的发展要求电子电路朝数字化、集成化方向发展,因此设计出数字化全集成电路的多路抢答器是现代电子技术发展的要求。
按照这一要求,并根据74LS373八路锁存器的功能特点,用74LS373和其它几块常用的74LS系列数字集成电路设计出了一数码显示八路抢答器电路,该电路具有成本低、元器件容易得到、路数多、数码直观显示、性能稳定等诸多优点。
三、设计内容及要求A、设计内容:设计一个8路智力竞赛抢答器。
我初步将系统分为3大功能模块:抢答电路即主电路、倒计时电路、报警电路。
可将倒计时电路分为一个十进制(实现十个数以内的倒计时)计数、译码、数码管显示电路;抢答电路(获得优先抢答选手的编号)分为8路抢答开关、数据锁存器、优先编码器、4511译码器、数码管显示电路;整个电路分为锁存控制、倒记时控制、报警控制。
数字抢答器总体方框图如图3-1所示为总体方框图。
其工作原理为:接通电源后,主持人将开关置“开始”状态,抢答器工作,定时器倒计时。
选手在定时时间内抢答时,抢答器完成:优先判断、编号锁存、编号显示、扬声器提示。
当一轮抢答之后,定时器停止、禁止二次抢答、定时器显示剩余时间。
如果再次抢答必须由主持人再次操作“清除”和“开始”状态开关。
图3-1抢答器的原理框图B、要求:1、给节目支持人设置一个控制开关,用来控制系统清零及抢答的开始。
2、抢答开始后当有某一选手首先按下抢答按钮时,选手编号立即被锁存,编号数码管显示选手编号并发出报警声响,此时抢答器不再接收其他的输入信号,优先抢答选手的编号一直保持到主持人将系统清零为止。
3、抢答器具有定时抢答的功能,且一次抢答时间由节目主持人设定。
应用电子设计课程报告

应用电子设计课程报告院系:光电技术学院专业:电子科学与技术班级:光电子07级1班姓名:孙少鹏(2007031013)梅威(2007031029)指导教师:王建波目录一、课题名称.................................................... - 1 -二、内容摘要.................................................... - 1 -三、系统设计.................................................... - 1 -1. 设计要求................................................. - 1 -2. 设计方案................................................ - 1 -(1)整体设计思路与理论分析.............................. - 1 - (2)单元硬件电路设计................................... - 2 - (3)系统工作原理概述.................................... - 7 -四、系统组装调试................................................ - 7 -五、PCB设计与实际PCB图........................................ - 8 -六、方案优缺点及与其他方案比较.................................. - 9 -七、实验心得体会................................................ - 9 -八、实验元器件列表............................................. - 10 -九、参考文献................................................... - 10 -应用电子课程设计报告一、课题名称循环彩灯控制器设计时间:2011.6.10使用芯片:CD4017 NE555二、内容摘要循环彩灯是日常生活和商业活动中常用的装饰手段。
电子线路课程设计报告

电子线路课程设计报告小功率调幅AM发射机设计(理论设计仿真报告)班级:姓名:学号:指导教师:日期:小功率调幅发射机的设计与仿真1.设计内容及要求1.1设计内容1.经过方案比较,确定小功率调幅发射机的设计方案,根据设计指标对既定方案进行理论设计及分析,并给出各单元电路的理论设计方法2.利用multisim仿真软件,对设计电路进行仿真和分析,依据设计指标对电路参数进行调整直至满足设计要求1.2设计要求载波频率MHz 10=cf输出功率mW 2000 ≥P负载电阻Ω =50AR输出信号带宽kHz 9=BW残波辐射dB 40≤单音调幅系数8 .0=am ;平均调幅系数 3 .0≥am发射效率% 50≥η2.设计方案及论证2.设计方案及论证2.1系统框图说明:调幅发射机主要包括四个组成部分:载波振荡器、音频放大器、振幅调制器和功率放大器四部分。
总体思路为:10MHz的载波信号与1KHz的音频信号经过缓冲器以及电压放大后输入到振幅调制器进行调幅得到调幅波,然后经过高频功率放大后输出。
2.2各单元电路设计方案论证2.2.1 主振器电路载波振荡电路是调幅发射机的核心部分,作用是产生高频载波信号用以调制信号。
载波的频率稳定度和波形的稳定度直接影响到已调信号的质量。
因此,载波振荡电路产生的载波信号必须有较高的频率稳定度和较小的波形失真度。
载波振荡电路可以有多种设计方案,方案一:LC三点式正弦波振荡电路方案二:克拉泼振荡器电路方案三:石英晶体振荡器克拉泼振荡器(Clapp oscillator)又称为电容反馈改进型振荡器,它是一种电容三点式振荡器的改进型线路。
电容三点式振荡器,当需要改变频率而调节振荡回路的电容参数时,也会影响电路的起振,为此,把一个电容C3串入振荡回路的电感支路中,这样改变电容C就可以调节振荡频率,而不影响电路的起振。
这种振荡器频率相比LC振荡器来说更加稳定2.2.2 音频放大器音频放大器是在产生声音的输出元件上重建输入的音频信号的设备,其重建的信号音量和功率级都要理想——如实、有效且失真低。
单片机电子时钟课程设计报告

单片机电子时钟课程设计报告一、设计目的。
本课程设计旨在通过单片机技术的应用,设计并制作一个简单的电子时钟。
通过这一设计,学生将能够掌握单片机的基本原理和应用,培养学生的动手能力和创新意识,提高学生的实际操作能力。
二、设计原理。
本电子时钟采用单片机作为控制核心,通过晶振产生的时钟信号来实现时间的计时和显示。
利用数码管来显示小时和分钟,通过按键来调整时间。
同时,通过蜂鸣器发出报时信号,实现基本的闹钟功能。
三、设计方案。
1. 硬件设计。
(1)单片机选择,本设计选用常见的51单片机作为控制核心,具有成本低、易于编程的特点。
(2)时钟电路,采用晶振作为时钟信号源,通过单片机的定时器来实现时间的计时。
(3)显示模块,采用数码管来显示小时和分钟,通过数码管的扫描显示来实现时间的动态显示。
(4)按键输入,设计按键来调整时间,包括调整小时和分钟。
(5)报时功能,通过蜂鸣器来实现基本的报时功能,可以设置闹钟时间。
2. 软件设计。
(1)时钟控制,通过单片机的定时器来实现时间的计时和更新。
(2)显示控制,设计数码管的扫描显示程序,实现时间的动态显示。
(3)按键处理,设计按键扫描程序,实现对时间的调整。
(4)报时功能,设计蜂鸣器的报时程序,实现基本的闹钟功能。
四、设计实现。
1. 硬件实现。
根据上述设计方案,完成了电子时钟的硬件连接和布线,保证各个模块之间的正常通讯和工作。
2. 软件实现。
编写了单片机的程序,实现了时钟的计时、显示和控制功能,保证了电子时钟的正常运行。
五、实验结果。
经过调试,电子时钟能够准确显示当前的时间,并能够通过按键调整时间和设置闹钟功能,报时功能也能够正常工作。
六、总结与展望。
通过本课程设计,学生掌握了单片机的基本原理和应用,培养了动手能力和创新意识。
在今后的学习和工作中,学生将能够更好地应用单片机技术,设计和制作更加复杂的电子产品。
同时,也为学生今后的科研和创新工作奠定了良好的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海南大学信息科学技术学院电子技术课程设计报告设计题目: 自动换挡数字频率计专业班级:___11级通信工程2班_____ _姓名:_______ ____ ________同组员:学号:_____ _____指导教师:_______***___________目录一、设计目的 (1)二、设计目标 (1)1、整体功能要求2、系统结构要求3、电气指标三、方案比较 (2)四、理论分析 (3)1、基本原理2、整体框图五、单元电路设计和整体电路图 (5)1、时基电路设计2、闸门电路设计3、分频器的设计4、控制信号产生电路5、计数、锁存、显示电路设计6、换挡电路设计7、量程显示电路设计8、整体电路图六、电路仿真结果记录及分析 (10)七、元器件列表 (11)八、心得体会 (11)自动换挡型数字频率计一、 设计目的本次课程设计主要是配合《模拟电子技术》和《数字电子技术》理论课程而设置的一门实践性课程,起到巩固所学知识,加强综合能力,培养电路设计能力,提高实验技术,启发创新思想的效果。
二、 设计目标1、整体功能要求频率计主要用于测量正弦波、矩形波等周期信号的频率值。
2、系统结构要求数字频率计的整体结构要求如图所示。
图中被测信号为外部信号,送入测量电路进行处理、测量,自动换挡指的是超量程自动换高档,低量程自动图1 系统结构图3、电气指标(1)被测信号波形:正弦波、矩形波。
(2)被测信号的频率范围:1Hz 999KHz ,共分为4个档位: 1Hz 档位: 1Hz~999HZ10Hz 档位: 10Hz~9.99KHZ 100Hz 档位: 100Hz~99.9KHZ 1000Hz 档位:1KHz~999KHZ(3)测量精度:用3位数码管显示测量数据,1位数码管显示档位。
测量误差小于1%。
(4)具有自检功能,即用仪器内部的标准脉冲校准测量精度。
(5)具有自动换挡功能,即超量程能换高档,欠量程换低档。
三、方案比较方案一:1、采用555定时器构成多谐振荡器产生1000HZ的脉冲信号,然后在通过三个十进制分频器产生100HZ、10HZ、1HZ的脉冲信号,用74LS151选择器选择闸门信号。
2、利用二输入端四与非施密特触发器74LS132作为控制电路产生清零、锁存、计数信号来控制电路分别输入到计数器和锁存器的对应端口。
3、采用4518十进制计数器计数,送到译码器4511BD,4511BD不仅可以把十进制译成对应的二进制,还具有锁存的功能,当计数器计数的时候数码管就不会一直闪,等计数完成锁存的是最终结果。
4、显示器使用三个数码管,当测量的频率从999HZ升到1000HZ以后,个位数就被四舍五入了,即产生了误差,而且量程越大误差也越大。
5、自动换挡选用74160N作为自动换挡的核心,A,B,C,D四个信号输入端全部接地信号输入数字频率计后,从最低档开始计数,换挡信号由计数部分的最高位所用的4518芯片最高位进位输出信号作为换挡部分的CLK信号。
方案二:1、采用晶体振荡器产生8Mhz的脉冲信号。
2、用三个JK触发器74HC73使闸门信号发生不同的延时再加上几个非门分别产生清零、计数、锁存信号。
3、把锁存和译码分开,用HEF404BT做锁存器、4511BT做译码器。
4、自动换挡部分使用几个与非门进行组合,鉴别信号,自动换挡方案三:基于单片机的数字频率计设计——这种方案最大的好处就是硬件电路设计简单,容易制作PCB板,但是它的缺点也是明显的由于单片机本身晶振的问题,在测量高频时单片机难以胜任,在造价方面单片机也会相对高一些。
方案选择:根据给出的所有元器件,最终选择了方案二。
此方便较易于理解,而且译码器4511自带有锁存功能,减少了对三个计数器输出进行锁存时的成本。
方案选择:因此,我们选用方案二。
四、理论分析1、基本原理数字频率计用于测量正弦信号、矩形信号等周期信号波形的频率,其概念是单位时间里的脉冲个数,如果用一个定时时间T 控制一个闸门电路,时间T 内闸门打开,让被测信号通过而进入计数译码,可得到被测信号的频率f x =TN,若T=1秒,则f x =N 。
(1)控制电路原理:控制电路里面要产生计数清零信号和锁存控制信号,清零开始锁存开始,清零结束计数开始,计数结束锁存结束,控制电路还要包括自动换挡。
(2)计数显示电路原理:在闸门电路导通的情况下,开始计数被测信号中有多少个上升沿。
在计数的时候数码管不显示数字。
当计数完成后,此时要使数码管显示计数完成后的数字。
(4)自动换挡原理考虑到控制信号(超量程、欠量程、不超不欠)有3种状态,所以要用2位输入信号表示,假设x=10、11(超量程),x=00(欠量程),x=01(不超不欠);状态S0~S3分别表示1秒~0.001秒挡位,用2位输出表示y=00,y=01,y=10,y=11。
得到以下状态图。
之后我们可以根据状态图列出真值表,然后用卡诺图化简后得到电路图。
X=01 X=00 x=01x=00状态变换图表Q1*=Q1(Q0+B+A)+Q1’Q0AJ1=((Q0A)’)’K1=(((Q0’A’)’)’A’)’Q0*=Q0(B+Q1A)+Q0’(A+Q1A+Q1B’)J0=(A’(Q1B’)’)’K0=((B’(Q1A)’)’)’2、整体框图五、单元电路设计和整体电路图1、时钟电路时钟电路方案的选择是保证测量精度的关键,因此考虑使用石英晶振电路。
正数字频率计原理框图2、闸门闸门可以用逻辑门4011来实现。
3、分频电路分频器采用12位二进制串行计数器HEF4040与六个十进制计数器计数器4518组成。
分频器就是把高频时钟信号降低,变成原频率1/N的器件,N是分频系数(为正整数)。
以用计数器加与门(或与非门)搭成。
如果是简单的2分频、4分频、8分频、16分频......等分频系数为2的n次方的情况,可以不需要与门,只用二进制计数器就能完成分频。
4052选择器的真值表:A B X0 0 X00 1 X11 0 X21 1 X34040十二位分频器:10端输入:输出端的7号引脚4分频输出端的6号引脚8分频输出端的5号引脚16分频输出端的3号引脚32分频输出端的2号引脚64分频输出端的4号引脚128分频输出端的13号引脚256分频输出端的12号引脚512分频信号从10号引脚输入,7号脚为4分频输出,6号脚为8分频输出,5号脚为16分频输出,3号脚为32分频输出,2号脚为64分频输出,4号脚为128分频输出,13号脚为256分频输出,12号脚为512分频输出。
分频器电路图4、控制信号产生电路把闸门信号输到4040的CLK端,把4040的输出端A、B输到4518的输入端,其输出就能产生计数、锁存、换挡、清零控制信号。
同时在七段数码显示管显示当前档位。
控制信号产生电路附:JK触发器的真值表:J K Q Q’0 0 0 00 0 1 10 1 0 00 1 1 01 0 0 11 0 1 11 1 0 11 1 1 05、计数、锁存、显示电路如图4所示,由于题目所要求的数码管数量和档位设置计数部分我们采用了三个十进制计数器4518锁存部分用了三个4511,显示部分用了三个7段数码管。
三个4518的ENP和ENT端均同时接计数器CP信号,LOAD端均接高电平,CLR均接清零信号,第一个4518的CLK端接的是通过闸门的被测信号,而第一个4518的进位输出RCO端接到第二个的CLK端,第二个的RCO端则接到第三个的CLK端。
当被测信号进入闸门接到第一个4518的CLK端且CP为高电平时计数器开始计数,锁存部分的4511BD兼有锁存和译码的功能,LE端均接锁存信号,BI、LT端均接高电平,4511BD的输入端为4个二进制数通过译码后输出高低不同的电平接至数码管控制LED灯的亮与暗而使数码管显示不同的十进制数。
计数、锁存、显示电路其元件的真值表如下:CD4511真值表6、自动换挡电路考虑到控制信号(超量程、欠量程、不超不欠)有3种状态,所以要用2位输入信号表示,假设x=10、11(超量程),x=00(欠量程),x=01(不超不欠);状态S0~S3分别表示1秒~0.001秒挡位,用2位输出表示y=00,y=01,y=10,y=11。
得到以下状态图。
之后我们可以根据状态图列出真值表,然后用卡诺图化简后得到电路图。
X=01 X=00 x=01x=00设计流程:第一步:首先根据4518的输出,我们发现在次高档和高档频率的计数器要进位时其输出Q3会由1至0出现下降沿脉冲,将其作为自动换挡模块的触发脉冲来对数据选择器选档。
第二步:假设高档和次高档的进位设为C1C0,C1C0=11时,表明信号频率超量第三步:根据上面主要思想的状态转换图,我们可以画出AB和Q1Q0之间关系的卡诺图。
见下表:状态变换图表卡诺图化简:Q1*=Q1(Q0+B+A)+Q1’Q0AJ1=((Q0A)’)’K1=(((Q0’A’)’)’A’)’Q0*=Q0(B+Q1A)+Q0’(A+Q1A+Q1B’)J0=(A’(Q1B’)’)’K0=((B’(Q1A)’)’)’根据以上的各逻辑式与JK触发器的特性方程对照,则得出各触发器的驱动方程:J1=((Q0A)’)’J0=(A’(Q1B’)’)’K1=(((Q0’A’)’)’A’)’K0=((B’(Q1A)’)’)’由上三步骤的分析画出自动换挡控制电路的逻辑图如图以下:自动换挡电路7、量程显示电路8、将数据选择器的AB挡作为量程显示的输入端8、总电路图六、电路仿真结果记录及分析仿真结果如下图:输入信号186HZ输入信号186kHZ七、元器件列表74HC73 双JK触发器CD4011 与非门CD4069 六反相器HEF4040BT 三态RS锁存器HEF4511BT BCD制7段锁存器HEF4518B BCD计数器4052 4选1数据选择器八、心得体会经过不断的努力研究,我们小组终于顺利设计出了数字频率计。
这个过程当中,每一次的小小突破,都给我们带来巨大的喜悦,真可谓皇天不负苦心人,一个星期来的汗水没有白流。
这次课程设计给了我们一次锻炼自己,提高自己动手和思考分析以及解决问题的能力,我们不仅收获了做电路设计和仿真上的经验,同时也收获到享受成功时的那份心情,从苦到甜。
三个星期中,我们为自己的作品废寝忘食,但乐在其中、无怨无悔。
从老师布置题目的第一天起,我们不是在不停地收集和翻阅资料就是在宿舍搞仿真,工作量之大前所未有,以往的实验都是在老师的指导下完成,可这次实验主要靠的就是自己的能力,查阅资料,访问互联网,跑图书馆,咨询老师和同学,可谓八仙过海各显神通。
经过这次课程设计,我们系统地利用了电路,模拟电子技术和数字电子技术的知识,将三门学科有机地结合起来,增强我们的理论知识,因为在课堂上我们只是学习单一的一门学科,没有将几门学科结合起来,虽然各自的学科学习掌握的情况还不错,但是一旦遇到需要综合应用各个学科的知识时,我们通常会表现的手足无措。