1.7定积分的简单应用 教学设计 教案

合集下载

人教a版数学【选修2-2】1.7《定积分的简单应用》ppt课件

人教a版数学【选修2-2】1.7《定积分的简单应用》ppt课件

[答案]
1 2
2 3
[解析] 曲线y=x 与y=cx 由题意知
1 1 的交点为c ,c2.
2 1 =3.∴c=2.
典例探究学案
不分割型平面图形面积的求解
如图,求曲线y=x2与直线y=2x所围图形的面 积S.
[分析] 从图形上可以看出,所求图形的面积可以转化为一 个三角形与一个曲边三角形面积的差,进而可以用定积分求 出面积.为了确定出积分的上、下限,我们需要求出直线和 抛物线的交点的横坐标.
(1)(2014· 山东理,6)直线y=4x与曲线y=x3在第一象限内 围成的封闭图形的面积为( A.2 2 C.2 ) B.4 2 D.4
(2)由y=-x2与y=x-2围成图形的面积S=________.
9 [答案] (1)D (2)2
[解析] (1)如图所示
y=4x, 由 3 y = x .
[答案] C
) B.gt2 0 1 2 D.6gt0
[解析] 如果变速直线运动的速度为 v=v(t)(v(t)≥0), 那么
b 从时刻 t=a 到 t=b 所经过的路程是 v(t)dt,

a

故应选 C.
2 4.若两曲线y=x 与y=cx (c>0)围成的图形的面积是 3 ,
2 3
则c=________.
[解析]
y=2x, 解方程组 2 y = x ,
得x1=0,x2=2.
故所求图形的面积为 S= 2xdx- x
2 0 2 0
2
2 2 dx=x 0
1 3 4 2 -3x 0 =3.
[方法规律总结] 利用定积分求平面图形的面积的步骤 (1)画出草图,在直角坐标系中画出曲线或直线的大致图象. (2)将平面图形分割成曲边梯形,并分清在x轴上方与下方的 部分. (3)借助图形确定出被积函数. (4)求出交点坐标,确定积分的上、下限. (5)求出各部分的定积分,并将面积表达为定积分的代数和( 定积分为负的部分求面积时要改变符号处理为正),求出面 积.

1.7定积分的简单应用

1.7定积分的简单应用

总结: 当 x∈[a, b]有 f(x)>g(x)时, 由直线 x=a, x=b(a≠b) 和曲线 y=f(x),y=g(x)围成的平面图形的面积 S=

f x g x dx . a
b
三、新知建构,典例分析
注:
两曲线围成的平面图形的面积的计算 2 2 例 1. 计算由两条抛物线 y x 和 y x 围成图形的面积.
解:作出y2=x,y=x2的图象如图所示:
y x x 0 x 1 解方程组 或 2 y 0 y 1 y x
y
y
C o O
2 y xx B
即两曲线的交点为(0,0),(1,1)
y x2
S = S曲边梯形OABC - S曲边梯形OABD

4. 用微积分基本定理求定积分.
1、变速直线运动的路程 设做变速直线运动的物体运动的速度v=v(t)≥0, 则此物体在时间区间[a, b]内运动的距离s为
s v(t )dt
a
b
v
v v(t )
O
a
b
t
三、新知建构,典例分析
例 2.一辆汽车的 速 度 时间曲 线 如图 1.7 3所示.求汽车在 这1min 行驶的路程 .
S S1 S2
4 0
y 2x
S2
S1
y x4
8
2 xdx [
8
8
4
2 xdx ( x 4)dx]
4
(
2 xdx) ( x 4)dx 2 xdx ( x 4)dx 0 4 4 0 4 能否给出其它的解法? 3 2 2 2 8 1 2 40 8 x |0 ( x 4 x) |4 3 2 3

定积分的简单应用教案市公开课一等奖教案省赛课金奖教案

定积分的简单应用教案市公开课一等奖教案省赛课金奖教案

定积分的简单应用教案一、教学目标:1. 理解定积分的概念及其在实际问题中的应用;2. 掌握定积分的计算方法;3. 能够应用定积分解决简单应用问题。

二、教学内容:1. 定积分的概念及其性质;2. 定积分的计算方法和基本性质;3. 定积分在实际问题中的应用。

三、教学重难点:1. 定积分的概念和计算方法;2. 定积分在实际问题中的应用。

四、教学过程:1. 导入与激发兴趣(5分钟)引导学生回顾不定积分的概念和性质,引发学生对定积分的好奇和兴趣。

2. 定积分的概念和计算方法(20分钟)a. 介绍定积分的概念:定积分是对函数在一定区间上的值进行求和的极限过程,表示函数在这个区间上的总量。

b. 讲解定积分的计算方法:i. 用一组割线逼近曲线下的面积;ii. 分割区间,用矩形逼近曲线下的面积;iii. 讲解Riemann和Darboux定义;iv. 使用不等式判断积分的上限和下限。

3. 定积分的基本性质(15分钟)a. 讲解定积分的线性性质;b. 讲解定积分的区间可加性;c. 引导学生理解定积分的平均值性质。

4. 定积分在实际问题中的应用(30分钟)a. 通过具体的实际问题,引导学生应用定积分解决问题,如:i. 曲线下的面积计算;ii. 曲线长度计算;iii. 物体在一定时间内的位移计算。

b. 引导学生分析问题,确定所给问题可以通过定积分求解。

5. 拓展与巩固(20分钟)通过课堂练习和教师引导,进一步巩固学生对定积分的理解和应用能力。

六、教学评价:1. 课堂练习的完成情况;2. 学生对定积分概念的理解和计算方法的掌握;3. 学生对定积分在实际问题中的应用能力。

七、教学反思:本节课通过引导学生回顾不定积分的概念和性质,引发学生对定积分的兴趣,再结合具体的实际问题进行教学,使学生能够理解定积分的概念和计算方法,并能够应用定积分解决简单的实际问题。

同时,通过课堂练习和教师引导,巩固了学生的学习成果。

综上所述,本节课教学效果较好。

定积分的简单应用教案

定积分的简单应用教案

定积分的简单应用教案
定积分的简单应用教案
定积分的简单应用教案
学习目标:通过求解平面图形的体积了解定积分的应用。

学习重点:定积分在几何中的应用
学习难点:求简单几何体的体积.
学法指导:探析归纳
一、课前自主学习 (阅读课本内容找出问题答案).
1.定积分定义.
2旋转几何体的体积是根据旋转体的一个 ,再进行求出来的.
3解决的关键(1)找准旋转体
(2)通过准确建系,找出坐标,确定 .
二、课堂合作探究:
1.给定直角边为1的等腰直角三角形,绕一条直角边旋转一周,得到一个圆锥体,求它的体积.
2.一个半径为1的球可以看成是由曲线与x轴所围成的区域(半圆)绕x轴旋转一周得到的 ,求球的体积.
三、当堂检测.
1.将由直线=x,x=1,x=2围成的平面图形绕x轴旋转一周,得到一
个圆台,利用定积分求该圆台的体积.
2. 求由直线,x轴,轴以及直线x=1围成的'区域绕x轴旋转一周得到的旋转体的体积.
3.求由双曲线,直线x=1,x=2围成的平面图形绕x轴旋转一周,得到的旋转体的体积.
四、巩固练习.
1 .将由曲线=x和所围成的平面图形绕x轴旋转一周,求所得旋转体的体积
2.求半椭圆绕x轴旋转一周所得到的旋转体的
体积.
3.求由曲线 ,直线x=1以及坐标轴围成的平面图形绕x轴旋转一周,得到的旋转体的体积.
五、课堂小结:
※学习小结:1. 定积分应用之二求旋转几何体的体积。

2. 旋转几何体体积的求法。

六、我的收获:
七、我的疑惑:。

定积分的简单应用教案

定积分的简单应用教案

教案课 题1.7定积分的简单应用课型:新授课教师总课时: 第 课时学习目标1.进一步让学生深刻体会“分割、以直代曲、求和、逼近”求曲边梯形的思想方法;2.让学生了解定积分的几何意义以及微积分的基本定理;3.初步掌握利用定积分求曲边梯形的几种常见题型及方法;4.体会定积分在物理中应用(变速直线运动的路程、变力沿直线做功)。

教学重难点 重点 曲边梯形面积的求法难点 定积分求体积以及在物理中应用教学过程:1、复习1.求曲边梯形的思想方法是什么?2.定积分的几何意义是什么?3.微积分基本定理是什么? 2、定积分的应用(一)利用定积分求平面图形的面积例1.计算由两条抛物线2y x =和2y x =所围成的图形的面积.【分析】两条抛物线所围成的图形的面积,可以由以两条曲线所对应的曲边梯形的面积的差得到。

解:201y x x x y x⎧=⎪⇒==⎨=⎪⎩及,所以两曲线的交点为(0,0)、(1,1),面积S=1120xdx x dx =-⎰⎰,所以⎰120S =(x -x )dx 32130233xx ⎡⎤=-⎢⎥⎣⎦=13【点评】在直角坐标系下平面图形的面积的四个步骤: 1.作图象;2.求交点;3.用定积分表示所求的面积;4.微积分基本定理求定积分。

巩固练习 计算由曲线36y x x =-和2y x =所围成的图形的面积. 例2.计算由直线4y x =-,曲线2y x =以及x 轴所围图形的面积S.分析:首先画出草图(图1.7 一2 ) ,并设法把所求图形的面积问题转化为求曲边梯形的面积问题.与例 1 不同的是,还需把所求图形的面积分成两部分S 1和备课札记2x y =y x= ABC D OS 2.为了确定出被积函数和积分的上、下限,需要求出直线4y x =-与曲线2y x=的交点的横坐标,直线4y x =-与 x 轴的交点.解:作出直线4y x =-,曲线2y x =的草图,所求面积为图1. 7一2 阴影部分的面积.解方程组2,4y x y x ⎧=⎪⎨=-⎪⎩得直线4y x =-与曲线2y x =的交点的坐标为(8,4) .直线4y x =-与x 轴的交点为(4,0). 因此,所求图形的面积为S=S 1+S 2488442[2(4)]xdx xdx x dx =+--⎰⎰⎰334828220442222140||(4)|3323x x x =+-=. 由上面的例题可以发现,在利用定积分求平面图形的面积时,一般要先画出它的草图,再借助图形直观确定出被积函数以及积分的上、下限.例3.求曲线],[sin 320π∈=x x y 与直线,,320π==x x x 轴所围成的图形面积。

[教学设计]定积分的简单应用精品教案

[教学设计]定积分的简单应用精品教案

定积分的简单应用导学案学科:高二数学课型:新授课课时:课时【导案】【学习目标】1.熟练掌握应用定积分求解平面图形的面积问题。

2.掌握应用定积分解决变速直线运动的路程和变力做功等问题。

3.培养学生的建模水平和解决实际问题的能力。

【学习重难点】重点:应用定积分解决平面图形的面积、变速直线运动的路程和变力做功等问题使学生在解决问题的过程中体验定积分的价值。

难点:将实际问题化归为定积分的问题。

【学案】1.计算平面图形面积的一般步骤在利用定积分求平面图形的面积时,一般要先____________,再借助________________直观确定出____________________以及积分的____________。

2.变速直线运动的路程作变速直线运动的物体所经过的路程s,等于其速度函数v=v(t)(v(t)≥0)在时间区间[a, b]上的定积分,即s=____________________________.3.变力作功(1)恒力F的作功公式一物体在恒力F(单位:N)的作用下做直线运动,如果物体沿着与F相同的方向移动了s(单位:m),则力F所作的功为____________。

(2)变力F(x)的作功公式如果物体在变力F(x)的作用下做直线运动,并且物体沿着与F(x)相同的方向从x=a移动到x=b(a<b),那么变力F(x)所作的功为W=________________。

4.例题分析【例1】计算由曲线y2=x, y=x2所围图形的面积S。

【例2】计算由直线y=x-4,曲线x轴所围图形的面积S.【例3】一辆汽车的速度-时间曲线如图所示。

求汽车在这1min行驶的路程。

【例4】如图,在弹性限度内,将一弹簧从平衡位置拉到离平衡位置l m处,求克服弹力所做的功。

5.达标检测教材P58 练习 P95 练习 P60 习题A组 B组定积分的简单应用练案(一)1. 求由抛物线y2=8x(y>0)与直线x+y-6=0及y=0所围成图形的面积。

定积分的简单应用教案03

1.7.1 定积分在几何中的应用一、教学目标:1. 了解定积分的几何意义及微积分的基本定理.2.掌握利用定积分求曲边图形的面积二、教学重点与难点:1. 定积分的概念及几何意义2. 定积分的基本性质及运算的应用三教学过程:(一)练习1.若11(2)a x x+⎰d x = 3 + ln 2,则a 的值为( D )A .6B .4C .3D .2 2.设2(01)()2(12)x x f x x x ⎧≤<=⎨-<≤⎩,则1()a f x ⎰d x 等于( C ) A .34B .45C .56D .不存在 3.求函数dx a ax x a f )46()(1022⎰++=的最小值 解:∵102231022)22()46(x a ax x dx a ax x ++=++⎰223221200(64)(22)|22x ax a dx x a a x a a ++=++=++⎰.∴22()22(1)1f a a a a =++=++. ∴当a = – 1时f (a )有最小值1.4.求定分3-⎰x .5.怎样用定积分表示:x =0,x =1,y =0及f (x )=x 2所围成图形的面积?31)(102101⎰⎰===dx x dx x f S 6. 你能说说定积分的几何意义吗?例如⎰ba dx x f )(的几何意义是什么?表示x 轴,曲线)(x f y =及直线a x =,b x =之间的各部分面积的代数和, 在x 轴上方的面积取正,在x 轴下方的面积取负二、新课例1.教材P56面的例1例2.教材P57面的例2。

练习:P58面例3.求曲线y=sinx ,x ]32,0[π∈与直线x=0 ,32π=x ,x 轴所围成图形的面积。

练习: 1.如右图,阴影部分面积为( B )A .[()()]b af xg x -⎰d x B .[()()][()()]c ba c g x f x dx f x g x -+-⎰⎰d xC .[()()][()()]b b a c f x g x dx g x f x -+-⎰⎰d xD .[()()]ba g x f x +⎰d x 2.求抛物线y = – x 2 + 4x – 3及其在点A (1,0)和点B (3,0)处的切线所围成的面积.32 四、作业:《习案》作业十九。

高中数学第一章导数及其应用1.7定积分的简单应用说课稿新人教版

1.7定积分的简单应用一、教材地位、作用分析:《定积分的简单应用》选自人教A版普通高中课程标准实验教科书《数学》选修2-2第一章第七节。

本节课内容是在学生理解掌握定积分的概念,性质,定理基础之上,来应用定积分解决实际问题。

本章内容在考纲中只要求理解定义并能简单应用,但是根据近几年高考在学科整合处加大考察力度的命题的趋势,结合定积分在物理和化学反应速率中的重要应用,所以我认为本节课在教学中应该引起足够重视,值得在教学中深入研究,使学生在解决问题的过程中体验定积分的价值,注意到定积分在物理化学等多领域的广泛应用,使学生“形成用数学的意识”,更重要的是为学生在高等学校进一步学习奠定基础。

二、教学重点、难点分析:本节重点:应用定积分解决平面图形的面积,变速直线运动的路程和变力做功等问题;本节难点:“理解积分的思想——无限求和”,即“分割、近似代替、求和、取极限”重点的确定是根据课程标准和考试大纲的要求,更是由积分的工具性所决定;难点的确定主要是因为微积分思想不同于前面学习过的函数与方程思想、数形结合思想等基本的思想方法,在学生的头脑中并没有与之相联系的认知结构,要想深刻理解只有将头脑中原有的认知结构加以改组和顺应,而这种改组和顺应要在短短几节课内完成是很难的,所以,它将成为本节的难点所在。

难点的突破我一方面是借助于多媒体计算机的使用,使用直观演示,数据的无穷逼近让学生从感性上去直观感受;另一方面借助于学科之间的融合,借助于学生对于物理中变速运动和变力做功这些有知识的理解来帮助体会积分思想。

三、教学目标分析:1、知识与技能目标:(1)应用定积分解决平面图形的面积、变速直线运动的路程问题;(2)学会将实际问题化归为定积分的问题。

2、过程与方法目标:通过体验解决问题的过程,体现定积分的使用价值,加强观察能力和归纳能力,强化数形结合和化归思想的思维意识,达到将数学和其他学科进行转化融合的目的。

3、情感态度与价值观目标:(1)认同“有限与无限的对立统一”的辩证观点;(2)培养将数学知识应用于生活的意识。

1.7定积分的简单应用第2课时 精品教案

1.7 定积分的简单应用【课题】: 1.7.2 定积分在物理中的应用【教学目标】:(1)知识与技能:通过举例复习变速直线运动的路程,引导学生解决变力所作的功等一些简单的物理问题.(2)过程与方法:利用问题的物理意义,有时也要注意借助于定积分的几何意义,用“数形结合”的思想方法解决问题.(3)情感态度与价值观:体会数学在物理的应用,也即是在客观物质世界的应用。

【教学重点】:解决变力所作的功等一些简单的物理问题.进一步巩固利用定积分解决实际问题的思路和方法.【教学难点】:理解问题的物理意义,并且转化为数学问题,借助于定积分解决.【课前准备】:Powerpoint(或投影片)【教学过程设计】:速度()v t曲线与x轴的所围把下图的变力F类比为上图为时间t,那么在下图中,F2dbr r⎰)b -(简单题)1. 如果1N 能拉长弹簧1cm ,为了弹簧拉长6cm ,所耗费的功为( ) (A )0.18J (B )0.26J (C )0.12J (D )0.28J 答案:A解释:设()F x kx =,当1F =N 时,0.01m x =,则100k =.0.060.062100d 500.18(J)W x x x ===⎰2. 将一弹簧压缩x 厘米,需要4x 牛顿的力,将它从自然长度压缩5厘米,作的功为 答案:0.5焦耳解释:由()0.04F x kx k =⇒=牛顿/米,∴()0.04F x x =,∴552000.04d 0.020.05W xx x===⎰(焦耳)3、如果10N 的力能使弹簧压缩10cm ,为在弹性限度内将弹簧拉长6cm ,则力所做的功为 ( )A .0.28JB .0.12JC .0.26JD .0.18J 答案:D解释:设()F x kx =,当10F =N 时,0.1m x =,则100k =。

0.060.062100d 500.18(J)W x x x ===⎰4、物体作变速直线运动的速度为v (t ),当t =0时,物体所在的位置为0s ,则在1t 秒末时它所在的位置为( )A .⎰10)(t dtt v B .⎰+10)(t dtt v sC .001)(s dt t v t -⎰D .⎰-10)(t dtt v s答案:B解释:设1t 秒末时它所在的位置为S ,又在时间[]10,t 段的位移0()s t S s =- ,又1()()d t s t v t t=⎰,∴100()d t S s v t t =+⎰。

1.7定积分的简单应用第1课时精品教案

1.7 定积分的简单应用【课题】:定积分在几何中的应用【教课目的】:(1)知识与技术:解决一些在几何顶用初等数学方法难以解决的平面图形面积问题(2)过程与方法:在解决问题中,经过数形联合的思想方法,加深对定积分几何意义的理解(3)感情态度与价值观:领会事物间的互相转变、对峙一致的辩证关系,培育学生辩证唯心主义看法,提高理性思想能力.【教课要点】:(1)应用定积分解决平面图形的面积问题,使学生在解决问题的过程中体验定积分的价值以及由浅入深的解决问题的方法。

(2)数形联合的思想方法【教课难点】:利用定积分的几何意义,借助图形直观,把平面图形进行适合的切割,从而把求平面图形面积的问题转变为求曲边梯形面积的问题.【课前准备】: Powerpoint或投电影【教课过程设计】:教课环节教课活动设计企图一、(1)师:我们已经看到,定积分能够用来计算曲引入课题例题 1 边梯形的面积,事实上,利用定积分还能够求比较复杂的平面图形的面积。

(2)例题 1 计算由曲线 y2 x, y x2所围图形的面积 S。

yy=x21C B y 2=xD AO1x生:思虑,议论师(指引,总结):例1是求由两条抛物线所围成的平面图形的面积.第一步,绘图并确立图形大概形状、范围,借助几何直观,将所求平面图形面积看成位于x 轴上方的两个曲边梯形面积之差;y y1 y=x 21 B y 2=x BA AO 1 x O 1 x师:第二步,确立积分上、下限,即经过解方程组求出交点的横坐标,从而确立被积函数和积分上、下限 ( 本例中需将曲线 y2 x 的解析式进行变形,得到 y x ,由于所围图形在 x 轴上方,因此取 y x ) ;yy= x1 BAO1x2解方程组y x 得 交 点 的 横 坐 标 为 x 0 及 x 1 。

yx 2师:第三步,写出平面图形面积的定积分表达式,运用微积分基本定理计算定积分,从而求出平面图形的面积所以,所求图形的面积为S S 曲边梯形 OABCS 曲边梯形OABD1 xdx1x 2 dx0 023 1 1 3 1 3 x2x32 13 3 13板书解题详尽步骤,规范学生的解题格式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学准备
1. 教学目标
(1)知识与技能:解决一些在几何中用初等数学方法难以解决的平面图形面积问题
(2)过程与方法:在解决问题中,通过数形结合的思想方法,加深对定积分几何意义的理解
(3)情感态度与价值观:体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力.
2. 教学重点/难点
【教学重点】:
(1)应用定积分解决平面图形的面积问题,使学生在解决问题的过程中体验定积分的价值以及由浅入深的解决问题的方法。

(2)数形结合的思想方法
【教学难点】:
利用定积分的几何意义,借助图形直观,把平面图形进行适当的分割,从而把求平面图形面积的问题转化为求曲边梯形面积的问题.
3. 教学用具
多媒体
4. 标签
1.7.1 定积分在几何中的应用
教学过程
课堂小结。

相关文档
最新文档