运用公式法
21.2.2用公式法求解一元二次方程(教案)

举例2:对于判别式的计算,学生可能会忘记在计算过程中先计算b^2,再减去4ac,或者在计算过程中符号出错。
2.教学难点
-公式法的推导过程理解:学生对公式法的推导过程可能感到难以理解,特别是对根号下的判别式的物理意义。
-判别式的计算与应用:学生在计算判别式时可能会出现错误,以及在根据判别式的值判断解的情况时可能会混淆。
-公式法的适用范围:学生可能不清楚何时应该使用公式法求解一元二次方程,以及何时该方法不适用。
21.2.2用公式法求解一元二次方程(教案)
一、教学内容
本节课选自八年级数学下册第21章第2节“用公式法求解一元二次方程”。教学内容主要包括以下两个方面:
1.公式法求解一元二次方程的基本概念:介绍一元二次方程的标准形式ax^2 + bx + c = 0,以及求解该方程的公式:x = (-b ± √(b^2 - 4ac)) / (2a)。
实践活动和小组讨论环节,学生们积极参与,但我也观察到一些小组在讨论时可能会偏离主题。这提醒我在引导讨论时,要更加明确主题,确保讨论的方向和深度。同时,我也发现有些学生在操作实验时,对公式的运用还不够熟练,这说明我们在操作练习上还需要加强。
在学生小组讨论时,我尽量以引导者的身份参与,鼓励学生们发表自己的观点,这有助于培养他们的独立思考能力。但我也发现,部分学生在分享成果时表达不够清晰,这提醒我在今后的教学中,要注重培养学生的表达和交流能力。
五、教学反思
今天的教学中,我发现学生们对一元二次方程的公式法求解表现出很大的兴趣,但也存在一些理解和操作上的难点。在导入新课的时候,通过日常生活中的问题引导学生思考,他们很快就进入了学习状态。但在理论介绍环节,我发现有些学生对标准形式的理解还不够深入,需要通过更多的例子来加强他们的理解。
因式分解的常用方法(基本公式法,分拆法,配方法,换元法,待定系数法)

因式分解方法归纳总结第一部分:方法介绍初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,进一步着重换元法,待定系数法的介绍.、提公因式法.:ma+mb=m(a+b)、运用公式法.(1) (a+b)(a -b) = a 2-b2 ---------- a 2-b2=(a+b)(a -b);, 2 2, 2 2 , 2,2(2) (a ± b) = a ± 2ab+b ----------------- a ± 2ab+b =(a ± b);(3) (a+b)(a 2-ab+b2) =a 3+b3------ a 3+b3=(a+b)(a 2-ab+b2);2 2、33 3 3 2 2、(4) (a -b)(a +ab+b ) = a -b -------------- a -b =(a -b)(a +ab+b ).F面再补充两个常用的公式:(5) a 2+b2+c2+2ab+2bc+2ca=(a+b+c) 2;3,3 3 2,2 2(6) a +b +c -3abc=(a+b+c)(a +b +c -ab-bc-ca);例.已知a, b, c是ABC的三边,且a2 b2 c2则ABC的形状是()(二)分组后能直接运用公式ab bc ca,A.直角三角形B等腰三角形C等边三角形D等腰直角三角形解: a2 b2 c2 ab bc ca 2 2 22a 2b 2c 2ab 2bc 2ca(a b)2 2 2(b c) (c a)三、,分组分解法例 2、分解因式:2ax 10ay 5by解法一:第、二项为一组;第三、四项为一组。
解:原式=(2ax 10ay) (5by bx)= 2a(x 5y) b(x 5y)=(x 5y)(2a b)bx解法二:第一、四项为一组;第二、三项为一组。
原式=(2ax bx) ( 10ay 5by) =x(2a b)5y(2a b) =(2a b)(x 5y)练习:分解因式1、a2 ab ac bc 2、xy x y 1例3、分解因式:x2 y2 ax ay分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
运用公式法

运用公式法篇一:运用公式法运用公式法平方差公式22(a+b)(a-b)=a-b公式中的字母可以表示任何数、单项式或多项式。
因此,计算时公式中的字母以可以表示任何数、单项式或多项式,只要符合公式特点,就可以运用平方差公式平方差公式多项式必须是两个数(或式)的平方差,能2够指明二项式中,哪一项相当于公式中的a,哪一项相当于222公式中的b。
并且把给出的多项式经过简单变形,写成a-b的形式,以便于分解,当公式中的字母表示多项式时,分解过程中需要加中括号,但结果中不能含有中括号,在添、去括号时都应注意是否需要变号。
有些题表面看不符合平方差公式的特点,但仔细观察,它们符合平方差公式的特点,可以应用公式计算。
再次鼓励与提倡解决问题策略的多样化,满足不同学生发展的需求,丰富学生的学习经验,提高思维水平,培养创新意识。
通过介绍同一问题的不同解决方法,让学生感受到分解因式中的一些技巧。
篇二:运用公式法数学微格教学教案科目:数学课题:分解因式——运用公式法执教:袁媛训练技能:设计理念:一、教学内容:北师大版初二下册第二章p54-58页内容。
二、教学目标:1、回固因式分解的概念和复习提公因式法;2、复习平方差公式与完全平方公式,并灵活运用到分解因式中;3、结合提公因式法进行分解因式;4、掌握分解因式与整式乘法的关系。
三、教学重点:本章内容是分解因式,分成了三小节。
前两节分别讲的是因式分解的概念和提公因式法进行分解因式。
本节要讲的是用公式法进行因式分解。
其重点是熟记乘法公式中的平方差公式与完全平方公式,并结合前两节知识进行因式分解。
四、教学难点:难点是用公式法结合前一节内容进行因式分解。
教学过程:训练技能执教者教学目标袁媛教学课题教学时间分解因式——运用公式法20XX-9-261、复习巩固因式分解定义和提公因式法;2、复习平方差公式与完全平方公式,并灵活运用到分解因式中;3、结合提公因式法进行分解因式;4、掌握分解因式与整式乘法的关系。
《运用公式法》教学教案

《运用公式法》教学教案第一章:引言1.1 教学目标让学生理解公式法的基本概念和应用领域。
引导学生掌握公式法的原理和步骤。
培养学生运用公式法解决实际问题的能力。
1.2 教学内容公式法的定义和特点公式法的应用领域公式法的基本原理和步骤1.3 教学方法采用案例导入的方式,引导学生了解公式法的应用领域。
通过讲解和示例,让学生掌握公式法的基本原理和步骤。
提供实际问题,让学生运用公式法解决,并进行小组讨论和分享。
1.4 教学评估课堂参与度评估:学生参与小组讨论和分享的积极性。
练习题评估:学生完成练习题的正确率和理解程度。
第二章:公式法的基本原理2.1 教学目标让学生理解公式法的基本原理。
引导学生掌握公式的推导和应用。
2.2 教学内容公式法的基本原理公式的推导和应用示例2.3 教学方法通过讲解和示例,让学生掌握公式法的基本原理。
提供练习题,让学生巩固公式的推导和应用。
2.4 教学评估练习题评估:学生完成练习题的正确率和理解程度。
学生提问和解答评估:学生对公式法的基本原理的理解和应用能力。
第三章:公式法的步骤3.1 教学目标让学生掌握公式法的步骤。
引导学生运用公式法解决实际问题。
3.2 教学内容公式法的步骤实际问题解决示例3.3 教学方法通过讲解和示例,让学生掌握公式法的步骤。
提供实际问题,让学生运用公式法解决,并进行小组讨论和分享。
3.4 教学评估练习题评估:学生完成练习题的正确率和理解程度。
学生提问和解答评估:学生对公式法的步骤的理解和应用能力。
第四章:公式法的应用领域让学生了解公式法在不同领域的应用。
引导学生运用公式法解决实际问题。
4.2 教学内容公式法在不同领域的应用示例实际问题解决示例4.3 教学方法通过讲解和示例,让学生了解公式法在不同领域的应用。
提供实际问题,让学生运用公式法解决,并进行小组讨论和分享。
4.4 教学评估练习题评估:学生完成练习题的正确率和理解程度。
学生提问和解答评估:学生对公式法在不同领域的应用的理解和应用能力。
数学运用公式法一

(反)
思
逸夫初级中学“三导三学五环节”导学案
年级:八年级科目:数学
课题
2.3运用公式法(一)
主备人
李驰
审核人
李驰
授课人
编号
04
授课
时间
班级
姓名
学习
目标
1、经历通过整式乘法的平方差的逆向得出公式法分解因式的方法的过程,发展学生的逆向思维。
2、:平方差公式分解因式.
难点:观察平方差特点并利用平方差公式分解因式
预习展示
分解下列因式(平方差公式):
(1)、1-4x2;(2)、m2-4;(3)、x2-4y2;
(4)、3x3-12x;(5)、 。
学
习
流
程
引领探究
1、a2-b2= (a+b)(a-b)中a,b都表示单项式吗?它们可以是多项式吗?
2、(1)9(m+n)2-(m-n)2;(2)4(m+n)2-(m-n)2
有效检测
把下列各式分解因式
(1)-(x+y)2+z2
(2)9(a+b)2-4(a-b)2
(3)m4-16m4
(4)x2-(a+b-c)2
(5)
梳理拓展
1、对于任意的自然数 , 能被24整除吗?为什么?
2、如图,在边长为a的正方形中挖去一个边长为b的小正方形(a>b),把余下的部分拼成一个矩形,通过计算两个阴影部分的面积,可以得到一个矩形,通过计算两个阴影部分的面积,可以得到一个分解因式的公式,这个公式是怎样的?
学
习
流
程
学 案
导 案
导学预习
1、什么是因式分解?我们已经学过的因式分解的方法有什么?
因式分解技巧讲解002

七、综合运用及技巧
1、换元(即整体法)
因式分解时可以用一个字母代替一个整式,也可以将原式中的某个部分变形后的式子用
一个字母代替,(一般都是既约多项式),分解完后再将其带入。
2、主次分清
我们在处理一个项数多的多项式的时候,可以按照一个主要字母(任选)的降幂整理后,
然后分解。
十字相乘法解决。
[例]分解因式:6x2-7x+2
解:采用类似的办法:把6分解成2×3,写在第一列;把2分解成(-1)×(-2),写在第二
列;然后交叉相乘,把积相加,最后把得到的和写在横线下面。如下:
2 -1
3 -2
-7
这个和恰好是一次项的系数,于是有:
上面的算式称之为长十字相乘,式子中的三个十字,就是上面所说的三个十字相乘,我
们省略了横线及其底下的数。
如果二次式中的缺少一项或几项,长十字相乘仍然可用。
[例]分解因式:x2-y2+5x+3y+4[缺少含有字母的项]
解:由如下算式
(x) (y) (1)
1 1 1
=2a2b(x+y)(b+c)[(x+y)+3a3b3(b+c)]
=2a2b(x+y)(b+c)(x+y+3a3b4+3a3b3c)
其实这是一种整体的思想,在因式分解中应用广泛。
3、切勿漏1
4、注意符号
在提出的公因式为负的时候,注意各项符号的改变。
5、化“分”为整
数学论文——因式巧分解
史虓
◎综述
所谓多项式的因式分解,是把一个多项式写成几个整式的积的形式。因式分解并不复杂,
整式乘除法的运算技巧

(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a^2-b^2=(a+b)(a-b)a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子: a^2-b^2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)^2=a^2+2ab+b^2 和(a-b)^2=a^2-2ab+b^2反过来,就可以得到:a^2+2ab+b^2 =(a+b)^2a^2-2ab+b^2 =(a-b)^2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)•(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x^2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:①列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)^2=(y-x)^2,(x-y)^3=-(y-x)^3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
2.3运用公式法

任何一个正奇 你发现了什么规 数都可以表示 律?能用因式分 解来说明你发现 成两个相邻自 的规律吗? 然数的平方差。 对于正奇数 2n+1(n为自然 2 2 数),有 n 1 n
1 3 5 7 …
1 12 02
3 22 12
5 32 22
7 42 32
…
ห้องสมุดไป่ตู้
n 1 n n 1 n 2n 1
1.把下列各式分解因式
(1)(a 2 b 2 ) 2 4 a 2 b 2
(1)x -12xy+36y (1)18a2-50 4 2 2 4 (2)16a +24a b +9b (2)-3ax2+3ay4 2 2 (3)-2xy-x -y (3)(a+b)2-4a2 2 (4)4-12(x-y)+9(x-y) (4)-25x2y2+100 2+2a2x+a3; (5) ax 2 2 (5)4(a-b) -9(2a+3b) 2+6xy-3y2. (6) - 3 x 2 2 2 (6)(x +3x) -(x+1)
已知3a+b=10000,3a-b=0.0001, 求 b2-9a2 的值.
3.下列各式中,不能用完全平方公式分解的是( ) A、x4+6x2y2+9y4 B、x2n-2xnyn+y2n C、x6-4x3y3+4y6 D、x4+x2y2+y4
4.如果100x2+kxy+y2可以分解为(10x-y)2,那么k的值是( A、20 B、-20 C、10 D、-10 5.如果x2+mxy+9y2是一个完全平方式,那么m的值为( A 、6 B、±6 C、3 D、±3 ) )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3运用公式法----平方差公式
平方差公式:(a+b )(a -b )=
左边是整式乘法,右边是一个多项式,把这个等式反过来就是 =
这个式子左边是一个多项式,右边是整式的乘积.从左边到右边是因式分解
例1
(1)x 2-16=( )2 -( )2=(x+4)(x -4).
(2)9 m 2-4n 2=( )2-( )2=( + )( - )
(3)25-36x 2=( )2-( )2=( + )( - );
(4)49a 2-b 2=( )2-( )2=
(5)9(m+n )2-(m -n )2= 2-( )2 = 平方差公式公式中的字母可以是单项式,也可以是 例2 把下列各式分解因式
222
2)
(9)(4)2()2()()1(n m n m b a b a --+--+
(3)2x x 83- 练习
1、下列各式由先左到右的变形是因式分解的是( )
A 、(x-2)(x-3)=652+-x x
B 、)
4(2822222y x y x -=- C 、b a 25=5ab.a D 、29a +-=(3+a)(3-a)
2、下列多项式中能用平方差公式分解因式的是____________________。
(1)、22)(b a -+ (2)、mn m 205
2- (3)、22y x -- (4)、92+-x (5)-a 2+b 2 (6)-x 2-y 2
(7)49x 2y 2-z 2 (8)16m 4-25n 2p 2 (9)、42+-m
(10)、22y x -- (11)、122-y x (12)、()()2
2a m a m +-- 3、分解因式33164ab
b a -
4、分解因式23mn
m -
5、分解因式:22)
(25)(9b a b a --+
6、已知m-n=3,22n m -=15,求m 、n 的值
课堂检测
(一)、★ 1.下列分解因式是否正确:
(1)-x 2-y 2=(x +y )(x -y ) (2)9-25a 2=(9+25a )(9-25a )
(3)-4a 2+9b 2=(-2a +3b )(-2a -3b )
2.判断:下列各式能不能写成平方差的形式(能画“√”,并分解,不能的画“×”)
(1)x 2+64 ( ); (2)-x 2-4y 2 ( )
(3)9x 2-16y 4 ( ); (4)-14x 6+9n 2 ( )
(5)-9x 2-(-y )2( ); (6)-9x 2+(-y )2 ( )
(7)(-9x )2-y 2 ( ); (8)(-9x )2-(-y )
2 ( )
(二).★★选择题 1. 下列各式中,能用平方差公式分解因式的是( )
A .22b a +-
B .22b a --
C .22b a +
D .33b a -
2.(x +1)2-y 2分解因式是( ) A . (x +1-y )(x +1+y ) B . (x +1+y )(x -1+y ) C . (x +1-y )(x -1-y ) D . (x +1+y )(x -1-y )
(三)、★★★填空:
1.填空(把下列各式因式分解)
(1)21p -=____________ (2)=
-36492c ________________ (3)=-256
942n m __________ (4)925.022+-m a =______________ (5)n x 24-=______________ (6)1
)(2-+b a =__________________ 2.把下列各式分解因式
(1)()=
=-_____335x x x ________________________ (2)()=
=-________2223ab ab ab __________________ (3)()=
=-________163x x x ___________________ (4)()=
=-________23342ab ay ax ___________________ (四)、★★★★ 把下列各式分解因式:
(1)224y x -=__________________________
(2)24481y
x -= _______________________ (3)4a 2-(b +c )2 =_______________________
(4)(4x -3y )2-16y 2 = ___________________
(5)-4(x +2y )2+9(2x -y )2=____________________________
(6)(a+b+c)2-(a-b-c)2=。