3.1一元一次方程

合集下载

3.1一元一次方程及其解法

3.1一元一次方程及其解法
例如:解方程x+4=8.
只需将左边的4去掉,就可求出x的值,这时利用性质1,等式两边都减去4得x+4-4=8-4. ∴ x=4.
<img src=c:\全科学习\初一\数学\3.1一元一次方程及其解法\4.bmp>
剖析难点
1.方程的解和解方程.要分清这是两个不同的概念,不能混为一谈,解方程是求方程解的过程,是一个变形过程,这里的“解”是动词;而方程的解是求得的结果,它是未知数的值,是一个名词.
解 去分母,得5(x-1)=20-2(x+2),
去括号,得5x-5=20-2x-4,
移项合并同类项,得7x=21,
系数化为1,得x=3.
点拨 常见错误为(1)移项不变号;(2)去分母时出现漏乘现象;(3)错把解方程写成连等式;(4)去括号时出现漏乘现象或出现符号错误.
Ⅲ 能力升级平台
解 A
点拨 由现实中天平平衡抽象得到两个等式,再灵活应用等式性质是本题的关键.
【例8】 (2004年,四川眉山)小李在解方程5a-x=13(x为未知数)时,误将-x看作+x,得方程的解为x=-2,则原方程的解为( )
A.x=-3
B.x=0
C.x=2
D.x=1
解析 先把x=-2代入5a+x=13中求出a值,然后再求原方程的解.
<img src=c:\全科学习\初一\数学\3.1一元一次方程及其解法\13.bmp>
A.5
B.4
C.3
D.2
解析 本题形象地与现实联系在一起,但考查内容却是等式性质的灵活应用.这里可分别用字母a,b,c分别表示●,■,▲,则由第(1),(2)架天平平衡可得到下面等式;2a=b+c,a+b=c,由等式性质可得a+b+b=c+b,又由2a=b+c,所以a+2b=2a,即a=2b,本题中“?”处应放一个●和一个▲天平才能平衡,故?=a+c,而由a=2b,a+b=c可得c=3b,所以“?”处应放2b+3b=5b,即需放■5个.

人教版七年级数学上册:3.1.1《一元一次方程》教学设计

人教版七年级数学上册:3.1.1《一元一次方程》教学设计

人教版七年级数学上册:3.1.1《一元一次方程》教学设计一. 教材分析《一元一次方程》是人教版七年级数学上册第三章第一节的内容,主要是让学生掌握一元一次方程的概念、解法及其应用。

本节课的内容是初中的基础内容,对于学生以后学习其他数学知识有着重要的铺垫作用。

二. 学情分析学生在进入七年级之前,已经学习了代数的基本概念,如整数、有理数等,对代数有一定的认识。

但他们对一元一次方程的概念和解法可能还没有完全理解,因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握一元一次方程。

三. 教学目标1.让学生了解一元一次方程的概念,理解一元一次方程的意义。

2.让学生掌握一元一次方程的解法,并能运用一元一次方程解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重难点:一元一次方程的概念及其应用。

2.难点:一元一次方程的解法。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过问题引导学生思考,通过案例让学生理解一元一次方程的应用,通过小组合作学习,让学生互相讨论,共同解决问题。

六. 教学准备1.准备相关的教学案例和问题。

2.准备PPT,展示一元一次方程的相关知识。

3.准备黑板,用于板书一元一次方程的解法。

七. 教学过程1.导入(5分钟)通过一个实际问题,如“小明买了一本书,定价为x元,打了8折后,他支付了8元。

请问这本书的原价是多少?”引导学生思考,引入一元一次方程的概念。

2.呈现(10分钟)通过PPT,展示一元一次方程的定义、解法和应用。

让学生了解一元一次方程的基本知识。

3.操练(10分钟)让学生解决一些简单的一元一次方程问题,如“2x + 1 = 7”等。

引导学生运用一元一次方程的解法,求解未知数的值。

4.巩固(10分钟)让学生解决一些实际问题,如“一个水果摊贩卖出x个苹果,每个苹果的价格为2元,如果他总共收入了20元,那么他卖出了多少个苹果?”让学生将所学的一元一次方程应用到实际问题中。

人教版七年级数学上册:3.1.1《一元一次方程》说课稿1

人教版七年级数学上册:3.1.1《一元一次方程》说课稿1

人教版七年级数学上册:3.1.1《一元一次方程》说课稿1一. 教材分析《一元一次方程》是人教版七年级数学上册第三章第一节的内容。

这部分内容是在学生已经掌握了有理数、方程和不等式的基础知识上进行的。

一元一次方程是数学中基本的方程形式,它在实际生活中的应用非常广泛。

通过学习一元一次方程,学生可以进一步理解数学与实际生活的联系,提高解决实际问题的能力。

二. 学情分析初中的学生已经具备了一定的数学基础,但是对于一元一次方程的应用可能还不够熟练。

因此,在教学过程中,我们需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。

同时,我们也要激发学生的学习兴趣,让他们主动参与到学习过程中来。

三. 说教学目标1.知识与技能目标:使学生理解一元一次方程的概念,掌握一元一次方程的解法,能够运用一元一次方程解决实际问题。

2.过程与方法目标:通过自主学习、合作交流,培养学生解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神。

四. 说教学重难点1.教学重点:一元一次方程的概念,一元一次方程的解法。

2.教学难点:一元一次方程在实际生活中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等。

2.教学手段:利用多媒体课件、教学道具、黑板等。

六. 说教学过程1.引入新课:通过生活中的实际问题,引导学生思考如何用数学方法解决问题。

2.讲解概念:讲解一元一次方程的概念,解释一元一次方程的特点。

3.演示解法:通过示例,演示一元一次方程的解法。

4.练习巩固:学生独立完成练习题,巩固一元一次方程的解法。

5.应用拓展:引导学生运用一元一次方程解决实际问题。

6.总结反馈:学生总结一元一次方程的学习心得,教师进行点评。

七. 说板书设计板书设计要清晰、简洁,能够帮助学生理解和记忆一元一次方程的概念和解法。

可以设计如下板书:一元一次方程:形式:ax + b = 0解法:移项、合并同类项、化简八. 说教学评价通过课堂表现、练习题完成情况、实际问题解决能力等方面进行评价。

3.1一元一次方程及其解法

3.1一元一次方程及其解法

第3章 一次方程与方程组3.1 一元一次方程及其解法第1课时 一元一次方程教学目标1.使学生掌握方程的概念、一元一次方程的概念、方程的解.2.使学生初步了解方程的一般步骤,体会用方程解决问题的优越性. 教学重难点【重点】方程、一元一次方程、方程的解的概念;以实际问题形成方程的模型、列方程.【难点】列方程解决实际问题.教学过程一、问题展示,引入新课师:同学们,上新课之前,我们先一起来看这一道题:一辆客车和一辆卡车同时从A 地出发沿同一公路同方向行驶,客车的行驶速度是70 km /h ,卡车的行驶速度是60 km /h ,客车比卡车早1 h 经过B 地.A ,B 两地间的路程是多少? 师:请同学们用算术方法解决这个问题.学生独立思考后,与大家交流,老师再做简单讲解.师:如果设A 、B 两地相距x km ,你能分别列式表示客车和卡车从A 地到B 地的行驶时间吗?匀速运动中,时间=路程速度.根据问题的条件,客车和卡车从A 地到B 地的行驶时间,可以分别表示为x 70h 和x 60h .因为客车比卡车早1 h 经过B 地,所以x 70比x 60小1,即x 60-x 70=1① 我们已经知道,方程是含有未知数的等式.等式①中的x 是未知数,这个等式是一个方程.(教学过程中对学生的回答,及时给予鼓励和表扬,激发他们对数学的兴趣)师:以后我们将学习如何解方程求出未知数x ,从而得出A ,B 两地间的路程为420 km ,同学们,与算术方法相比较,用方程来解决问题具有什么特点?学生相互交流,说出自己对方程的感受.教师引出方程的概念.含有未知数的等式叫做方程.二、例题讲解师:下面我们再来一起做几个例题.【例】 根据下列问题,设未知数并列出方程:(1)用一根长24 cm 的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1 700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2 450小时.【答案】 (1)设正方形的边长为x cm ,列方程得4x =24.(2)设x 月后这台计算机的使用时间已达到2 450小时,那么在x 月里这台计算机使用了150x 小时,列方程得1 700+150x =2 450.教师总结:同学们在列方程时,一定要弄清方程两边的代数式所表示的意义,体会列方程所依据的等量关系.师:上面各方程都含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.那么如何从实际问题中列出方程呢?请同学们总结出列方程的一般步骤.(学生互相讨论,交流合作)师:列方程解应用题的一般步骤: 实际问题――→设未知数、列方程一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学知识解决实际问题的一种方法.师:当x =6时,4x 的值为多少?生:24.师:也就是说x =6是方程4x =24的解.师总结:解方程就是求出使方程中等号左右两边相等的未值数的值,这个值就是方程的解.三、巩固练习1.已知下列方程:(1)3x -2=6;(2)x -1=1x ;(3)x 2+1.5x =8;(4)3x 2-4x =10;(5)x =0 (6)5x -6y =8;(7)2x=3.其中是一元一次方程的是________(填序号). 2.下列数中,是方程5x -3=x +1的解的是( )A .-1B .0C .1D .2(学生思考,教师提问.)【答案】 1.(1)(3)(5) 2.C四、课堂小结这一节课你获得了哪些知识?有什么感受?(教师引导学生一起回顾这节课所学知识,鼓励学生用自己的语言进行回答)第2课时 等式的性质教学目标1.理解等式的基本性质.2.会根据等式的基本性质解方程.教学重难点【重点】等式的基本性质.【难点】用等式的基本性质解方程.教学过程一、温故知新师:同学们,你们知道什么叫方程吗?方程的解呢?那么什么又是等式?学生回答,教师点评.二、讲授新课1.合作探究.师:像m +n =n +m ,x +2x =3x ,3×3+1=5×2等都是等式.通过下面的实验,我们一起来探究等式的一些性质,同学们看,这是一台天平,请仔细观察实验过程.请同学们用语言叙述这个实验过程.生:天平两边分别放入一个铁球和砝码,天平平衡,再在两边都加上相同的木块,天平仍平衡,再拿掉木块天平仍平衡.师:这位同学回答得完全正确.如果我们把天平看成是等式,那么又会得到什么结论呢? 小组讨论,合作交流.师:总结得出等式的性质1:等式两边都加上(或减去)同一个数(或整式),结果仍是等式. 师:请同学们继续观察下面的实验.请同学们用语言表达出这个实验过程.生:天平两边各放入一个小球和砝码,天平平衡,如果把两边小球和砝码的数量都变成原来的3倍,那么天平仍平衡.师:与上面一样,如果我们把天平看成是等式,那么又有什么结论呢?小组讨论,合作交流.师:我们可以得出等式的性质2:等式的两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.性质3 如果a =b ,那么b =a.(对称性)例如,由-4=x ,得x =-4.性质4 如果a =b ,b =c ,那么a =c.(传递性)例如,如果x =3,又y =x ,所以y =3.在解题的过程中,根据等式的这一性质,一个量用与它相等的量代替,简称等量代换.三、例题讲解【例】 利用等式的性质解下列方程:(1)x +7=26;(2)-13x -5=4. 分析 要使方程x +7=26转化为x =a 的形式,要去掉方程左边的7,因此两边要同时减7,你会类似地思考另外一个方程如何转化为x =a 的形式吗?【答案】 (1)两边同时减7,得x +7-7=26-7,于是x =19.(2)两边同时加5,得-13x -5+5=4+5,化简,得-13x =9.两边同乘-3,得x =-27. 四、巩固练习1.下列等式的变形正确的是( )A .若m =n ,则m +2a =n +2aB .若x =y ,则x +a =y -aC .若x =y ,则xm =ym ,x m =y mD .若(k 2+1)a =-2(k 2+1),则a =22.利用等式的基本性质解方程:(1)10x -3=9;(2)5x -2=8;(3)23x -1=5. 【答案】 1.A 2.(1)x =1.2 (2)x =2 (3)x =9五、课堂小结本节课主要学习了哪些知识?你在探索新知的过程中得到哪些启示?与同伴交流.第3课时 解一元一次方程——合并同类项与移项(1)教学目标理解合并同类项法则,会用合并同类项法则解一元一次方程,并在此基础上 探索一元一次方程的一般解法.教学重难点【重点】合并同类项法则的探索及应用.【难点】合并同类项法则的理解和灵活运用.教学过程一、问题展示,引入新课某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?师:设前年购买计算机x 台,那么去年购买计算机多少台?生:2x.师:今年购买计算机多少台?生:4x.师:题目中的等量关系是什么?师生共同分析,列出方程:x +2x +4x =140.用框图表示出解这个方程的具体过程:二、例题讲解【例】 解下列方程:(1)2x -52x =6-8;(2)7x -2.5x +3x -1.5x =-15×4-6×3.【答案】 (1)合并同类项,得-12x =-2. 系数化为1,得x =4.(2)合并同类项,得6x =-78.系数化为1,得x =-13.三、巩固练习解下列方程:1.3x +4x -2x =18-7.2.12y -23y +y =23×6-1. 【答案】 1.x =115 2.y =185四、课堂小结这节课你学习了哪些知识?获得了哪些经验?第4课时 解一元一次方程——合并同类项与移项(2)教学目标使学生掌握移项的概念,并用移项解方程.教学重难点【重点】移项法则的探索及其应用.【难点】对移项法则的理解和灵活应用.教学过程一、新课引入师:新课开始之前,我们先来看这样一个问题.问题展示:【例1】 把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?问题分析:教师:设这个班有x 名学生,如果每人分3本,这批书共________本.生:(3x +20)本.师:每人分4本,这批书共________本.生:(4x -25)本.师:这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?学生分组讨论,合作探究,教师总结.师:我们可以列出方程 3x +20=4x -25师:我们可以利用等式的性质解这个方程,得3x -4x =-25-20.师:请同学们仔细观察上面的变形,你发现了什么?学生分组合作、讨论,教师总结.师:上面的变形,相当于把原方程左边的20移到右边变成-20,把4x 从右边移到左边变成-4x.即时引出移项的概念:把等式一边的某项变号后移到另一边,叫做移项.教师即时总结并强调移项要变号.【例2】 解下列方程:(1)3x +7=32-2x ;(2)x -3=32x +1. 【答案】 (1)移项,得3x +2x =32-7.合并同类项,得5x =25.系数化为1,得x =5.(2)移项,得x -32x =1+3. 合并同类项,得-12x =4. 系数化为1,得x =-8.二、巩固练习解下列方程:1.4x -20-x =6x -5-x. 2.32y +1=21y -3y -13. 3.2|x|-1=3-|x|.【答案】 1.x =-152 2.y =-1 3.x =-43或43三、课堂小结学习了移项法则后,你认为用逆运算的方法和用移项的方法解方程哪个更简便?对于解一元一次方程,你有了哪些新的领悟?第5课时 解一元一次方程——去括号与去分母(1)教学目标掌握解含有括号的一元一次方程的方法,能用多种方法灵活地解一元一次方程.【重点】含括号的一元一次方程的解法.【难点】结合方程的特点选择不同的方法解方程,并解释解法的合理性.教学过程一、例题讲解教师出示例题.【例1】 解下列方程:(1)2x -(x +10)=5x +2(x -1);(2)2(x -2)-3(4x -1)=9(1-x).【答案】 (1)去括号,得2x -x -10=5x +2x -2.移项,得2x -x -5x -2x =-2+10.合并同类项,得-6x =8.系数化为1,得x =-43. (2)去括号,得2x -4-12x +3=9-9x.移项,得2x -12x +9x =9+4-3.合并同类项,得-x =10.两边同除以-1,得x =-10.注意:(1)用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号;(2)-x =10不是方程的解,必须把x 的系数化为1,才算完成解的过程.【例2】 一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时,已知水流的速度是3千米/小时,求船在静水中的速度.师:如果设船在静水中的平均速度为x 千米/小时,那么请同学们回答下列问题. 船顺流速度为多少?生甲:(x +3)千米/小时.师:逆流速度为多少?生乙:(x -3)千米/小时.师:那么这个方程的等量关系是什么?生丙:往返的路程相等.师生共同探讨,列出方程:2(x +3)=2.5(x -3)师:下面请一位同学上黑板写出这道题的解题过程.二、巩固练习解下列方程:1.2y +3=8(1-y)-5(y -2).2.3(2y +1)=2(1+y)+3(y +3).【答案】 1.y =1 2.y =81.本节课主要学习了什么内容?2.在去括号时应注意什么?第6课时 解一元一次方程——去括号与去分母(2)教学目标会解含分母的一元一次方程,掌握解一元一次方程的基本步骤和方法,能根据方程的特点灵活地选择解法.教学重难点【重点】解一元一次方程的基本步骤和方法.【难点】含有分母的一元一次方程的解题方法.教学过程一、新课引入师:同学们,我们先来看这样一道题.教师出示问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部加起来总共是33,求这个数.师:设这个数为x ,那么它的三分之二、二分之一怎么表示?生:23x +12x +17x +x =33 解这个方程关键是去分母,那么怎样才能去掉分母?根据是什么?学生合作探究,尝试去分母,并与同伴交流自己的解法是否正确.问题解答:根据等式的基本性质2,在方程两边乘以各分母的最小公倍数42,即可将方程化为熟悉的类型.28x +21x +6x +42x =1386合并同类项得97x =1386,系数化为1,得x =138697. 答:所求的数是138697. 师:同学们能不能总结解一元一次方程的一般步骤?学生分组讨论,合作交流.二、例题讲解【例】 解下列方程:(1)x +12-1=2+2-x 4. 【答案】 去分母(方程两边同时乘4),得2(x +1)-4=8+(2-x).去括号,得2x +2-4=8+2-x.移项,得2x +x =8+2-2+4.合并同类项,得3x =12.系数化为1,得x =4.三、巩固练习解下列方程:1.x +32-x -13=1.2.x +32-3=3x -22. 【答案】 1.x =-5 2.x =-12四、课堂小结下面我们一起来回忆一下解一元一次方程的一般步骤.1.去分母.2.去括号.3.移项.4.合并同类项.5.系数化为1.。

七年级数学 第3章 一次方程与方程组 3.1 一元一次方程及其解法(第1课时)

七年级数学 第3章 一次方程与方程组 3.1 一元一次方程及其解法(第1课时)

(1)-3x+7=1; (2)2-14x=3; 解:x=2; 解:x=-4;
(3)-2x-3=9; 解:1x2/=9/20-21 24;
(4)152x-13=14. 解:x=57.
第七页,共十六页。
7.下列各式中,属于一元一次方程的是( B )
A.x2-1=0
B.3x-1=2x
C.4y=5
D.x-y=3
;(4)(传递性)a=b,b=c,那么 a=
自我诊断 2.下列等式变形中,错误的是( B )
A.由 a=b,得 a+5=b+5
B.由 a=b,得-a3=3b
C.由 x+2=y+2,得 x=y
D.由-3x=-3y,得 x=y
12/9/2021
第三页,共十六页。
利用等式(děngshì)的性质解方程
自我诊断 3.方程 2x-1=3 的解是( D )
(4)两边同时乘以 3,得:5-x=3,两边同时减 5,得:-x=-2,两边同 时除以-1,得:x=2.
12/9/2021
第十二页,共十六页。
16.已知关于 x 的方程 ax+b=2017 的解是 x=1.求|a+b-1|的值.
解:因为 ax+b=2017 的解为 x=1,所以 a+b=2017,所以原式=|2017- 1|=2016. 17.小王在解方程 2a-2x=15(x 是未知数)时,误将-2x 看成+2x,得方程 的解为 x=3.求原方程的解. 解:把 x=3 代入 2a+2x=15 中,得:2a+6=15,a=92,把 a=92代入 2a -2x=15 中,得:9-2x=15,x=-3.
C.若 x-3=y-3,则 x-y=0
D.若 3x+4=2x,则 3x-2x=-4
10.下列方程中,解是 x=-1 的是( B )

新人教版七年级数学上册3.1.1《一元一次方程》教学设计

新人教版七年级数学上册3.1.1《一元一次方程》教学设计

新人教版七年级数学上册3.1.1《一元一次方程》教学设计一. 教材分析新人教版七年级数学上册3.1.1《一元一次方程》是学生学习初中数学的重要内容,它为学生提供了一种解决实际问题的数学工具。

本节课的主要内容是一元一次方程的定义、解法及应用。

通过学习,学生能够理解一元一次方程的概念,掌握一元一次方程的解法,并能够运用一元一次方程解决实际问题。

二. 学情分析七年级的学生已经具备了一定的数学基础,他们对数学符号和运算有一定的了解。

但同时,他们对于抽象的数学概念和逻辑推理的能力还在培养中。

因此,在教学过程中,需要注重引导学生从具体的事例中抽象出方程,培养他们的抽象思维能力。

三. 教学目标1.了解一元一次方程的概念,理解一元一次方程的解法。

2.能够运用一元一次方程解决实际问题。

3.培养学生的抽象思维能力和逻辑推理能力。

四. 教学重难点1.重难点:一元一次方程的概念和解法。

2.难点:一元一次方程的解法的运用。

五. 教学方法1.情境教学法:通过生活实例引入一元一次方程,让学生感受到数学与生活的联系。

2.探究式学习:引导学生通过合作、交流、探讨,自主掌握一元一次方程的解法。

3.案例教学法:通过具体案例,让学生学会运用一元一次方程解决实际问题。

六. 教学准备1.教学课件:制作课件,展示一元一次方程的定义、解法及应用。

2.教学案例:准备一些实际问题,作为学生练习的材料。

3.黑板:准备黑板,用于板书重要的概念和解法。

七. 教学过程1.导入(5分钟)利用生活实例,如购物时找零钱的问题,引出一元一次方程。

让学生感受到数学与生活的联系,激发学生的学习兴趣。

2.呈现(10分钟)呈现一元一次方程的定义和解法,引导学生从具体的事例中抽象出方程,理解一元一次方程的概念。

3.操练(10分钟)让学生分组讨论,合作探究,总结出一元一次方程的解法。

通过实际案例,让学生学会运用一元一次方程解决实际问题。

4.巩固(10分钟)出示一些练习题,让学生独立完成,巩固所学知识。

七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)

七年级数学上册第三章一元一次方程3.1.1一元一次方程(图文详解)

为x元,则依题意可列出下列哪一个一元一次方程式( )
(A)15(2x20)=900
(B)15x202=900
(C)15(x202)=900 (D)15x220=900
【解析】选C.每份礼物的价格是(x+202)元,15份礼
物的价格是15(x202)元.
人教版七年级数学上册第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
七年级上册数学
第三章一元一次方程
人教版七年级数学上册第三章一元一次方程
第三章 一元一次方程
3.1 从算式到方程
3.1.1 一元一次方程
人教版七年级数学上册第三章一元一次方程
1.了解什么是方程、一元一次方程、方程的解. 2.体会字母表示数的好处、画示意图有利于分析问题、找 相等关系是列方程的重要一步、从算式到方程(从算式到 代数)是数学的一大进步. 3.会将实际问题抽象为数学问题,通过列方程解决问题.
4.已知数x-5与2x-4的值互为相反数,列出关于x的方程. 解:由题意得:(x-5)+(2x-4)=0.
人教版七年级数学上册第三章一元一次方程
1.方程、方程的解、一元一次方程的概念. 2.根据实际问题中的等量关系,用一元一次方程表示问 题中的数量关系. 注:分析实际问题中的数量关系,利用其中的相等关系 列出方程,是用数学解决实际问题的一种方法.
人教版七年级数学上册第三章一元一次方程
一般地,要检验某个值是不是方程的解,可以用这个 值代替未知数代入方程,看方程左右两边的值是否相等.
任取x的值 代入 不成立
1 700+150x=2 450 成立
得方程的解
求方程的解的过程,叫做解方程.
人教版七年级数学上册第三章一元一次方程

初一数学上-第三章:一元一次方程

初一数学上-第三章:一元一次方程

第三章:一元一次方程3.1.1 一元一次方程一、方程的前提:方程首先是一个等式二、方程的定义:含有未知数的等式叫方程三、一元一次方程的定义:只含有一个未知数,且未知数的次数都是1,等号两边都是整式,这样的方程叫一元一次方程注释:未知数叫“元”,有几个未知数就是几元;未知数的次数就是“次”,未知数的最高次数就是这个方程的次数。

例:x+4=-4x (一元一次方程)X+y=4 (二元一次方程)X+y=4 +z (三元一次方程)x2+4=3x-7 (一元二次方程)3.1.2等式的性质一共两个性质:(1)等式的性质1:等式两边加(或减)同一个数(或式子)结果仍相等。

通俗说法:等式中,同加同减结果还相等。

(2)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

通俗说法:等式中,同乘同除结果还相等,但除法中不能除以0,要把0除外。

精品题目1.下列方程中是一元一次方程的是()A.x+3=y+2 B.x+3=3﹣x C.=1 D.x2﹣1=02.下列方程为一元一次方程的是()A.y+3=0 B.x+2y=3 C.x2=2x D.+y=23.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.C.x+2y=1 D.xy﹣3=54.①x﹣2=;②0.3x=1;③x2﹣4x=3;④=5x﹣1;⑤x=6;⑥x+2y=0.其中一元一次方程的个数是()A.2 B.3 C.4 D.55.在方程:3x﹣y=2,+=0,=1,3x2=2x+6中,一元一次方程的个数为()A.1个B.2个C.3个D.4个6.已知(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则()A.m=2 B.m=﹣3 C.m=±3 D.m=17.关于x的一元一次方程x3﹣3n﹣1=0,那么n的值为()A.0 B.1 C.D.8.若(m﹣2)x|2m﹣3|=6是一元一次方程,则m等于()A.1 B.2 C.1或2 D.任何数9.如果方程(m﹣1)x2|m|﹣1+2=0是一个关于x的一元一次方程,那么m的值是()A.0 B.1 C.﹣1 D.±110.若a=b+2,则下面式子一定成立的是()A.a﹣b+2=0 B.3﹣a=b﹣1 C.2a=2b+2 D.﹣=111.已知x=y,则下列等式不一定成立的是()A.x﹣k=y﹣k B.x+2k=y+2k C.D.kx=kyA.若a=b,则a﹣3=b﹣3 B.若a=3,则a2=3a3.2.1解一元一次方程(一)----合并同类项和移项AB (1)移项:①定义:就是把等式左边的项移动到右边去,或者把右边的项移动到左边来②规则:移项过程中,被移动的每一项都要改变符号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章一元一次方程
一、选择题
1.下列各式中,是方程的是()
A.7x-3=3x+5 B.3x2+4x-7 C.22+(-3)2=13 D.11x<3x-1 2.一个数减去2得l,列出的方程是( )
A.2-x=1 B.x+1=2 C.x-2=1 D.x+2=1
3.下列各式中,是一元一次方程的是( )
A.x-y=6 B.
12
23
x
x
-
-=C.3x-4 D.x2+x=1
4.下列方程中,解为4的方程是( )
A.x-1
3
=2.5 B.5(x+2)=2(2x+7) C.
6
5
y-2=3+
5
y
D.
5
4
x=0.5x+9
5.一根竹竿锯掉三分之一后,竹竿长2.5米,求这根竹竿的原来长度,若设原长为米,列出的方程应是( )
A.x-1
3
=2.5 B.x-2.5=
1
3
C.x-
1
3
x=2.5 D.
1
3
二、填空题:
1.__________________-是一元一次方程,_________________是方程的解。

2.根据条件列方程(设某数是x)
(1)某数的8倍是24:________________;(2)某数比它的3
4
小6:_______________;
(3)某数的相反数与2的积比它的2倍小3:__________________。

3.在方程(1)1
3
x=1 (2)2x-3=1(3)
2
3
x-
3
2

3
7
(4)(x+1)(x+2)=12中,
解为x=2的方程有_____________。

4.在0,1,2,3中,_________是方程1
3
x-
1
2

1
2
的解。

5.某厂10月份的产值是125元,比1月份产值的3倍少13万元,若设1月份的产值为x 万元,则所列出的方程为_____________,并估计1月份的产值为______万元。

6.当______时,方程3x-(a+3)y=9表示关于x的一元一次方程。

7.当a=_______,b=_______时,关于x的一元一次方程(a-2)x=b+3有无数个解.三、解答题
1.根据条件列出方程
(1)某数的2倍,再减去1等于5;
(2)某数的3倍与它的1
2
的和等于10;
2.根据条件列出方程
(1)某数与8的和的平方等于它的15倍减去5;
(2)某数的1
2
与2的差比它的倒数大4。

3.检验括号中的数是不是方程的解
(1)2x=10-3x(x=0,x=2,x=3)
(2)(x-2)(x+1)=0(x=-1,x=1,x=2)
4.一件工作甲单独要3天完成,乙单独干要6天完成,甲,乙先合作干了1天,余下的由乙单独干,还需几天可以完成?(列出方程,并估计结果)
5.根据题意,列出方程:一箩筐内有桔子,梨,苹果若干个,梨的个数是桔子个数的4
5

苹果个数是桔子个数的2
3
,梨的个数的
3
4
比苹果少2个,问箩筐内三种水果共有多少?。

相关文档
最新文档