数学期望的应用
浅谈数学期望在生活中的应用

浅谈数学期望在生活中的应用浅谈数学期望在生活中的应用一、数学期望的定义引例某射手在一次射击比赛中共发射了10发子弹,其中有一发中7环,有二发中8环,有三发中9环,有4发中10环,求该射手在此次射击比赛中每发子弹击中的平均环数. 解平均环数这里的平均环数并不是这10发子弹击中的4个值的简单平均,而是以取这些值的次数与射击总次数的比值为权重的加权平均.在某种程度上说,这个加权平均可以用来衡量该射手的射击水平.二、数学期望的应用1.数学期望在疾病普查中的应用在一个人数为N的人群中普查某种疾病,为此要抽验N个人的血,如果将每个人的血分别检验,那么共需检验N次,为了能减少工作量,一位统计学家提出一种方法:按k个人一组进行分组,把同组k个人的血样混合检验,如果这混合血样呈阴性反响,就说明此k个人的血都呈阴性反响,此k个人都无此疾病,因而这k个人只需要检验一次就够了,相当于每个人检验1/k次,检验的工作量明显的减少了.如这混合血样呈阳性反响,就说明此k个人中至少有一个人的血呈阳性反响,那么在对这k个人的血样分别进行检验,因而这k个人的血要检验1+k次,相当于每个人检验1+1/k 次,此时增加了检验次数,假设该疾病的发病率为р且得此病相互独立,试问此种方法能否减少平均检验次数? 分析看能否减少平均检验次数,可以求出每个人检验次数的数学期望,根据数学期望大小再判断.解设以k个人为一组时,组内每个人检验次数为x,那么x是一个随机变量,其分布规律为所以每人平均检验次数为 .由此可知,只要选择k使就可减少验血次数,而且也可以通过不同的发病率р计算出最正确分组人数,此外,也得知:发病率越小,分组检验的效益越大.在二战期间,美国对新兵验血就是使用这种方法来减少工作量的.2.数学期望在揭开赌场骗局中的应用在我国南方流行一种称为“捉水鸡〞的押宝,其规那么如下:由庄家摸出一只棋子放在密闭的盒中,这只棋子可以是红的或黑的将、士、象、车、马、炮之一.赌客把钱押在一块写有上述12个字(六个红字,六个黑字)的台面的某一个字上,押定后,庄家揭开盒子露出原来的棋子,凡押中者(字和颜色都对)以一比十得奖金,不中者其押金归庄家,此押宝赌博对谁有利? 分析这道题的思想简单,与0-1分布一样.解不妨设一个赌徒押了10元,而收回奖金X元,假设押中,X=100;假设不中,X=0.X的概率分布列为因此数学期望元.由于支付10元,和期望收入8.33元不等.因此这是不公平的赌博,明显对庄家有利,事实上,当赌徒进入赌场,他面临的都是这种不公平的赌博,否那么赌场的巨额开支业主的高额利润从何而来.3.数学期望在通信中的应用设无线电台发出的呼唤信号被另一电台收到的概率为0.2,信号每隔5秒钟拍发一次,直到收到对方的答复为止.假设发出信号到收到对方答复信号之间至少要经过16秒时间,求在双方建立联系之前已经拍发的呼唤信号的平均次数.分析明显,此题是考查几何分布数学期望的求法,但是又隐藏陷阱“假设发出信号到收到对方答复信号之间至少要经过16秒时间〞,意味随机变量X最小取值为4.×0.8k-4,k=4,5,... X的期望为因此在双方建立联系之前已经拍发的呼唤信号的平均次数为8次.这个例题虽是很简单的一个求数学期望的问题,但是“假设发出的信号到收到对方答复信号之间至少要经过16秒时间〞这个条件极易被忽略.上面这几题都是关于离散型随机变量数学期望一些性质应用的例子,接下来的4、5两个例子都是关于连续型随机变量数学期望一些性质,还要注意函数是分段函数. 4.数学期望在交通上的应用地铁列车到达某一站时刻为每个整点的第5分,25分,45分,设某一乘客在早上8点到9点之间随时到站候车,求他的平均候车时间.分析此题主要考查分段函数求期望的方法,必须先求出分段函数的表达式及X的密度函数.解设他到达地铁站的时刻为X,他候车时间为Y,那么由题意知X~U(0,60),那么有又知Y是变量X的函数, 由期望的性质知利用此例题可准确地对乘客的平均等待时间进行了预测,可以更好地指导实际,为人民群众效劳. 5.数学期望在决策中的应用设某种商品每周需求量是区间[10,30]上的均匀分布随机变量,而经销商店进货数量为区间[10,30]中的某一整数,商店每销售一单位商品可获利500元,假设供大于求时那么削价处理,每处理一单位商品亏损100元,假设供不应求时,可从外部调剂供给,此时每一单位商品获利300元,为使商品获利润值不少于9280元,试确定最少进货多少?分析此题主要考查分段函数数学期望的求法,但是此处应注意分段函数的求法及均匀分布的密度函数的表达式. 解设进货数量为a,利润为g(X),那么 X的密度函数为得21≤a≤26.故所获利润期望值不少于9280元,最少进货为21单位. 接下来继续看6、7两个应用随机变量的和式分解这个性质解题的例子.这种方法可以解决用期望的定义不能直接求,甚至无法求解的题目,大大降低了求期望的难度,即使随机变量不是同分布也可以运用这一性质. 6.数学期望在电梯运行中的应用一架电梯载有8位乘客,从一楼上升,每位乘客在20层的每一层都可以下电梯,如果没人下,那一层电梯就不停.设每位乘客在各层楼下电梯是等可能的,且各乘客是否下电梯是相互独立的.以X表示电梯停下的次数,求E(X).分析显然X是一个离散型的随机变量,X=1,2,…,20,直接不易求出.不妨转换思想,假设电梯在i层停,那么Xi=1,否那么Xi=0,那么 .现在用数学期望的性质易求出E(X). 解设随机变量那么即xi(i=1,2,...,20)的分布规律为由此可知本例将随机变量分解为多个相互独立的随机变量之和的形式,再利用数学期望的性质.这个处理方法在实际应用中具有普遍意义.如果不用和式分解法几乎无从着手. [。
数学期望的原理及应用

数学期望的原理及应用数学期望是概率论中的一个基本概念,它描述了一个随机变量的平均水平或预期值。
具体地说,数学期望通过将随机变量的可能取值与相应的概率加权求和来计算。
数学期望的原理可以简单地表示为:对于一个离散型随机变量X,它的数学期望E(X)等于X每个可能取值xi乘以对应的概率p(xi)的累加和。
数学期望的计算公式可以表示为:E(X) = x1*p(x1) + x2*p(x2) + ... + xn*p(xn)其中,x1, x2, ..., xn为随机变量X所有可能的取值,p(x1), p(x2), ..., p(xn)为对应的概率。
对于连续型随机变量,数学期望的计算方法类似,只是将求和换成了求积分。
具体地说,对于一个连续型随机变量X,它的数学期望E(X)等于X在整个取值范围上的每个取值x乘以对应的概率密度函数f(x)的乘积的积分。
数学期望的计算公式可以表示为:E(X) = ∫x*f(x)dx数学期望的应用非常广泛,以下列举了一些常见的应用场景:1. 风险评估:数学期望可以用于评估风险,通过计算损失的数学期望来衡量风险的大小。
例如,在金融领域中,投资者可以通过计算股票的预期收益来评估投资的风险和回报。
2. 制定决策:数学期望可以帮助人们在面临多个选择时做出决策。
通过计算不同选择的数学期望,可以找出最具有潜在利益的选择。
3. 设计优化:数学期望可以帮助优化设计过程。
例如,在工程领域中,可以通过计算产品的预期性能来指导设计参数的选择和调整。
4. 分析:数学期望被广泛应用于分析中。
游戏参与者可以通过计算不同下注策略的数学期望来制定最终的下注策略。
5. 统计推断:数学期望是许多重要的统计量的基础,如方差、标准差等。
通过计算数学期望,可以进行更深入的统计分析和推断。
6. 优化调度:在运输和调度问题中,数学期望可以用来优化资源的分配和调度。
通过计算任务完成时间的数学期望,可以制定最优的任务调度策略。
总之,数学期望是概率论中一个重要的工具和概念,它可以帮助我们理解和分析随机现象,并在很多实际问题中发挥重要作用。
数学期望在市场营销中的应用

数学期望在市场营销中的应用1. 导言数学期望是概率论中的一种重要概念,它在市场营销领域中有着广泛的应用。
本文将探讨数学期望在市场营销中的应用,并简要介绍数学期望的定义和计算方法。
2. 数学期望的定义数学期望是随机变量的一种统计特征,它表示了随机变量的平均值。
对于一个离散型的随机变量X,其数学期望定义如下:E(X) = Σ(xi * P(xi))其中,xi代表随机变量X的取值,P(xi)代表X取值为xi时的概率。
对于一个连续型的随机变量X,其数学期望定义如下:E(X) = ∫(x * f(x))dx其中,f(x)表示X的概率密度函数。
3. 数学期望在市场营销中的应用3.1. 风险评估在市场营销中,经常需要对不同的策略或决策进行评估和比较。
数学期望可以用来评估策略或决策的预期收益或风险。
通过计算不同策略的期望值,可以选择最优的策略或决策。
3.2. 客户价值估计客户价值是指一个客户对于企业的经济贡献价值。
通过分析客户的消费行为和购买模式,可以计算客户的数学期望,从而估计客户的价值。
这有助于企业制定有针对性的市场营销策略,提高客户满意度和忠诚度。
3.3. 市场需求预测市场需求的预测是市场营销中的关键任务之一。
数学期望可以用来对市场需求进行预测。
通过分析历史数据和市场趋势,结合数学期望的计算方法,可以预测未来市场的需求量和趋势,为企业决策提供参考。
3.4. 产品定价数学期望在产品定价中也有着重要的应用。
通过分析市场的需求和竞争情况,计算产品价格的数学期望,可以帮助企业确定合理的定价策略,从而最大化企业利润。
4. 结论数学期望在市场营销中具有广泛的应用。
通过对不同领域的案例分析和数学期望的计算,可以帮助企业做出合理的决策和制定科学的营销策略,提高市场竞争力和盈利能力。
数学期望

5000 1000 100 10 0 2 105 10 105 100 105 1000 105 p0
每张彩票平均能得到奖金
1
2
E( X ) 10000 105 5000 105 0 p0
0.5(元),
每张彩票平均可赚 2 0.5 0.3 1.2(元),
因此彩票发行单位发行 10 万张彩票的创收利润为
17:39
分析:
设这个人一次购物得奖金X元,X的分布 列为:
X 500 100
10
20
p 1 105 10 105 102 105 103 105 0
17:39
X的数学期望为:
( X ) 500 1/105 100 10 /105 10 102 /105 2103 /105 0 0 0.045(元)
设头等奖1个, 奖金 1万元, 二等奖2个,奖金各 5 千元;三等奖 10个, 奖金各1千元; 四等奖 100个,奖金各100元;五等奖1000个,奖金各 10 元。每张彩票的成本费为 0.3 元, 请计算彩 票发行单位的创收利润。
分析:设每张彩票中奖的数额为随机变量X, 则
X 10000 p 1 105
(1)A得200·(1/2) 法郎,B得200·(1/2) 法郎;
(2)A得200·(2/3) 法郎,B得200·(1/3) 法郎。
17:39
既然前两种分法都 不合理,那么第(3) 种更合理的办法又该 怎样分呢?
17:39
假设继续赌两局,则结果有以下四种情况:
AABiblioteka ABBABB
A胜B负 A胜B负
A胜B负 B胜A负
而
B
1
只能获得赌金的4
.
因此, A 能“期望”得到的数
概率中数学期望的变式应用

概率中数学期望的变式应用概率在数学中占据着重要的地位,而概率中的数学期望则是其中最基础的概念之一。
数学期望是描述随机变量平均取值的概念,它在很多实际问题中都有着重要的应用。
除了在基础的概率理论中的应用外,数学期望还有许多变式的应用,下面我们将介绍一些关于概率中数学期望的变式应用。
1. 条件数学期望在概率中,条件数学期望是一种非常重要的概念。
它描述的是在某一特定条件下的数学期望值。
假设有两个随机变量X和Y,我们可以通过条件数学期望来描述在Y取某个值的条件下,X的平均取值。
条件数学期望的计算公式为:E(X|Y) = ∑x P(X=x|Y) * xE(X|Y)表示在Y的条件下X的数学期望,P(X=x|Y)表示在Y的条件下X取值为x的概率,而x则表示X的可能取值。
条件数学期望的应用非常广泛,比如在统计学中用于描述在某一特定情况下的平均值;在经济学中用于分析在特定市场条件下的收益期望值等等。
2. 复合概率中的数学期望在复合概率中,数学期望同样有着重要的应用。
复合概率是指对多个概率事件同时发生的情况进行分析,而数学期望在复合概率中通常用于描述整体事件的平均结果。
在复合概率中,数学期望的计算方法与简单概率中类似,只是需要将多个随机变量的情况考虑进去。
假设有m个随机变量X1,X2,...,Xm,它们的概率分布函数为P(X1=x1,X2=x2,...,Xm=xm),则它们的复合数学期望为:E(X1,X2,...,Xm) = ∑x1 ∑x2... ∑xm P(X1=x1,X2=x2,...,Xm=xm) * x1 * x2 * ... * xm复合概率中的数学期望可以应用于许多实际问题中,比如在工程中用于计算多变量系统的平均性能;在市场分析中用于描述多变量条件下的总体效益等等。
3. 离散分布中的数学期望概率中的数学期望通常用于描述随机变量的平均取值,而对于离散分布中的数学期望,则关注于描述离散型随机变量的平均结果。
数学期望的计算公式

数学期望的计算公式数学期望是概率论中的重要概念,用于描述随机变量在大量试验中的平均值。
数学期望常用于统计分析和决策模型的建立。
本文将介绍数学期望的计算公式,并举例说明其应用。
一、离散型随机变量的数学期望计算公式对于离散型随机变量X,其取值有限且可数,其概率分布可以用概率质量函数P(X=x)表示。
则X的数学期望E(X)计算公式如下:E(X) = Σ[xP(X=x)]其中,Σ表示求和运算,x表示随机变量X的取值,P(X=x)表示随机变量X取值为x的概率。
例如,假设有一个骰子,其有6个面,每个面的点数分别为1、2、3、4、5、6,且每个面的点数出现的概率相等。
我们可以通过计算骰子的数学期望来获取平均点数的预期值。
设随机变量X表示骰子的点数,则X取值为1、2、3、4、5、6的概率均为1/6,因此骰子的数学期望E(X)的计算如下:E(X) = (1 * 1/6) + (2 * 1/6) + (3 * 1/6) + (4 * 1/6) + (5 * 1/6) + (6 * 1/6) = 3.5因此,通过计算可得,骰子的数学期望为3.5。
二、连续型随机变量的数学期望计算公式对于连续型随机变量X,其取值在某个区间上,其概率分布可以用概率密度函数f(x)表示。
则X的数学期望E(X)计算公式如下:E(X) = ∫[xf(x)]dx其中,∫表示积分运算,x表示随机变量X的取值,f(x)表示随机变量X的概率密度函数。
例如,假设有一个服从均匀分布的随机变量X,其取值范围在0到1之间。
我们可以通过计算随机变量X的数学期望来预测其取值的平均数。
设随机变量X的概率密度函数为f(x),则在0到1之间,f(x)的取值为1。
因此,X的数学期望E(X)的计算如下:E(X) = ∫[x * 1]dx = ∫xdx = 1/2因此,通过计算可得,随机变量X的数学期望为1/2。
综上所述,对于离散型随机变量和连续型随机变量,其数学期望的计算公式分别为Σ[xP(X=x)]和∫[xf(x)]dx。
数学期望在生活中的应用-最新资料

数学期望在生活中的应用
数学期望(mathematicalexpectation)简称期望,又称均值,是概率论中一项重要的数字特征,在经济管理工作中有着重要的应用。
本文通过探讨数学期望在经济和实际问题中的一些简单应用,以期起到让学生了解知识与人类实践紧密联系的丰富底蕴,切身体会到“数学的确有用”。
1.决策方案问题
决策方案即将数学期望最大的方案作为最佳方案加以决策。
它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。
具体做法为:如果知道任一方案Ai(i=1,2,…m)在每个影响因素Sj(j=1,2,…,n)发生的情况下,实施某种方案所产生的盈利值及各影响因素发生的概率,则可以比较各个方案的期望盈利,从而选择其中期望盈利最高的为最佳方案。
1.1投资方案
假设某人用10万元进行为期一年的投资,有两种投资方案:一是购买股票;二是存入银行获取利息。
买股票的收益取决于经济形势,若经济形势好可获利4万元,形势中等可获利1万元,形势不好要损失2万元。
如果存入银行,假设利率为8%,可得利息8000元,又设经济形势好、中、差的概率分别为30%、50%、20%。
试问应选择哪一种方案可使投资的效益较大?
1/ 1。
4.4 数学期望的性质和应用

一、数学期望的性质1.设C 是常数,则E (C )=C ;4.设X 、Y 相互独立,则E (XY )=E (X )E (Y );2.若k 是常数,则E (kX )=kE (X );3.E (X +Y )=E (X )+E (Y );注意:由E (XY )=E (X )E (Y )不一定能推出X 、Y 独立推广(诸X i 相互独立)推广11[]()n n i i i i E X E X ===∑∑11[]()n n i i i i E X E X ===∏∏例1 性质 4 的逆命题不成立,即若E (X Y ) = E (X )E (Y ),X ,Y 不一定独立X Y p ij-1 0 1-1118181818181818180p • j 383828p i•383828()()0;E X E Y ==()0;E XY =()()()E XY E X E Y =1(1,1)8P X Y =-=-=23(1)(1)8P X P Y ⎛⎫≠=-=-= ⎪⎝⎭5.若X ≥0,且EX 存在,则EX ≥0.推论:若X ≤Y ,则EX ≤EY .证明:设X 为连续型随机变量,密度函数为f (x ),则由X ≥0得:所以证明:∵Y −X ≥ 0,E (Y −X )≥0又∵E (Y −X )=E (Y )−E (X ) E (X ) ≤E (Y ).()0,0f x x =<0()()0EX xf x dx xf x dx +∞+∞-∞==≥⎰⎰例1.(二项分布B(n,p)) 设单次实验成功的概率是p ,问n 次独立重复试验中,成功次数X 的期望?解: 引入1,0,i i X i ⎧⎪=⎨⎪⎩第次试验成功,第次试验不成功。
则X =X 1+X 2+⋯+X n 是n 次试验中的成功次数。
因此,这里,X ~B(n,p).1()n i i EX E X ==∑1(1)ni i P X ===∑np=本题是将X 分解成数个随机变量之和,然后利用随机变量和的期望等于期望的和这一性质,此方法具有一定的意义.为普查某种疾病,n 个人需验血.有如下两种验血方案:(1)分别化验每个人的血,共需化验n 次;(2)分组化验.每k 个人分为1组,k 个人的血混在一起化验,若结果为阴性,则只需化验一次;若为阳性,则对k 个人的血逐个化验,找出有病者,此时k 个人的血需化验k+1次.设:每个人血液化验呈阳性的概率为p ,且每个人化验结果是相互独立的.试说明选择哪一方案较经济.验血方案的选择例2.二、数学期望的应用解:只需计算方案(2)所需化验次数X 的期望.设:第i 组需化验的次数为X i ,则其分布律为Xi1 k +1 P(1−p )k 1− (1−p )k ()1(1)(1)[1(1)]k k i E X p k p =⨯-++⨯--(1)(1)kk k p =+--解:为简单计,不妨设n 是k 的倍数,共分成j =n /k 组.(2)分组化验.每k 个人为1组,k 个人的血混在一起化验,若结果为阴性,则只需化验一次;若为阳性,则对k 个人的血逐个化验,此时k 个人的血需化验k+1次.每个人血液化验呈阳性的概率为p .若则E (X ) < n ,即方案2优于方案1方案2:需要化验的总次数为如:n =1000, p =0.001, k =10()(1)(1)k i E X k k p =+--1()()j i i E X E X ==∑12j X X X X =+++[(1)(1)]k n k k p k =+--1[1((1))]k n p k =---1(1)0,k p k-->101()1000[1(0.999)]1101000.10E X =--≈<<例3.据统计65岁的人在10年内正常死亡的概率为0.98,因事故死亡概率为0.02.保险公司开办老人事故死亡保险,参加者需交纳保险费100元.若10年内因事故死亡公司赔偿a元,应如何定a,才能使公司可期望获益;若有1000人投保,公司期望总获益多少?表示保险公司从第i个投保者身上所得的收益,i=1,2, (1000)解:设Xi则其分布律为:X i100 100−aP0.98 0.02)=100×0.98+(100−a)×0.02= 100−0.02a>0易求得E(XiE (X i )=100−0.02a >0即:当100<a<5000时,公司可期望获益若1000人投保,期望总收益为1000100011()()10000020i ii i E X E X a ====-∑∑例4.市场上对某种产品每年需求量为X 吨,X ~U [2000,4000],每出售一吨可赚3万元;售不出去,则每吨需仓库保管费1万元,问应该生产这种商品多少吨,才能使平均利润最大?解:设每年生产y 吨,其利润为Y .则易知,2000<y <4000,且有易知,需求量X 的密度函数为1,20004000()20000,X x f x ⎧<<⎪=⎨⎪⎩其它3,()3()1,y y X Y g X X y X y X ≤⎧==⎨--⋅>⎩3,4,y y X X y y X≤⎧=⎨->⎩3,()4,y y X Y g X X y y X ≤⎧==⎨->⎩3,()4,y y x g x x y y x ≤⎧=⎨->⎩()()()X E Y g x f x dx +∞-∞=⎰400020001()2000g xdx =⎰261(214000810)2000y y =-+-⨯4000200011()()20002000y y g x dx g x dx =+⎰⎰4000200011(4)320002000y y x y dx y dx =-+⎰⎰即:当y=3500时,E (Y )最大,最大值为8250万元.解得:y=3500()1(414000)2000dE Y y dy =-+0=令261()(214000810)2000E Y y y =-+-⨯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设离散型随机变量 ξ的概率分 布为 P(ξ= x i) = pi , i = 1 , 2 , 3 , …, 则 E ξ= x 1 p1+ x2 p2 + x3 p3 + …叫做随机变量ξ的数学期望 (简称期望) .年的投资,有两种投资 方案: 一是购买股票,二是存入银行获取利息. 买股票的 收益取决于经济形势,若形势好可获利4 万元,形势 中等可获利 1 万元,形势不好要损失2 万元.如果 存入银行,假设年利率为 8 % ,可得利息 8000元. 又设经济形势好、 中、 差的概率分别为30 % ,50 % , 20 %. 试问应选择哪一种方案可使投 资的效益较大
E(A1)=2.5×0.4 +3×0.3 +4×0.2 =2.7万。 E(A2)=2.5×0.4 +3×0.3 +4×0.2+2.7×0.1 =2.97万 E(A3)=4×0.2+ 3×0.3 + 2.97×0.5=3.185 万
购买股票的获利期望是 E1 = 4 ×0.3+1×0. 5 + ( - 2) ×0. 2 = 1. 3 (万元) . 存入银行的获利期望是 E2 = 0. 8 (万 元)
保险问题:
一年中一个家庭万元以上财产被盗的概率是0. 01 , 保险公司开办一年期万元以上家庭财产保险,参加者 需缴保险费 100元.若在一年之内,万元以上财产被 盗,保险公司赔偿 a 元( a > 100) ,试问 a 如何确 定,才能使保险公司期望获利? 设ξ表示保险公司对任一参保家庭的收益,则ξ的取值 为 100 或 100 - a ,其分布列为:
= - 10 x2+ 510 x + 3000 = - 10 ( x - 25. 5)2+ 9502. 5
因为 x 是正整数,所以 x = 25 或 26 ,即周初 进货量(含上周余量)为 25 或 26 台时,周平均 利润最大.
求职面试问题:
假如在求职过程中有3家公司给你发了面试通 知,职位有高中低档,工资分别为年薪2.5万, 3万,4万元。估计能得到这些职位的概率分 别为0.4,0.3,0.2,有0.1的概率将得不到 任何职位。每家公司都要求面试结束后表态是 否接受该职位,你将采取什么策略应答?
ξ p 100 0.99 100-a 0.01
E ξ= 100 ×0. 99 + (100 - a)× 0. 01 = 100 - 0. 01 a > 0 ,解得 a < 10000 ,又 a > 100 ,所以 a ∈(100 ,10000)时,保险公司才能期望获 利.
利润问题:
某商场某品牌的空调器每周的销售量ξ是一个随机变量, 分布列为 P(ξ= k)=1/20, k = 11 , 12 , …, 30 ,而商 场每周的进货量为区间[11 ,30 ]中的某一整数.商场每 销售一台空调器可获500元;若供大于求,则每台多余的空 调器需交保管费用 100 元;若不应求,则可从其他商店调 剂供应,此时每一台空调器仅获利 200 元,问此商场周初 进货量(含上周余量)应为多少才能使周平均润最大 ?
设商场周初进货量(含上周余量)为x 台,周利润为随机量η, 则 500ξ- 100 ( x ξ= 11 ,12 , …, x ξ )= 600ξ-100 x 1 ; 500ξ 500 x + 200 (ξx)= 300 x + 200ξ ξ= x ; ξ= x + 1 , x +
y=
又 P(ξ= k) =1/20, k =11 ,12 , …,30.