苏州市吴中区2018-2019学年八年级上期中数学试卷及答案
苏州市八年级数学上册期中试卷(含答案解析)

苏州市2019八年级数学上册期中试卷(含答案解析)苏州市2019八年级数学上册期中试卷(含答案解析)一、选择题(每小题3分,共30分;把下列各题中唯一正确答案前面的字母填涂在答题卡相应的位置上.)1.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形.其中是轴对称图形有( )个.A.1个B.2个C.3个D.4个2.在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是( )A.a2+b2=c2 B.b2+c2=a2 C.a2+c2=b2 D.c2﹣a2=b23.下列四个数中,是负数的是( )A.|﹣2| B.(﹣2)2 C.﹣D.4.如果a、b、c是一个直角三角形的三边,则a:b:c等于( ) A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:135.如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是( )A.40° B.35° C.25° D.20°6.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于( )A.4 B.3 C.2 D.17.已知,则的值是( )A.457.3 B.45.73 C.1449 D.144.98.等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的底长为( )A.3cm或5cm B.3cm或7cm C.3cm D.5cm9.在Rt△ABC中,AC=6,BC=8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为( )A.24 B.24π C.D.10.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( ) A.90 B.100 C.110 D.121二、填空题(本大题共8小题,每小题3分,共24分,把正确答案填写在答题卡相应位置上)11.2的平方根是__________.12.若的值在两个整数a与a+1之间,则a=__________.13.如图AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD折叠后,点C落在C′的位置上,那么BC′为__________.14.如图,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个)__________.15.如图,AB∥CD,AD∥BC,则图中共有全等三角形__________对.16.如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处,蚂蚁爬行的最短路程是__________cm.17.△ABC是等边三角形,点D是BC边上的任意一点,DE⊥AB 于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量关系为__________.18.等腰三角形一腰长为5,一边上的高为3,则底边长为__________.三、解答题(本大题共11小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.求下列各式中x的值(1)(x﹣1)2=25(2)﹣8(2﹣x)3=27.20.求下列各式的值(1)(2).21.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.22.已知,如图,AD=BC,AC=BD,AC与BD相交于点E.求证:△EAB是等腰三角形.23.如图:△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,①若△BCD的周长为8,求BC的长;②若BC=4,求△BCD的周长.24.已知,如图,在四边形ABCD中,AB=CD,AD=BC,点E、F 在AC上,且AE=CF.图中有哪些三角形全等?请分别加以证明.25.某开发区有一空地ABCD,如图所示,现计划在空地上种草皮,经测量,∠B=90°,AB=3m,BC=4m,AD=12m,CD=13m,若每种植1平方米草皮需要100元,问总共需要投入多少元?26.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.27.如图,五边形ABCDE中,BC=DE,AE=DC,∠C=∠E,DM⊥AB 于M,试说明M是AB中点.28.如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.29.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x (1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式+ 的最小值.苏州市2019八年级数学上册期中试卷(含答案解析)参考答案一、选择题(每小题3分,共30分;把下列各题中唯一正确答案前面的字母填涂在答题卡相应的位置上.)1.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形.其中是轴对称图形有( )个.A.1个B.2个C.3个D.4个考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:①、②不是轴对称图形;③长方形是轴对称图形;④等腰三角形是轴对称图形.共2个.故选B.点评:轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是( )A.a2+b2=c2 B.b2+c2=a2 C.a2+c2=b2 D.c2﹣a2=b2考点:勾股定理.专题:计算题.分析:由已知两角之和为90度,利用三角形内角和定理得到三角形为直角三角形,利用勾股定理即可得到结果.解答:解:∵在△ABC中,∠A+∠C=90°,∴∠B=90°,∴△ABC为直角三角形,则根据勾股定理得:a2+c2=b2.故选C点评:此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.3.下列四个数中,是负数的是( )A.|﹣2| B.(﹣2)2 C.﹣D.考点:实数的运算;正数和负数.专题:计算题.分析:根据绝对值的性质,有理数的乘方的定义,算术平方根对各选项分析判断后利用排除法求解.解答:解:A、|﹣2|=2,是正数,故本选项错误;B、(﹣2)2=4,是正数,故本选项错误;C、﹣<0,是负数,故本选项正确;D、= =2,是正数,故本选项错误.故选C.点评:本题考查了实数的运用,主要利用了绝对值的性质,有理数的乘方,以及算术平方根的定义,先化简是判断正、负数的关键.4.如果a、b、c是一个直角三角形的三边,则a:b:c等于( ) A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:13考点:勾股定理.专题:计算题.分析:将四个选项的数字按照勾股定理进行计算,符合a2+b2=c2的即为正确答案.解答:解:A、∵12+22≠42,∴1:2:4不是直角三角形的三条边;故本选项错误;B、∵12+32≠42,∴1:3:5不是直角三角形的三条边;故本选项错误;C、∵32+42≠72 ,∴3:4:7不是直角三角形的三条边;故本选项错误;D、∵52+122=132,∴1:2:4是直角三角形的三条边;故本选项正确.故选D.点评:本题考查了勾股定理,符合a2+b2=c2的三条边才能构成直角三角形.5.如图所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是( )A.40° B.35° C.25° D.20°考点:等腰三角形的性质.分析:先根据等腰三角形的性质及三角形内角和定理求出∠ADC的度数,再根据等腰三角形的性质及三角形外角与内角的关系求出∠B 的度数即可.解答:解:∵△ABC中,AC=AD,∠DAC=80°,∴∠ADC= =50°,∵AD=BD,∠ADC=∠B+∠BAD=50°,∴∠B=∠BAD=()°=25°.故选C.点评:此题比较简单,考查的是等腰三角形的性质及三角形内角和定理.6.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于( )A.4 B.3 C.2 D.1考点:菱形的判定与性质;含30度角的直角三角形.专题:几何图形问题.分析:过点P做PM∥CO交AO于M,可得∠CPO=∠POD,再结合题目推出四边形COMP为菱形,即可得PM=4,又由CO∥PM可得∠PMD=30°,由直角三角形性质即可得PD.解答:解:如图:过点P做PM∥CO交AO于M,PM∥CO∴∠CPO=∠POD,∠AOP=∠BOP=15°,PC∥OA∴四边形COM P为菱形,PM=4PM∥CO?∠PMD=∠AOP+∠BOP=30°,又∵PD⊥OA∴PD= PC=2.令解:作CN⊥OA.∴CN= OC=2,又∵∠CNO=∠PDO,∴CN∥PD,∵PC∥OD,∴四边形CNDP是长方形,∴PD=CN=2故选:C.点评:本题运用了平行线和直角三角形的性质,并且需通过辅助线求解,难度中等偏上.7.已知,则的值是( )A.457.3 B.45.73 C.1449 D.144.9考点:算术平方根.分析:把的被开方的小数点向右移动4位,则其平方根的小数点向右移动2位,即可得到=144.9.解答:解:∵ = =100 ,而=1.449,∴ =1.449×100=144.9.故选D.点评:本题考查了算术平方根:若一个正数的平方等于a,那么这个数叫a的算术平方根,记作(a≥0).8.等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的底长为( )A.3cm或5cm B.3cm或7cm C.3cm D.5cm考点:等腰三角形的性质;三角形三边关系.分析:已知的边可能是腰,也可能是底边,应分两种情况进行讨论.解答:解:当腰是3cm时,则另两边是3cm,9cm.而3+3<9,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是6cm,6cm.则该等腰三角形的底边为3cm.故选:C.点评:本题从边的方面考查三角形,涉及分类讨论的思想方法.9.在Rt△ABC中,AC=6,BC=8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为( )A.24 B.24π C.D.考点:勾股定理.专题:数形结合.分析:先求出直角三角形的斜边,再利用:阴影部分面积=两个小半圆面积+直角三角形面积﹣以斜边为直径的大半圆面积.解答:解:在Rt△ABC中,AC=6 ,BC=8,AB= = =10,S阴影= π()2+ π()2+ ×6×8﹣π()2= +8π+24﹣=24.故选A.点评:本题考查勾股定理的知识,难度一般,解答本题的关键是利用勾股定理得出AB的长及找出阴影部分面积的表示,另外本题也进一步验证了勾股定理.10.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( ) A.90 B.100 C.110 D.121考点:勾股定理的证明.专题:常规题型;压轴题.分析:延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.解答:解:如图,延长AB交KF于点O,延长AC交GM于点P,所以四边形AOLP是正方形,边长AO=AB+AC=3+4=7,所以KL=3+7=10,LM =4+7=11,因此矩形KLMJ的面积为10×11=110.故选:C.点评:本题考查了勾股定理的证明,作出辅助线构造出正方形是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分,把正确答案填写在答题卡相应位置上)11.2的平方根是±.考点:平方根.分析:直接根据平方根的定义求解即可(需注意一个正数有两个平方根).解答:解:2的平方根是±.故答案为:±.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.若的值在两个整数a与a+1之间,则a=2.考点:估算无理数的大小.专题:计算题.分析:利用”夹逼法“得出的范围,继而也可得出a的值.解答:解:∵2= <=3,∴的值在两个整数2与3之间,∴可得a=2.故答案为:2.点评:此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.13.如图AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD折叠后,点C落在C′的位置上,那么BC′为2.考点:翻折变换(折叠问题).专题:压轴题;数形结合.分析:根据中点的性质得BD=DC=2.再根据对称的性质得∠BDC′=60°,判定三角形为等边三角形即可求.解答:解:根据题意:BC=4,D为BC的中点;故BD=DC=2.由轴对称的性质可得:∠ADC=∠ADC′=60°,DC=DC′=2,则∠BD C′=60°,故△BDC′为等边三角形,即可得BC′=BD= BC=2.故答案为:2.点评:本题考查了翻折变换的知识,同时考查了等边三角形的性质和判定,判定出△BDC为等边三角形是关键.14.如图,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个)∠B=∠D或∠C=∠E或AC=AE.考点:全等三角形的判定.专题:开放型.分析:要使要使△ABC≌△ADE,已知AB=AD,∠1=∠2得出∠BAC=∠DAE,若添加∠B=∠D或∠C=∠E可以利用ASA判定其全等,添加AC=AE可以利用SAS判定其全等.解答:解:∵AB=AD,∠1=∠2∴∠BAC=∠DAE∴若添加∠B=∠D或∠C=∠E可以利用ASA判定△ABC≌△ADE 若添加AC=AE可以利用SAS判定△ABC≌△ADE故填空答案:∠B=∠D或∠C=∠E或AC=AE.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,AB∥CD,AD∥BC,则图中共有全等三角形4对.考点:全等三角形的判定.分析:根据AB∥CD,AD∥BC可得到相等的角,再根据公共边AC、BD易证得:△ACD≌△CAB、△BAD≌△DCB(ASA);由上可得AD=BC、AB=CD,再根据平行线确定的角相等可证得:△AOD≌△COB、△AOB≌△COD(ASA).解答:解:∵AB∥CD,AD∥BC,∴∠CAD=∠ACB,∠BDA=∠DBC,∠BAC=∠DCA,∠ABD=∠CDB,又∵AC、BD为公共边,∴△ACD≌△CAB、△BAD≌△DCB(ASA);∴AD=BC,AB=CD,∴△AOD≌△COB、△AOB≌△COD(ASA).所以全等三角形有:△AOD≌△COB、△AOB≌△COD、△ACD≌△CAB、△BAD≌△DCB,共4对;故答案是:4.点评:本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA 、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处,蚂蚁爬行的最短路程是100cm.考点:平面展开-最短路径问题.分析:蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短的途径.解答:解:第一种情况:如图1,把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是90cm和50cm,则所走的最短线段AB= =10 cm;第二种情况:如图2,把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是110cm和30cm,所以走的最短线段AB= =10 cm;第三种情况:如图3,把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是80cm和60cm,所以走的最短线段AB= =100cm;三种情况比较而言,第三种情况最短.故答案为:100cm.点评:本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.17.△ABC是等边三角形,点D是BC边上的任意一点,DE⊥AB 于点E,DF⊥AC于点F,BN⊥AC于点N,则DE,DF,BN三者的数量关系为BN=DE+ DF.考点:等边三角形的性质;三角形的面积.分析:连接AD,利用三角形的面积相等结合等边三角形的性质可得到BN=DE+DF.解答:解:BN=DE+DF,证明如下:连接AD,∵S△ABC=S△ABD+S△ACD,∴ AC?BN= AB?DE+ AC?DF,∵△ABC为等边三角形,∴AB=AC,∴AC?BN=AC?DE+AC?DF,∴BN=DE+DF.故答案为:BN=DE+DF.点评:本题主要考查等边三角形的性质,利用等积法得到AC?BN=AB?DE+ AC?DF是解题的关键.18.等腰三角形一腰长为5,一边上的高为3,则底边长为8或或3 .考点:勾股定理;等腰三角形的性质.专题:分类讨论.分析:由已知的是一边上的高,分腰上的高于底边上的高两种情况,当高为腰上高时,再分锐角三角形与钝角三角形两种情况,当三角形为锐角三角形时,如图所示,在直角三角形ACD中,由AC及CD 的长,利用勾股定理求出AD的长,由AB﹣AD求出BD的长,在直角三角形BDC中,由BD及CD的长,即可求出底边BC的长;当三角形为钝角三角形时,如图所示,同理求出AD的长,由AB+AD 求出BD的长,同理求出BC的长;当高为底边上的高时,如图所示,由三线合一得到BD=CD,在直角三角形ABD中,由AB及AD的长,利用勾股定理求出BD的长,由BC=2BD即可求出BC的长,综上,得到所有满足题意的底边长.解答:解:如图所示:当等腰三角形为锐角三角形,且CD为腰上的高时,在Rt△ACD中,AC=5,CD=3,根据勾股定理得:AD= =4,∴BD=AB﹣AD=5﹣4=1,在Rt△BDC中,CD=3,BD=1,根据勾股定理得:BC= = ;当等腰三角形为钝角三角形,且CD为腰上的高时,在Rt△ACD中,AC=5,CD=3,根据勾股定理得:AD= =4,∴BD=AB+AD=5+4=9,在Rt△BDC中,CD=3,BD=9,根据勾股定理得:BC= =3 ;当AD为底边上的高时,如图所示:∵AB=AC,AD⊥BC,∴BD=CD,在Rt△ABD中,AD=3,AB=5,根据勾股定理得:BD= =4,∴BC=2BD=8,综上,等腰三角形的底边长为8或或3 .故答案为:8或或3点评:此题考查了勾股定理,以及等腰三角形的性质,利用了分类讨论的数学思想,要求学生考虑问题要全面,注意不要漏解.三、解答题(本大题共11小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)19.求下列各式中x的值(1)(x﹣1)2=25(2)﹣8(2﹣x)3=27.考点:立方根;平方根.分析:(1)运用直接开平方求解即可;(2)方程两边直接开立方即可得到方程的解.解答:解:(1)(x﹣1)2=25,解得:x=6或﹣4.(2)﹣8(2﹣x)3=27,解得:x=﹣点评:此题主要考查了平方根、立方根的定义,其中用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.20.求下列各式的值(1)(2).考点:实数的运算.分析:(1)分别根据绝对值的性质分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)根据数的开方法则法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:(1)原式=2﹣+2 ﹣1=1+ ;(2)原式=4+4+3=11.点评:本题考查的是实数的运算,熟知绝对值的性质及数的开方法则是解答此题的关键.21.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.考点:立方根;平方根;算术平方根.专题:计算题.分析:根据平方根、立方根的定义和已知条件可知x﹣2=4,2x+y+7=27,列方程解出x、y,最后代入代数式求解即可.解答:解:∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27把x的值代入解得:y=8,∴x2+y2的算术平方根为10.点评:本题主要考查了平方根、立方根的概念,难易程度适中.22.已知,如图,AD=BC,AC=BD,AC与BD相交于点E.求证:△EAB是等腰三角形.考点:全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:先用SSS证△ADB≌△BCA,得到∠DBA=∠CAB,利用等角对等边知AE=BE,从而证得△EAB是等腰三角形.解答:证明:在△ADB和△BCA中,∴△ADB≌△BCA(SSS),∴∠DBA=∠CAB,∴AE=BE,∴△EAB是等腰三角形.点评:本题考查了三角形全等判定及性质和等腰三角形的性质;三角形的全等的证明是正确解答本题的关键.23.如图:△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC 于E、D,①若△BCD的周长为8,求BC的长;②若BC=4,求△BCD的周长.考点:线段垂直平分线的性质;等腰三角形的性质.分析:(1)利用线段垂直平分线的性质可知BD+CD=5,易求BC;(2)根据第一问中BD+CD=5,易求△BCD的周长.解答:解:①AB=AC=5,DE垂直平分AB,故BD=AD.BD+CD=AD+CD=5.△BCD的周长为8?BC=3;②∵BC=4,BD+CD=5,∴△BCD=BD+CD+BC=9.点评:本题考查的是线段垂直平分线的性质以及等腰三角形的性质;进行线段的有效转移是正确解答本题的关键.24.已知,如图,在四边形ABCD中,AB=CD,AD=BC,点E、F在AC上,且AE=CF.图中有哪些三角形全等?请分别加以证明.考点:全等三角形的判定.分析:根据SSS先证明△ABC≌△ADC,得∠BAC=∠DCA,根据平行线的判定得AB∥CD,即可得出△ABE≌△CDF,△EBC≌△FDA.解答:解:全等三角形有三对:△ABC≌△ADC,△ABE≌△CDF,△EBC≌△FDA.在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DCA,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),∴BE=DF,∵AE=CF,∴AF=CE,在△EBC和△FDA中,∴△BCE≌△DAF(SSS).点评:本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.25.某开发区有一空地ABCD,如图所示,现计划在空地上种草皮,经测量,∠B=90°,AB=3m,BC=4m,AD=12m,CD=13m,若每种植1平方米草皮需要100元,问总共需要投入多少元?考点:勾股定理的应用;三角形的面积.专题:应用题.分析:仔细分析题目,需要求得四边形的面积才能求得结果.连接AC,在直角三角形ABC中可求得AC的长,由AC、AD、DC的长度关系可得三角形DAC为一直角三角形,DA为斜边;由此看,四边形ABCD由Rt△ABC和Rt△DAC构成,则容易求解.解答:解:连接AC,在Rt△ABC中,AC2=AB2+BC2=32+42=52,∴AC=5.在△DAC中,CD2=132,AD2=122,而122+52=132,即AC2+AD2=CD2,∴∠DCA=90°,S四边形ABCD=S△BAC+S△DAC= ?BC?AB+ DC?AC,= ×4×3+ ×12×5=36.所以需费用36×100=3600(元).点评:本题考查了勾股定理及其逆定理的相关知识,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.26.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.解答:证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAQ=60°,∴△APQ是等边三角形.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证△ABP≌△ACQ是解题的关键.27.如图,五边形ABCDE中,BC=DE,AE=DC,∠C=∠E,DM⊥AB 于M,试说明M是AB中点.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:连接AD、BD.易证△ADE≌△DBC,再根据全等三角形的性质可得AD=DB,即△ABD是等腰三角形,而DM⊥AB,利用等腰三角形三线合一定理可得M是AB中点.解答:证明:连接AD、BD,∴△ADE≌△DBC(SAS),∴AD=BD,又∵DM⊥AB,∴M是AB的中点.点评:本题考查了全等三角形的判定和性质及等腰三角形三线合一定理;作出辅助线是正确解答本题的关键.28.如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.考点:等腰直角三角形;全等三角形的判定与性质.分析:连接OA.先证得△OAN≌△OBM,然后根据全等三角形的对应边相等推知OM=ON;然后由等腰直角三角形ABC的性质、等腰三角形OMN的性质推知∠NOM=90°,即△OMN是等腰直角三角形.解答:解:△OMN是等腰直角三角形.理由:连接OA.∵在△ABC中,∠A=90°,AB=AC,O是BC的中点,∴AO=BO=CO(直角三角形斜边上的中线是斜边的一半);∠B=∠C=45°;在△OAN和OBM中,∴△OAN≌△OBM(SAS),∴ON=OM(全等三角形的对应边相等);∴∠AON=∠BOM(全等三角形的对应角相等);又∵∠BOM+∠AOM=90°,∴∠NOM=∠AON+∠AOM=90°,∴△OMN是等腰直角三角形.点评:本题考查了等腰直角三角形的判定与性质、全等三角形的判定与性质.解答该题的关键一步是根据等腰直角三角形ABC的“三线合一”的性质推知OA=OB=OC.29.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x (1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式+ 的最小值.考点:轴对称-最短路线问题;勾股定理.分析:(1)由于△ABC和△CDE都是直角三角形,故AC,CE可由勾股定理求得;(2)若点C不在AE的连线上,根据三角形中任意两边之和>第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE的值最小;(3)由(1)(2)的结果可作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,则AE的长即为代数式+ 的最小值,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值.解答:解:(1)AC+CE= + ;(2)当A、C、E三点共线时,AC+CE的值最小;(3)如右图所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,设BC=x,则AE的长即为代数+ 的最小值.过点A作AF ∥BD交ED的延长线于点F,得矩形ABDF,则AB=DF=2,AF=BD=12,EF=ED+DF=3+2=5,所以AE= = =13,即+ 的最小值为13.故代数式+ 的最小值为13.教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
2018-2019(含答案)八年级(上)期中数学试卷

2018-2019(含答案)八年级(上)期中数学试卷.................................................................................................................................................................2018.10.22一、选择题(每题3分,共18分)1.下列各式中互为有理化因式的是()A.a+b和a−bB.−x−1和x−1C.5−2和−5+2D.x a+y b和x a+y b2.下列各式中,在实数范围内不能分解因式的是()A.x2+4x+4B.x2−4x−4C.x2+x+1D.x2−x−13.已知a=7−5,b=5−3,c=3−7,则a、b、c三个数的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>a>b4.已知一个两位数等于它个位上的数的平方,并且十位上的数字比个位上的数字小3,则这个两位数为()A.25B.25或36C.36D.−25或−365.关于x的方程(a−6)x2−8x+6=0有实数根,则整数a的最大值是()A.6B.7C.8D.96.若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x的函数关系式及自变量x的取值范围是()A.y=50−2x(0<x<50)B.y=50−2x(0<x<25)(50−2x)(0<x<50)C.y=12(50−x)(0<x<25)D.y=12二、填空题:(每题2分,共24分)7.如果(x+2)2=−x−2,则x的取值范围是________.8.已知20n是整数,则满足条件的最小正整数n为________.9.已知m=n−1−1−n+3,则m n+1=________.a−1是同类二次根式,则a=________,b=________.10.若最简根式4a−1和3b+511.关于x的一元二次方程(a−1)x2+x+(a2−1)=0的一个根是0,则a的值是________.12.已知(x2+y2)2+2(x2+y2)=15,则x2+y2=________.13.如果关于x的方程(a−1)x2−2x−1=0有两个不相等的实数根,那么a的取值范围是________.14.在实数范围内因式分解:2x2−8xy+5y2=________.15.某件商品原价100元,经过两次降价后,售价为64元,设平均每次降价的百分率为x,依题意可列方程________.16.已知点P(a, b)在第三象限,则直线y=(a+b)x经过第________象限,y随x的增大而________.17.反比例函数y=kx的图象经过点P(a, b),且a、b是一元二次方程x2−5x+4=0的两根,k的值是________,点P的坐标为________.18.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=________.三、简答题(每题4分,共28分)19.计算:12−(3+1)2+434÷513.20.计算:xy2−1x8x3y+1y18xy3(x>0, y>0)21.解方程:(x+5)2−2(x+5)=8.22.解方程:2x2−5x+1=0(用配方法)23.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?24.已知y=y1−y2,y1与x成反比例,y2与(x−2)成正比例,并且当x=3时,y=5,当x=1时,y=−1;求y与x之间的函数关系式.25.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长________千米;(2)小强下坡的速度为________千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是________分钟.四、综合题:(每题6分,共30分)26.已知关于x的方程x2−(2k+1)x+4k−2=0(1)求证:不论k取什么实数值,这个方程总有实数根;(2)若等腰△ABC的一边长为a=4,另两边的长b、c恰好是这个方程的两个根,求△ABC 的周长.27.如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m.设AD的长为xm,DC的长为ym.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.28.如图,在△ABC中,∠C=90∘,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某点时刻,使得△PCQ的面积等于△ABC的面积的一半?若存在,求出运动的时间;若不存在,说明理由.29.如图,正方形OAPB、ADFE的顶点A、D、B在坐标轴上,点E在AP上,点P、F在函数y=k的图x象上,已知正方形OAPB的面积为9.(1)求k的值和直线OP的解析式;(2)求正方形ADFE的边长.30.如图,在四边形ABCD中,AB=BC=1,∠ABC=90∘,且AB // CD,将一把三角尺的直角顶点P放在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,探究:(1)如图,当点Q在边CD上时,线段PQ与BP有怎样的数量关系?并证明你的猜想.(2)当点Q在线段DC延长线上时,在备用图中画出符合要求的示意图,并判断(1)中的结论是否仍成立?(3)点P在线段AC上运动时,△PCQ是否可能为等腰三角形?若可能,求此时AP的值;若不可能,请说明理由.答案1. 【答案】B【解析】根据有理化因式的定义进行解答即可.【解答】解:A、∵⋅=(a+b)(a−b),∴两根式不互为有理化因式,故本选项错误;B、∵(−x−1)⋅x−1=1−x,∴两根式互为有理化因式,故本选项正确;C、∵(5−2)•(−5+2)=210−7,∴两根式不互为有理化因式,故本选项错误;D、∵(x a+y b)•(x a+y b)=(x a+y b)2,∴两根式不互为有理化因式,故本选项错误.故选B.2. 【答案】C【解析】先令二次三项式为0,若有实数根则能因式分解,否则不能.【解答】解:A、x2+4x+4=0有实数根,故本选项能在实数范围内因式分解;B、x2−4x−4=0有实数根,故本选项能在实数范围内因式分解;C、x2+x+1=0没有实数根,故本选项不能在实数范围内因式分解;D、x2−x−1=0有实数根,故本选项能在实数范围内因式分解;故选C.3. 【答案】B【解析】首先求出a,b,c的倒数,进而比较它们的大小,进而得出a、b、c三个数的大小关系.【解答】解:∵a=7−5,b=5−3,c=3−7,∴1 a =7−5=7+52,1 b =5−3=5+32,1 c =3−7=3+72,∵7>3,∴1 a >1b,∵3>5,∴1 a <1c,∴1 c >1a>1b,∴b>a>c.故选:B.4. 【答案】B【解析】设十位上的数字为x,则个位上的数字为(x+3),根据该两位数等于它个位上的数的平方,即可得出关于x的一元二次方程,解之即可得出x的值,进而即可得出该两位数.【解答】解:设十位上的数字为x,则个位上的数字为(x+3),根据题意得:10x+x+3=(x+3)2,整理得:x2−5x+6=0,解得:x=2或x=3,∴x+3=5或x+3=6,∴这个两位数为25或36.故选B.5. 【答案】C【解析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a−6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.【解答】解:当a−6=0,即a=6时,方程是−8x+6=0,解得x=68=34;当a−6≠0,即a≠6时,△=(−8)2−4(a−6)×6=208−24a≥0,解上式,得a≤263≈8.6,取最大整数,即a=8.故选C.6. 【答案】D【解析】根据等腰三角形的腰长=(周长-底边长)×12,及底边长x>0,腰长>0得到.【解答】解:依题意有y=12(50−x).∵x>0,50−x>0,且x<2y,即x<2×12(50−x),得到0<x<25.故选D7. 【答案】x≤−2【解析】根据二次根式的性质,可得答案.【解答】解:由(x+2)2=(−x−2)2=−x−2,得x+2≤0,解得x≤−2,故答案为:x≤−2.8. 【答案】5【解析】因为20n是整数,且20n=4×5n=25n,则5n是完全平方数,满足条件的最小正整数n为5.【解答】解:∵20n=4×5n=25n,且20n是整数;∴25n是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为:5.9. 【答案】9【解析】根据二次根式中的被开方数必须是非负数列出不等式,求出n的值,得到m的值,代入代数式根据乘方法则计算即可.【解答】解:由题意得,n−1≥0,1−n≥0,解得,n=1,∴m=3,则m n+1=9,故答案为:9.10. 【答案】3,2【解析】根据最简二次根式与同类二次根式的定义列方程组求解.【解答】解:由题意,得a−1=24a−1=3b+5,解得a=3 b=2,故答案为:3,2.11. 【答案】−1【解析】根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a −1≠0.【解答】解:∵关于x 的一元二次方程(a −1)x 2+x +(a 2−1)=0的一个根是0, ∴x =0满足该方程,且a −1≠0.∴a 2−1=0,且a ≠1.解得a =−1.故答案是:−1.12. 【答案】3【解析】首先设x 2+y 2=z ,然后将原方程转化为关于z 的一元二次方程,解该方程即可解决问题.【解答】解:设x 2+y 2=z ,(z ≥0)则原方程变为:z 2+2z −15=0,解得:z =3或−5(舍去).故答案为:3.13. 【答案】a >12且a ≠1【解析】根据方程有两个不相等的实数根利用根的判别式结合二次项系数非零即可得出关于a 的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x 的方程(a −1)x 2− 2x −1=0有两个不相等的实数根,∴ a −1≠0△=(− 2)2+4(a −1)>0, 解得:a >12且a ≠1.故答案为:a >12且a ≠1.14. 【答案】( 2x −2 2y + 3y )( 2x −2 2y − 3y )【解析】首先把5y 2变为8y 2−3y 2,然后把前三项组合提公因式2,再利用完全平方分解,然后再次利用平方差分解因式即可.【解答】解:原式=2x 2−8xy +8y 2−3y 2,=2(x −2y )2−3y 2,=[ 2(x −2y )+ 3y ][ 2(x −2y )− 3y ],=( 2x −2 2y + 3y )( 2x −2 2y − 3y ),故答案为:( 2x −2 2y + 3y )( 2x −2 2y − 3y ).15. 【答案】100(1−x )2=64【解析】设平均每次降价的百分率为x ,根据某件商品原价100元,经过两次降价后,售价为64元,可列方程求解.【解答】解:设平均每次降价的百分率为x ,100(1−x )2=64.故答案为:100(1−x )2=64.16. 【答案】二、四,减小【解析】先根据第三象限点的坐标特征得到a <0,b <0,然后根据正比例函数与系数的关系判断直线y =(a +b )x 经过的象限.【解答】解:因为点P (a , b )在第三象限,所以a <0,b <0,可得a+b<0,所以直线y=(a+b)x经过第二、四象限,y随x的增大而减小;故答案为:二、四;减小17. 【答案】4,(1, 4)或(4, 1)的图象经过点P(a, b),把点P的坐标代入解析式,得到关【解析】先根据反比例函数y=kx于a、b、k的等式ab=k;又因为a、b是一元二次方程x2−5x+4=0的两根,得到a+b=5,ab=4,根据以上关系式求出a、b的值即可.得,ab=k,【解答】解:把点P(a, b)代入y=kx因为a、b是一元二次方程x2−5x+4=0的两根,根据根与系数的关系得:a+b=5,ab=4,解得a=1,b=4或a=4,b=1,所以k=4,点P的坐标是(1, 4)或(4, 1).故答案为4,(1, 4)或(4, 1).18. 【答案】6【解析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4的系数k,由此即可求出S1+S2.x上的点,分别经过A、B两点向x轴、y轴作垂线段,【解答】解:∵点A、B是双曲线y=4x则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4−1×2=6.故答案为6.19. 【答案】解:原式=23−(3+23+1)+23×343=23−(4+23)+5=−【解析】根据二次根式的运算性质即可求出答案.【解答】解:原式=2−(3+2+1)+2×343=23−(4+23)+5=−20. 【答案】解:原式=2xy−22xy+32xy2xy.=322【解析】根据二次根式性质与化简,可得同类二次根式,根据合并同类二次根式,可得答案.【解答】解:原式=2xy−22xy+32xy2=322xy.21. 【答案】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.【解析】将x+5看做整体因式分解法求解可得.【解答】解:∵(x+5)2−2(x+5)−8=0,∴(x+5+2)(x+5−4)=0,即(x+7)(x+1)=0,则x+7=0或x+1=0,解得:x=−7或x=−1.22. 【答案】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.【解析】将常数项移到右边后把二次项系数化为1,再两边配上一次项系数一半的平方求解可得.【解答】解:∵2x2−5x=−1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−54=±174,∴x=5±174.23. 【答案】修建的道路宽为1米.【解析】设路宽为x,则道路面积为30x+20x−x2,所以所需耕地面积551=20×30−(30x+20x−x2),解方程即可.【解答】解:设修建的路宽为x米.则列方程为20×30−(30x+20x−x2)=551,解得x1=49(舍去),x2=1.24. 【答案】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.【解析】根据题意设出反比例函数与正比例函数的解析式,代入y=y1−y2,再把当x=3时,y=5,当x=1时,y=−1代入关于y的关系式,求出未知数的值,即可求出y与x之间的函数关系式.【解答】解:因为y1与x成反比例,y2与(x−2)成正比例,故可设y1=k1x,y2=k2(x−2),因为y=y1−y2,所以y=k1x−k2(x−2),把当x=3时,y=5;x=1时,y=−1,代入得k13−k2=5 k1+k2=−1,解得k1=3k2=−4,再代入y=k1x −k2(x−2)得,y=3x+4x−8.25. 【答案】2; 0.5; 14【解析】(1)根据题意和函数图象可以得到下坡路的长度;; (2)根据函数图象中的数据可以求的小强下坡的速度;; (3)根据题意可以求得小强上坡的速度,进而求得小强返回时需要的时间.【解答】解:(1)由题意和图象可得,小强去学校时下坡路为:3−1=2(千米),; (2)小强下坡的速度为:2÷(10−6)=0.5千米/分钟,; (3)小强上坡时的速度为:1÷6=16千米/分钟,故小强回家骑车走这段路的时间是:21+10.5=14(分钟),26. 【答案】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.【解析】(1)根据方程的系数结合根的判别式即可得出△=(2k−3)2≥0,由此可得出:不论k取什么实数值,这个方程总有实数根;; (2)当a为底时,由根的判别式△=(2k−3)2= 0可求出k值,再根据根与系数的关系可得出b+c=4,由b+c=a可知此种情况不符合题意;当a为腰时,将x=4代入原方程求出k值,再根据根与系数的关系可得出b+c=6,套用三角形的周长公式即可求出结论.【解答】(1)证明:∵在方程x2−(2k+1)x+4k−2=0中,△=[−(2k+1)]2−4(4k−2)=4k2−12k+9=(2k−3)2≥0,∴不论k取什么实数值,这个方程总有实数根;; (2)解:当a为底边时,b=c,∴△=(2k−3)2=0,解得:k=32,∴b+c=2k+1=4=a,∴此种情况不合适;当a为腰时,将x=4代入原方程得:16−4(2k+1)+4k−2=0,解得:k=52.∴b+c=2k+1=6,∴△ABC的周长=a+b+c=4+6=10.27. 【答案】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.【解析】(1)根据面积为60m2,可得出y与x之间的函数关系式;; (2)由(1)的关系式,结合x、y都是正整数,可得出x的可能值,再由三边材料总长不超过26m,DC的长<12,可得出x、y的值,继而得出可行的方案.【解答】解:(1)由题意得,S矩形ABCD=AD×DC=xy,故y=60x .; (2)由y=60x,且x、y都是正整数,可得x可取1,2,3,4,5,6,10,12,15,20,30,60,∵2x+y≤26,0<y≤12,∴符合条件的围建方案为:AD=5m,DC=12m或AD=6m,DC=10m或AD=10m,DC=6m.28. 【答案】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.【解析】(1)设x秒钟后,可使△PCQ的面积为8平方厘米,用x表示出△PCQ的边长,根据面积是8可列方程求解.; (2)假设y秒时,△PCQ的面积等于△ABC的面积的一半,列出方程看看解的情况,可知是否有解.【解答】解:(1)设x秒钟后,可使△PCQ的面积为8平方厘米,由题意得:12(6−x)⋅2x=8,x=2或x=4,当2秒或4秒时,面积可为8平方厘米;; (2)不存在.理由:设y秒时,△PCQ的面积等于△ABC的面积的一半,由题意得:1 2(6−y)⋅2y=12×12×6×8y2−6y+12=0.△=36−4×12<0.方程无解,所以不存在.29. 【答案】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.【解析】(1)利用正方形的性质得到P点坐标为(3, 3),再把P点坐标代入y=kx即可得到k的值;然后利用待定系数法求直线OP的解析式;; (2)设正方形ADFE的边长为a,利用正方形的性质易表示F点的坐标为(a+3, a),然后把F(a+3, a)代入y=9x,再解关于a的一元二次方程即可得到正方形ADFE的边长.【解答】解:(1)∵正方形OAPB的面积为9,∴PA=PB=3,∴P点坐标为(3, 3),把P(3, 3)代入y=kx得,k=3×3=9,即y=9x;设直线OP的解析式为y=k1x,把P(3, 3)代入y=k1x得,k1=1,∴直线OP的解析式为y=x;; (2)设正方形ADFE的边长为a,则F点的坐标为(a+3, a),把F(a+3, a)代入y=9x 得,a(a+3)=9,解得a1=−3+352,a2=−3−352,∴正方形ADFE的边长为得−3+352.30. 【答案】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE∠BFP=∠QEP=90∘,∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.【解析】(1)可通过构建全等三角形来证PB=PQ,过点P作PF⊥BC于点F,PE⊥CD于点E,由于△PEC是等腰直角三角形,因此PE=EC,可得出四边形PECF是正方形,由此可得出PE=PF,根据同角的余角相等可得出∠FPB=∠QPE,这两个三角形中又有一组直角,因此构成了全等三角形判定条件中ASA的条件.根据全等三角形即可得出PB=PQ;; (2)根据题意画出图形,同(1)过点P作PF⊥BC于点F,PE⊥CD于点E可得出四边形PFCE是正方形,故PE=PF.由ASA定理得出△BPF≅△QPE,根据全等三角形的性质即可得出结论;; (3)延长BP交DC于G,可得出等腰△PCQ中,PC=QC,故可得出∠1=∠2,由直角三角形的性质得出∠5=∠3,在正方形ABCD中根据平行线的性质即可得出结论.【解答】(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEQ=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (2)成立.理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,∵∠PCE=45∘,∠PEC=90∘,∴PE=EC.∴四边形PFCE是正方形.∴PE=PF.∵∠BPF=∠QPE=90∘−∠FPQ,∠BFP=∠PEQ=90∘,在△BPF与△QPE中,∠BPF=∠QPEPF=PE,∠BFP=∠QEP=90∘∴△BPF≅△QPE(ASA),∴BP=PQ;; (3)能.证明:如图3,延长BP交DC于G,∵点Q在DC的延长线上,∴∠PCQ>90∘,∴等腰△PCQ中,PC=QC,∴∠1=∠2,∵∠BPQ=90∘,∴∠1+∠5=90∘,∠2+∠3=90∘,∵∠1=∠2,∴∠5=∠3,在正方形ABCD中,AB // DC,∴∠4=∠5,∴∠4=∠3,∴AP=AB=1.。
2018-2019学年上学期八年级 数学期中考试卷含答案

2018-2019学年上学期期中教学质量调研八年级数学一.精心选择,一锤定音(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一个答案是正确的,请将正确答案的序号直接填入下表中)序号 1 2 3 4 5 6 7 9 10答案1.下面四个手机应用图标中是轴对称图形的是2.已知图中的两个三角形全等,则的大小为A.B. C. D.3.如图,三角形被木板遮住一部分,这个三角形是A.锐角三角形B.直角三角形C.钝角三角形 D.以上都有可能4.如图,∠ACB=90,CD⊥AB,垂足为D,下列结论错误的是A.图中有三个直角三角形B. ∠1=∠2C. ∠1和∠B都是∠A的余角D.∠2=∠A5.已知n边形从一个顶点出发可以作9条对角线,则n=A.9B.10C.11D.126.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有A.1个B.2个C.3个D.4个7.如图,点O在△ABC内,且到三边的距离相等,若∠A=60,则∠BOC的大小为A. B. C. D.608.如图,在Rt△ABC中,∠BAC=90,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=2A.30B.C.60D.759.如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24,……,照这样走下去,他第一次加到出发地A点时,一共走的路程是A.140米B.150米C.160米D.240米10.如图,在Rt△ABC中,∠ACB=90,∠BAC的平分线交BC于D,过点C作CG⊥AB于G,交AD 于E,过点D作DF⊥AB于 F.下列结论①∠CED=;②;③∠ADF=;④CE=DF.正确的是A.①②④B.②③④C.①③D.①②③④二.细心填一填,试试自己的身手!(本大题共10个小题;每小题3分,共30分)11.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是.12.三角形三边长分别为3,,7,则的取值范围是.13.一个正多边形的内角和为540,则这个正多边形的每个外角的度数为.14.如图,已知AB⊥BD,AB∥DE,AB=ED。
2018-2019学年八年级数学上期中试题含答案(五四制)

2018-2019学年八年级数学上学期期中试题注意事项:1、答题前请考生务必在答题卡及试卷的规定位置将自己的姓名、考试号、考试科目等内容填、写(涂)准确。
2、本试题分第I卷和第II卷两个部分,第I卷为选择题共48分,第II卷为非选择题共72分,共120分,考试时间为120分钟。
3、第I卷每小题选出答案后,必须用2B铅笔把答题卡上,对应题目的答案标号(AB-CD)涂黑,如需改动,须先用橡皮擦干净再改涂其它答案,第II卷须用蓝黑钢笔或圆珠笔直接答在试卷上,考试时,不允许使用计算器。
4、考试结束后,由监考教师把第I卷和第II卷及答题卡一并收回。
第I卷(选择题)一、选择题。
本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(本题4分)把多项式m(n﹣2)﹣m2(2﹣n)分解因式得()A.(n﹣2)(m2+m) B.(n﹣2)(n﹣m)2C.m(n﹣2)(m+1) D.m(n﹣2)(1﹣m)2.(本题4分)分解因式x 2﹣2x ﹣3,结果是( ) A .(x ﹣1)(x+3) B .(x+1)(x ﹣3)C .(x ﹣1)(x ﹣3) D .(x+1)(x+3)3.(本题4分)一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形( )A .是轴对称图形,但不是中心对称图形B .是中心对称图形,但不是轴对称图形C .既是轴对称图形,又是中心对称图形D .既不是轴对称图形,也不是中心对称图形4.(本题4分)若分式方程xx a x --=+-2321有增根,则a 的值是( )A .1B .0C .﹣ 1D .﹣ 25.(本题4分)有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg .已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜xkg ,根据题意,可得方程( )A .x x 1500300900=+ B .3001500900-=x xC .3001500900+=x x D .x x 1500300900=- 6.(本题4分)如果把分式52xx y-中的x ,y 都扩大7倍,那么分式的值( ) A .扩大7倍 B .扩大14倍 C .扩大21倍 D .不变7.(本题4分)要使45x x --的值和424xx--的值互为倒数,则x 的值为( ). A. 0 B. -1 C. 12D. 18.(本题4分)在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8 乙:7、9、6、9、9,则下列说法中错误的是( )A .甲、乙得分的平均数都是8B .甲得分的众数是8,乙得分的众数是9C .甲得分的中位数是9,乙得分的中位数是6D .甲得分的方差比乙得分的方差小9.(本题4分)下列从左到右的变形,哪一个是因式分解( ) A .()()22b a b a b a -=-+B .()()()144422-+-+=-+-y y x y x y y xC .()()()22112-+=++-+b a b a b aD .⎪⎭⎫ ⎝⎛++=++x x x x x 4545210.(本题4分)判断下列两个结论:①正三角形是轴对称图形;②正三角形是中心对称图形,结果( )A 、①②都正确B 、①②都错误C 、①正确,②错误D 、①错误,②正确11.(本题4分)下列图案中既是中心对称图形,又是轴对称图形的是( )A .B .C .D .12.(本题4分)如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转l20°得到△AB ′C ′,连接 BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A. 45°B. 60°C. 70°D. 90°第II 卷(非选择题)二、填空题(本大题共5个小题,每小题4分,共20分. 把答案写在题中横线上) 13.(本题4分)评定学生的学科期末成绩由期考分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定.已知小明的数学期考80分,作业90分,课堂参与85分,则他的数学期末成绩为 .14.(本题4分)如图,把一块等腰直角三角板△ABC ,∠C=90°,BC=5,AC=5.现将△ABC 沿CB 方向平移到△A ′B ′C ′的位置,若平移距离为x (0≤x ≤5),△ABC 与△A ′B ′C ′的重叠部分的面积y ,则y= (用含x 的代数式表示y ).15.(本题4分)计算: b a a b a b---=___ _____; 16.(本题4分)当x ___ ___时,分式在实数范围内有意义.17.(本题4分)如图①,在△AOB 中,∠AOB =90º,OA =3,OB =4.将△AOB 沿x 轴依次以点A 、B 、O 为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为____________.三、解答题(本大题共7个小题,共52分. 解答应写出文字说明、证明过程或演算步骤)18.(本题6分)解分式方程: 2113222x x x x+=++.19.(本题6分)先化简,再求值:624)373(+-÷+--a a a a ,其中1-=a20.(本题6分)在“爱满扬州”慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成统计图.(1)这50名同学捐款的众数为元,中位数为元;(2)求这50名同学捐款的平均数;(3)该校共有600名学生参与捐款,请估计该校学生的捐款总数.21.(本题8分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2)(1)写出点A、B的坐标:A(,)、B (,)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(、)、B′(、)、C′( 、)(4)求△ABC的面积.22.(本题8分)某文具厂加工一种学生画图工具2500套,在加工了1000套后,采用了新技术,使每天的工作效率是原来的1.5倍,结果提前5天完成任务. 求该文具厂采用新技术前平均每天加工多少套这种学生画图工具.23.(本题9分)课堂上,老师给出了如下一道探究题:“如图,在边长为1的正方形组成的6×8的方格中,△ABC和△A1B1C1的顶点都在格点上,且△ABC≌△A1B1C1.请利用平移或旋转变换,设计一种方案,使得△ABC通过一次或两次变换后与△A1B1C1完全重合.”(1)小明的方案是:“先将△ABC向右平移两个单位得到△A2B2C2,再通过旋转得到△A1B1C1”.请根据小明的方案画出△A2B2C2,并描述旋转过程;(2)小红通过研究发现,△ABC只要通过一次旋转就能得到△A1B1C1.请在图中标出小红方案中的旋转中心P,并简要说明你是如何确定的.24.(本题9分)(10分)已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连结DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=求此时线段CF的长(直接写出结果).2017—2018学年上学期期中质量检测数学试题参考答案1.C【解析】把m(n﹣2)﹣m2(2﹣n)转化成m(n﹣2)+m2(n﹣2),提取公因式m(n﹣2)即可.解:m(n﹣2)﹣m2(2﹣n),=m(n﹣2)+m2(n﹣2),=m(n﹣2)(m+1),故选C.2.B【解析】根据十字相乘法分解因式即可.解:x2﹣2x﹣3=(x+1)(x﹣3).故选B.3.C.【解析】试题分析:∵一个正多边形绕着它的中心旋转45°后,能与原正多边形重合,360°÷45°=8,∴这个正多边形是正八边形.正八边形既是轴对称图形,又是中心对称图形.故选C.考点:①中心对称图形;②轴对称图形.4.A【解析】分式方程去分母转换为整式方程,由分式方程有增根,得到x﹣2=0,求出x的值,代入整式方程即可求出a的值.解:去分母得:1+3x﹣6=﹣a+x,根据题意得:x﹣2=0,即x=2,代入整式方程得:1+6﹣6=﹣a+2,解得:a=1. 故选:A . 5.C【解析】根据面积=田地的产量÷田地每亩产量,两块试验田的面积相同列出方程即可 6.D . 【解析】试题解析:如果把分式52xx y-中的x ,y 都扩大7倍则原式变为:()57755 727722x x x x y x y x y ⨯⨯==-⨯⨯--. 故选D .考点:分式的基本性质. 7.B【解析】试题解析:首先根据倒数的性质列出关于x 的分式方程,然后根据分式方程的解法进行求解,得出答案.根据题意可得: x 542xx 44x--=--,方程两边同时乘以(x-4)可得:x-5=2x-4,解得:x=-1,经检验:x=-1是原方程的解. 8.C. 【解析】试题分析:选项A ,由平均数的计算方法可得甲、乙得分的平均数都是8,此选项正确;选项B ,甲得分次数最多是8分,即众数为8,乙得分最多的是9分,即众数为9故此选项正确;选项C ,甲得分从小到大排列为:7、8、8、8、9,可得甲的中位数是8分;乙得分从小到大排列为:6、7、9、9、9,可得乙的中位数是9分;此选项错误;选项D ,512=甲S ×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=51×2=0.4,2乙S =51×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]=51×8=1.6,所以2甲S <2乙S ,故D 正确;故答案选C . 考点:算术平均数;中位数;众数;方差. 9.C . 【解析】试题解析:A.B中最后结果不是乘积的形式,不属于因式分解;C、()()()22112-+=++-+bababa,是运用完全平方公式进行的因式分解;D、不是在整式范围内进行的分解,不属于因式分解.故选C.考点:因式分解的意义.10.C【解析】本题考查了中心对称图形与轴对称图形的概念.要注意,轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后能与原图形重合.根据轴对称图形与中心对称图形的概念和正三角形的性质即可求解.解:正三角形是轴对称图形,不是中心对称图形.故选C.11.A【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.考点:中心对称图形;轴对称图形.12.D【解析】已知△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,根据旋转的性质可得∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质和三角形的内角和定理可得∠AB′B=12(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故选D.13.84.5分.【解析】试题分析:因为数学期末总评成绩由期考分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,所以利用加权平均数的公式即可求出答案.解:由题意知,小明的总评成绩=(80×3+90×2+85×5)÷(3+2+5)=84.5(分). 故答案为:84.5分.考点:加权平均数.14.x 2﹣5x+.【解析】试题分析:根据等腰三角形的性质得出BC ′=DC ′=5﹣x ,进而求出即可.解:由题意可得:CC ′=x ,BC ′=DC ′=5﹣x ,故y=(5﹣x )2=x 2﹣5x+.故答案为:x 2﹣5x+.考点:平移的性质.15.-1【解析】根据同分母的分式相加减的法则可得原式=1b aa b -=-- .16.1x ≠- 【解析】∵分式在实数范围内有意义,∴x+1≠0,∴x ≠-1.故答案是:x ≠-1.17.(36,0)【解析】试题解析:∵在△AOB 中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).【点睛】本题主要考查了旋转的性质、坐标与图形的性质及勾股定理,找出图形旋转的规律“旋转3次为一循环”,是解答本题的关键.18.x =15【解析】两边同乘以x (x +2)得x + x +2=32 -------------------------------------------2分x=15-------------------------------------------------------------------------------3分检验x =15是原方程的根.19.解:原式=()2164(4)(4)2(3)=24=2832(3)34a a a a a a a a a a a --+-+÷⋅+++++-。
2018年江苏省苏州市吴中区八年级上学期期中数学试卷与解析答案

2017-2018学年江苏省苏州市吴中区八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.)1.(3.00分)下列图形中是轴对称图形的是()A.B. C.D.2.(3.00分)如图,已知△ABC≌△DCE,AC,BD相交于点E,CE=4,DE=2,则AC的长()A.6 B.5 C.4 D.23.(3.00分)如图,DE是△ABC边AC的垂直平分线,若BC=18cm,AD=8cm,则BD的长为()A.7cm B.8cm C.9cm D.10cm4.(3.00分)实数:﹣,π,0.27,,,,0.3,0.1010010001…,有理数的个数是()A.3 B.4 C.5 D.65.(3.00分)已知地球上七大洲的总面积约为150000000km2,则数字150000000用科学记数法可以表示为()A.1.5×106B.1.5×107C.1.5×108D.1.5×1096.(3.00分)在△ABC中,已知∠A=∠B,且该三角形的一个内角等于100°,以下判断正确的是()A.∠A=100°B.∠C=100°C.AC=AB D.AB=BC7.(3.00分)已知点Q(﹣1,b2+2),则它所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.(3.00分)如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.B.C.D.9.(3.00分)如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是边BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③四边形AEPF的面积=△ABC的面积的一半,④当EF最短时,EF=AP,上述结论始终正确的个数为()A.1 B.2 C.3 D.410.(3.00分)如图,Rt△OAB,∠BAO=90°,∠B=60°,OA=6,点C是OA边上一点,OC=1,点P为斜边OB上的一个动点,则PA+PC的最小值为()A. B. C.3+D.2二、填空题(本大题共8小题,每小题3分,共24分)11.(3.00分)16的平方根是.12.(3.00分)已知等腰三角形的顶角等于20°,则它的一个底角的度数为°.13.(3.00分)点P(a+1,a﹣1)在直角坐标系的y轴上,则点P的坐标为.14.(3.00分)如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交数轴于一点,则这个点表示的实数是.15.(3.00分)如图,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于cm2.16.(3.00分)如图,△OAD≌△OBC,且∠O=72°,∠C=20°,则∠DAC=°.17.(3.00分)已知直角三角形的两条边长为3和4,则第三边的长为.18.(3.00分)如图,矩形纸片ABCD,AD=BC=3AB=CD=9,在矩形ABCD的边AB 上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK,则△MNK的最大面积等于.三、解答题(本大题共10小题,共76分,解答时应写出文字说明、证明过程或演算步骤.)19.(8.00分)计算或化简:(1)﹣(π﹣3)0﹣2﹣1;(2)+﹣|1﹣|20.(6.00分)求x的值:(1)﹣45=0;(2)(x+5)3=﹣27.21.(7.00分)如图所示,在直角坐标系中,方格纸中的每个小正方形的边长为1个单位,已知D(4,0)、E(1,0)、F(﹣1,2).(1)你在图中画出△DEF;(2)请画出△DEF关于y轴对称图形△ABC;(3)将△ABC向下平移3个单位后得到△A1B1C1,分别写出A1、B1、C1的坐标.22.(6.00分)若实数x,y满足了+(2x+y﹣5)2=0,求(x+y)2的立方根.23.(6.00分)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)请判断BD、CE有何大小、位置关系,并证明.24.(6.00分)如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B 离地面0.6m,荡秋千到AB的位置时,下端B距静止位置的水平距离EB等于2.4m,距地面1.4m,求秋千AB的长.25.(8.00分)如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,BC=10,EF=4.(1)求△MEF的周长:(2)若∠ABC=50°,∠ACB=60°,求∠EMF的度数.26.(9.00分)我们知道:若x2=9,则x=3或x=﹣3.因此,小南在解方程x2+2x ﹣8=0时,采用了以下的方法:解:移项,得x2+2x=8两边都加上1,得x2+2x+1=9所以(x+1)2=9则x+1=3或x+1=﹣3所以x=2或x=﹣4小南的这种解方程方法,在数学上称之为配方法.请用配方法解方程:(1)x2﹣4x﹣12=0;(2)22x2+4x﹣6=0.27.(10.00分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C逆时针旋转60°得△ADC,连接OD.(1)求证:△DOC是等边三角形;(2)当AO=5,BO=4,α=150°时,求CO的长;(3)探究:当α为多少度时,△AOD是等腰三角形.28.(10.00分)如图1,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts,(1)当t=2时,求△PBQ的面积;(2)当t=时,试说明△DPQ是直角三角形;(3)当运动3s时,P点停止运动,Q点以原速立即向B点返回,在返回的过程中,DP是否能平分∠ADQ?若能,求出点Q运动的时间;若不能,请说明理由.2017-2018学年江苏省苏州市吴中区八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.)1.(3.00分)下列图形中是轴对称图形的是()A.B. C.D.【解答】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、是轴对称图形,本选项正确;D、不是轴对称图形,本选项错误.故选:C.2.(3.00分)如图,已知△ABC≌△DCE,AC,BD相交于点E,CE=4,DE=2,则AC的长()A.6 B.5 C.4 D.2【解答】解:∵△ABC≌△DCE,∴∠ACB=∠DBC,∴BE=CE=4,∵DE=2,∴BD=6,∵△ABC≌△DCE,∴AC=BD=6,故选:A.3.(3.00分)如图,DE是△ABC边AC的垂直平分线,若BC=18cm,AD=8cm,则BD的长为()A.7cm B.8cm C.9cm D.10cm【解答】解:∵DE是△ABC边AC的垂直平分线,∴AD=CD,∵BC=18cm,AD=8cm,∴BD=BC﹣CD=BC﹣AD=18﹣8=10,故选:D.4.(3.00分)实数:﹣,π,0.27,,,,0.3,0.1010010001…,有理数的个数是()A.3 B.4 C.5 D.6【解答】解:0.27,,,0.3是有理数,其它的是无理数.故选:B.5.(3.00分)已知地球上七大洲的总面积约为150000000km2,则数字150000000用科学记数法可以表示为()A.1.5×106B.1.5×107C.1.5×108D.1.5×109【解答】解:将150000000用科学记数法表示为1.5×108.故选:C.6.(3.00分)在△ABC中,已知∠A=∠B,且该三角形的一个内角等于100°,以下判断正确的是()A.∠A=100°B.∠C=100°C.AC=AB D.AB=BC【解答】解:当∠A=∠B=100°时,∠A+∠B+∠C>180°,不符合三角形的内角和定理,∴A选项错误;当∠C=100°时,∠A=∠B=(180°﹣∠C)=40°,∴B选项正确;∵∠A=∠B,∴AC=BC,∴C、D选项错误;故选:B.7.(3.00分)已知点Q(﹣1,b2+2),则它所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵b2≥0,∴b2+2≥2,∴点Q(﹣1,b2+2)在第二象限.故选:B.8.(3.00分)如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.B.C.D.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,=MN•AC=AM•MC,又S△AMC∴MN==.故选:C.9.(3.00分)如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是边BC中点,两边PE、PF分别交AB、AC于点E、F,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③四边形AEPF的面积=△ABC的面积的一半,④当EF最短时,EF=AP,上述结论始终正确的个数为()A.1 B.2 C.3 D.4【解答】解:∵AB=AC,∠BAC=90°,∴△ABC是等腰直角三角形,∵点P为BC的中点,∴∠BAP=∠C=45°,AP=CP,∵∠EPF是直角,∴∠APE+∠APF=∠CPF+∠APF=90°,∴∠APE=∠CPF,在△AEP和△CPF中,,∴△AEP≌△CPF(ASA),=S△CPF,∴AE=CF,PE=PF,S△APE∴S=S△APC,四边形AEPF=S△ABC,∴S四边形AEPF根据等腰直角三角形的性质,EF=PE,所以,EF随着点E的变化而变化,只有当点E为AB的中点时,EF=PE=AP,此时,EF最短;故①②③④正确,故选:D.10.(3.00分)如图,Rt△OAB,∠BAO=90°,∠B=60°,OA=6,点C是OA边上一点,OC=1,点P为斜边OB上的一个动点,则PA+PC的最小值为()A. B. C.3+D.2【解答】解:作A关于OB的对称点D,交OB于点M,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,∵DP=PA,∴PA+PC=PD+PC=CD,∵OA=6,∠B=60°,由勾股定理得:OB=4,由三角形面积公式得:×OA×AB=×OB×AM,∴AM=3,∴AD=2×3=6,∵∠AMB=90°,∠B=60°,∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°,∵DN⊥OA,∴∠NDA=30°,∴AN=AD=3,由勾股定理得:DN=3,∵OC=1,∴CN=6﹣1﹣3=2,在Rt△DNC中,由勾股定理得:DC=,即PA+PC的最小值是.故选:A.二、填空题(本大题共8小题,每小题3分,共24分)11.(3.00分)16的平方根是±4.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.12.(3.00分)已知等腰三角形的顶角等于20°,则它的一个底角的度数为80°.【解答】解:∵等腰三角形的顶角等于20°,又∵等腰三角形的底角相等,∴底角等于(180°﹣20°)×=80°.故答案为:80.13.(3.00分)点P(a+1,a﹣1)在直角坐标系的y轴上,则点P的坐标为(0,﹣2).【解答】解:∵点P(a+1,a﹣1)在直角坐标系的y轴上,∴a+1=0,解得a=﹣1,a﹣1=﹣2,∴P坐标为(0,﹣2).故答案为:(0,﹣2).14.(3.00分)如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交数轴于一点,则这个点表示的实数是.【解答】解:由勾股定理,得OB==.B在原点的右侧时,B点表示的数为,B在原点的左侧是,B点表示的数为﹣,故答案为:.15.(3.00分)如图,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于12cm2.【解答】解:过点P作PD⊥OA于点D,∵OP平分∠AOB,PB⊥OB,PB=3cm,∴PD=PB=3cm,∵OA=8cm,∴S=OA•PD=×8×3=12cm2.△POA故答案为:12.16.(3.00分)如图,△OAD≌△OBC,且∠O=72°,∠C=20°,则∠DAC=92°.【解答】解:∵△OAD≌△OBC,∴∠D=∠C=20°,∴∠DAC=∠D+∠O=20°+72°=92°,故答案为:92.17.(3.00分)已知直角三角形的两条边长为3和4,则第三边的长为5或.【解答】解:设第三边为x,(1)若4是直角边,则第三边x是斜边,由勾股定理得:32+42=x2,∴x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理得:32+x2=42,∴x=;∴第三边的长为5或.故答案为:5或.18.(3.00分)如图,矩形纸片ABCD,AD=BC=3AB=CD=9,在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK,则△MNK的最大面积等于7.5.【解答】解:分两种情况:情况一:如图2,将矩形纸片对折,使点B与点D重合,此时点K也与点D重合.设MK=MD=x,则AM=9﹣x,在Rt△DAM中,由勾股定理,得x2=(9﹣x)2+32,解得,x=5.即MD=ND=5,故S=S梯形AMND﹣S△ADM=9×3×﹣4×3×=7.5.△MNK情况二:如图3,将矩形纸片沿对角线AC对折,此时折痕为AC.设MK=AK=CK=x,则DK=9﹣x,同理可得x2=(9﹣x)2+32,解得:x=5,即MK=NK=5.=S△DAC﹣S△DAK=×9×3﹣×4×3=7.5,故S△MNK故答案为:7.5三、解答题(本大题共10小题,共76分,解答时应写出文字说明、证明过程或演算步骤.)19.(8.00分)计算或化简:(1)﹣(π﹣3)0﹣2﹣1;(2)+﹣|1﹣|【解答】解:(1)原式=5﹣1﹣=3;(2)原式=3+2﹣+1=6﹣.20.(6.00分)求x的值:(1)﹣45=0;(2)(x+5)3=﹣27.【解答】解:(1)因为=45,所以x2=225,则x=±,即x=±15;(2)因为(x+5)3=﹣27,所以x+5=,即x+5=﹣3,解得:x=2.21.(7.00分)如图所示,在直角坐标系中,方格纸中的每个小正方形的边长为1个单位,已知D(4,0)、E(1,0)、F(﹣1,2).(1)你在图中画出△DEF;(2)请画出△DEF关于y轴对称图形△ABC;(3)将△ABC向下平移3个单位后得到△A1B1C1,分别写出A1、B1、C1的坐标.【解答】解:(1)如图所示,△DEF即为所求;(2)如图,△ABC即为所求;(3)如图,△A1B1C1即为所求,A1(﹣4,﹣3)、B1(﹣1,﹣3)、C1(1,﹣1).22.(6.00分)若实数x,y满足了+(2x+y﹣5)2=0,求(x+y)2的立方根.【解答】解:∵+(2x+y﹣5)2=0,∴,可得x+y=3,则(x+y)2=9,9的立方根是.23.(6.00分)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)请判断BD、CE有何大小、位置关系,并证明.【解答】证明:(1)∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS).(2)BD=CE,BD⊥CE,理由如下:由(1)知,△BAD≌△CAE,∴BD=CE;∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE.24.(6.00分)如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B 离地面0.6m,荡秋千到AB的位置时,下端B距静止位置的水平距离EB等于2.4m,距地面1.4m,求秋千AB的长.【解答】解:设AB=AB′=x,由题意可得出:B′E=1.4﹣0.6=0.8(m),则AE=AB﹣0.8,在Rt△AEB中,∵AE2+BE2=AB2,∴(x﹣0.8)2+2.42=x2解得:x=4,答:秋千AB的长为4m.25.(8.00分)如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,BC=10,EF=4.(1)求△MEF的周长:(2)若∠ABC=50°,∠ACB=60°,求∠EMF的度数.【解答】解:(1)∵CF⊥AB,BE⊥AC,M为BC的中点,∴EM=BC=5,FM=BC=5,∴△MEF周长=EF+EM+FM=4+5+5=14;(2)∵BM=FM,∠ABC=50°,∴∠MBF=∠MFB=50°,∴∠BMF=180°﹣2×50°=80°,∵CM=EM,∠ACB=60°,∴∠MCE=∠MEC=60°,∴∠CME═180°﹣2×60°=60°,∴∠EMF=180°﹣∠BMF﹣∠CME=40°.26.(9.00分)我们知道:若x2=9,则x=3或x=﹣3.因此,小南在解方程x2+2x ﹣8=0时,采用了以下的方法:解:移项,得x2+2x=8两边都加上1,得x2+2x+1=9所以(x+1)2=9则x+1=3或x+1=﹣3所以x=2或x=﹣4小南的这种解方程方法,在数学上称之为配方法.请用配方法解方程:(1)x2﹣4x﹣12=0;(2)22x2+4x﹣6=0.【解答】解:(1)x2﹣4x=12,x2﹣4x+4=16,(x﹣2)2=16,x﹣2=±4,所以x1=﹣2,x2=6;(2)x2+x=x2+x+()2=+()2,(x+)2=,x+=±,所以x1=,x2=.27.(10.00分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C逆时针旋转60°得△ADC,连接OD.(1)求证:△DOC是等边三角形;(2)当AO=5,BO=4,α=150°时,求CO的长;(3)探究:当α为多少度时,△AOD是等腰三角形.【解答】(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∠OCD=60°,∴CO=CD.∴△COD是等边三角形;(2)∵△ADC≌△BOC,∴DA=OB=4,∵△COD是等边三角形,∴∠CDO=60°,又∠ADC=∠α=150°,∴∠ADO=∠ADC﹣∠CDO=90°,∴△AOD为直角三角形.又AO=5,AD=4,∴OD=3,∴CO=OD=3;(3)若△AOD是等腰三角形,所以分三种情况:①∠AOD=∠ADO②∠ODA=∠OAD③∠AOD=∠DAO,∵∠AOB=110°,∠COD=60°,∴∠BOC=360°﹣110°﹣60°﹣∠AOD=190°﹣∠AOD,而∠BOC=∠ADC=∠ADO+∠CDO,由①∠AOD=∠ADO可得∠BOC=∠AOD+60°,求得α=125°;由②∠ODA=∠OAD可得∠BOC=150°﹣∠AOD求得α=110°;由③∠AOD=∠DAO可得∠BOC=240°﹣2∠AOD,求得α=140°;综上可知α=125°、α=110°或α=140°.28.(10.00分)如图1,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts,(1)当t=2时,求△PBQ的面积;(2)当t=时,试说明△DPQ是直角三角形;(3)当运动3s时,P点停止运动,Q点以原速立即向B点返回,在返回的过程中,DP是否能平分∠ADQ?若能,求出点Q运动的时间;若不能,请说明理由.【解答】解:(1)当t=2时,AP=t=2,BQ=2t=4,∴BP=AB﹣AP=4,∴△PBQ的面积=×4×4=8;(2)当t=时,AP=1.5,PB=4.5,BQ=3,CQ=9,∴DP2=AD2+AP2=2.25+144=146.25,PQ2=PB2+BQ2=29.25,DQ2=CD2+CQ2=117,∵PQ2+DQ2=DP2,∴∠DQP=90°,∴△DPQ是直角三角形.(3)设存在点Q在BC上,延长DQ与AB延长线交于点O.设QB的长度为x,则QC的长度为(12﹣x),∵DC∥BO,∴∠C=∠QBO,∠CDQ=∠O,∴△CDQ∽△BOQ,又CD=6,QB=x,QC=12﹣x,∴=,即=,解得:BO=,∴AO=AB+BO=6+=,∴DO=,PO=,∵∠ADP=∠ODP , ∴12:DO=AP :PO , 代入解得x=0.75, ∴DP 能平分∠ADQ , ∵点Q 的速度为2cm/s ,∴P 停止后Q 往B 走的路程为(6﹣0.75)=5.25cm .∴时间为2.625s ,加上刚开始的3s ,Q 点的运动时间为5.625s .赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DFE-a1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-aa B E挖掘图形特征:a+bx-aa 45°DBa+b-a45°A运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射.线.BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。
2018-2019学年江苏省苏州市吴中区八年级(上)月考数学试卷(10月份)

24.(6 分)如图,△ABC 是等边三角形,BD 是 AC 边上的高,延长 BC 到 E 使 CE=CD.试判断△DEB 的形状,并说明理由.
25.(6 分)如图所示,在△ABC 中,已知 AB=AC,BC=BD,AD=DE=EB, 求∠A 的度数.
2018-2019 学年江苏省苏州市吴中区八年级(上)月考数学试卷
(10 月份)
一、选择题:(每小题 3 分,共 30 分,请把答案填写在答题卷上)
1.(3 分)下列平面图形中,不是轴对称图形的是( )
A.圆
B.线段
C.角
D.平行四边形
2.(3 分)下列图形中对称轴条数最多的是( )
A.等边三角形 B.正方形
28.(8 分)如图,点 O 是等边△ABC 内一点,D 是△ABC 外的一点,∠AOB= 130°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接 OD.
(1)求证:△OCD 是等边三角形; (2)当 α=150°时,试判断△AOD 的形状,并说明理由; (3)探究:当 α 为多少度时,△AOD 是等腰三角形.(直接写出答案)
26.(6 分)如图,在△ABC 中,∠A=90°,AB=AC,O 是 BC 的中点,如果 在 AB 和 AC 上分别有一个动点 M、N 在移动,且在移动时保持 AN=BM,请 你判断△OMN 的形状,并说明理由.
第5页(共7页)
27.(6 分)如图,∠BAC 的角平分线与 BC 的垂直平分线交于点 D,DE⊥AB, DF⊥AC,垂足分别为 E,F.若 AB=10,AC=8,求 BE 长.
第6页(共7页)
2018-2019 学年江苏省苏州市吴中区八年级(上)月考数 学试卷(10 月份)
2018-2019学年第一学期期中考试八年级数学试卷参考答案

∴∠CBE= (180°-150°)=30°-
∴=30°.…………………………………………………………………………………………12分
20.由题知:点P在第四象限.
∴ 解得a<- ……………………………………………………………………………7分
21.(1)证明:∵∠ADE=∠2+∠BDE=∠1Βιβλιοθήκη ∠ACE∴∠BDE=∠ACE
又∵∠A=∠B,AE=BE
∴△ACE≌△BDE,∴AC=BD.………………………………………………………………………5分
2018--2019学年第一学期期中考试
八年级数学试题参考答案
一、选择题:1.D;2.C;3.A;4.B;5.D;6.A;7.C;8.D;9.B;10.B.
二、填空题:11.10;12.0;13.64º;14.3;15.(4,-4);16.7.
三、解答题:
17.略.…………………………………………………………………………………………………6分
18.由题知:∠ABD=2∠DBE=56º
∴∠BAC=180º-56º-70º=54º………………………………………………………………………6分
19.(1)略;………………………………………………………………………………………………4分
(2)A1(8,0),B1(6,-2),C1(5,2)…………………………………………………………………7分
(2)由(1)知:△ACE≌△BDE,∴CE=DE
∴∠C=∠CDE= (180º-40º)=70º
∴∠BDE=70º……………………………………………………………………………………………8分
22.(1)易得∠ADE=∠CDF=30º,
2018-2019(含答案)八年级(上)期中数学试卷 (10)

2018-2019(含答案)八年级(上)期中数学试卷 (10).................................................................................................................................................................2018.10.22一、选择题:本大题共12题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下面各组线段中,能组成三角形的是()A.5,11,6B.8,8,16C.10,5,4D.6,9,143.若一个多边形的内角和为1080∘,则这个多边形的边数为()A.6B.7C.8D.94.等腰三角形的一个内角是50∘,则这个三角形的底角的大小是()A.65∘或50∘B.80∘或40∘C.65∘或80∘D.50∘或80∘5.如图,在△ABC中,BC边上的高为()A.BEB.AEC.BFD.CF6.在△ABC中,∠B的平分线与∠C的平分线相交于O,且∠BOC=130∘,则∠A=()A.50∘B.60∘C.80∘D.100∘7.已知:如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F,则图中共有全等三角形()A.5对B.4对C.3对D.2对8.和点P(2, −5)关于x轴对称的点是()A.(−2, −5)B.(2, −5)C.(2, 5)D.(−2, 5)9.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙10.如图,∠A =15∘,AB =BC =CD =DE =EF ,则∠DEF 等于( )A.90∘B.75∘C.70∘D.60∘11.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180∘形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为( )A.80∘B.100∘C.60∘D.45∘12.已知AB =AC =BD ,则∠1与∠2的关系是( )A.∠1=2∠2B.2∠1+∠2=180∘C.∠1+3∠2=180∘D.3∠1−∠2=180∘二、填空题:本大题共5个小题,共20分,只要求填写最后结果,每小题填对得4分.13.等腰三角形底边长为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为________.14.点P 到△ABC 三边的距离相等,则点P 是________的交点.15.一辆汽车车牌在水中的倒影为如图,该车牌的牌照号码是________.16.如图在中,AB =AC ,∠A =40∘,AB 的垂直平分线MN 交AC 于D ,则∠DBC =________度.17.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为________.三、解答题18.如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,可使所修的渠道最短,试在图中确定该点.(保留作图痕迹)19.如图,在平面直角坐标系中,A(1, 2),B(3, 1),C(−2, −1).(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)写出A1,B1,C1的坐标(直接写出答案),A1________;B1________;C1________.(3)△A1B1C1的面积为________.20.如图,△ABC≅△ADE,且∠CAD=10∘,∠B=∠D=25∘,∠EAB=120∘,求∠DFB和∠DGB的度数.21.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,(1)请找出图②中的全等三角形,并给予说明(说明:结论中不得含有未标识的字母);(2)试说明:DC⊥BE.22.已知:如图所示,在△ABC中,AB=AC,E在CA延长线上,AE=AF,AD是高,试判断EF与BC的位置关系,并说明理由.23.如图,在△ABC中,∠ACB=90∘,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≅△CEB.(2)AD=5cm,DE=3cm,求BE的长度.24.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF 的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.答案1. 【答案】C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.2. 【答案】D【解析】根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【解答】解:A、∵5+6<11,∴不能组成三角形,故A选项错误;B、∵8+8=16,∴不能组成三角形,故B选项错误;C、∵5+4<10,∴不能组成三角形,故C选项错误;D、∵6+9>14,∴能组成三角形,故D选项正确.故选:D.3. 【答案】C【解析】首先设这个多边形的边数为n,由n边形的内角和等于180∘(n−2),即可得方程180(n−2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n−2)=1080,解得:n=8.故选C.4. 【答案】A【解析】等腰三角形的两个底角相等,已知一个内角是50∘,则这个角可能是底角也可能是顶角.要分两种情况讨论.【解答】解:当50∘的角是底角时,三角形的底角就是50∘;当50∘的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65度.故选:A.5. 【答案】B【解析】根据三角形的高线的定义解答.【解答】解:根据高的定义,AE为△ABC中BC边上的高.故选B.6. 【答案】C【解析】在△BOC中由三角形的内角和可求得∠OBC+∠OCB=50∘,再由角平分线的定义可得∠ABC+∠ACB=2(∠OBC+∠OCB)=100∘,在△ABC中再利用三角形内角和定理可求得∠A.【解答】解:∵∠BOC=130∘,∴∠OBC+∠OCB=180∘−∠BOC=180∘−130∘=50∘,∵BO和CO分别平分∠ABC和∠ACB,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=100∘,∴∠A=180∘−(∠ABC+∠ACB)=180∘−100∘=80∘,故选C.7. 【答案】A【解析】三角形全等条件中必须是三个元素,并且一定有一组对应边相等.此类题可以先把单独的两个全等三角形的对数找完,再找由两个三角形组合的全等的大三角形的对数,最后找由三个小三角形组合的全等的大三角形的对数.【解答】解:单独的两个全等三角形的对数是3,分别是:△BDE≅△CDF、△DGE≅△DGF、△AGE≅△AGF;由两个三角形组合的全等的大三角形的对数是1,是:△AED≅△AFD;由三个小三角形组合的全等的大三角形的对数是1,是:△ADB≅△ADC;所以共5对,故选A.8. 【答案】C【解析】点P(m, n)关于x轴对称点的坐标P′(m, −n),然后将题目已经点的坐标代入即可求得解.【解答】解:根据轴对称的性质,得点P(2, −5)关于x轴对称的点的坐标为(2, 5).故选:C.9. 【答案】B【解析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选B.10. 【答案】D【解析】根据已知条件,利用等腰三角形的性质及三角形的内角和外角之间的关系进行计算.【解答】解:∵AB=BC=CD=DE=EF,∠A=15∘,∴∠BCA=∠A=15∘,∴∠CBD=∠BDC=∠BCA+∠A=15∘+15∘=30∘,∴∠BCD=180∘−(∠CBD+∠BDC)=180∘−60∘=120∘,∴∠ECD=∠CED=180∘−∠BCD−∠BCA=180∘−120∘−15∘=45∘,∴∠CDE=180∘−(∠ECD+∠CED)=180∘−90∘=90∘,∴∠EDF=∠EFD=180∘−∠CDE−∠BDC=180∘−90∘−30∘=60∘,∴∠DEF=180∘−(∠EDF+∠EFC)=180∘−120∘=60∘.故选D.11. 【答案】A【解析】先根据三角形的内角和定理易计算出∠1=140∘,∠2=25∘,∠3=15∘,根据折叠的性质得到∠1=∠BAE=140∘,∠E=∠3=15∘,∠ACD=∠E=15∘,可计算出∠EAC,然后根据∠α+∠E=∠EAC+∠ACD,即可得到∠α=∠EAC.【解答】解:设∠3=3x,则∠1=28x,∠2=5x,∵∠1+∠2+∠3=180∘,∴28x+5x+3x=180∘,解得x=5∘,∴∠1=140∘,∠2=25∘,∠3=15∘,∵△ABE是△ABC沿着AB边翻折180∘形成的,∴∠1=∠BAE=140∘,∠E=∠3=15∘,∴∠EAC=360∘−∠BAE−∠BAC=360∘−140∘−140∘=80∘,又∵△ADC是△ABC沿着AC边翻折180∘形成的,∴∠ACD=∠E=15∘,而∠α+∠E=∠EAC+∠ACD,∴∠α=∠EAC=80∘.故选A.12. 【答案】D【解析】根据等腰三角形的性质和三角形内角和定理可得∠1和∠C之间的关系,再根据三角形外角的性质可得∠1和∠2之间的关系.【解答】解:∵AB=AC=BD,∴∠B=∠C=180−2∠1,∴∠1−∠2=180−2∠1,∴3∠1−∠2=180.故选D.13. 【答案】8cm【解析】设腰长为2x,得出方程(2x+x)−(5+x)=3或(5+x)−(2x+x)=3,求出x后根据三角形三边关系进行验证即可.【解答】解:设腰长为2x,一腰的中线为y,则(2x+x)−(5+x)=3或(5+x)−(2x+x)=3,解得:x=4,x=1,∴2x=8或2,①三角形ABC三边长为8、8、5,符合三角形三边关系定理;②三角形ABC三边是2、2、5,2+2<5,不符合三角形三边关系定理;故答案为:8cm.14. 【答案】角平分线的交点【解析】根据角平分线上的点到角的两边距离相等解答.【解答】解:∵点P到△ABC三边的距离相等,∴点P是角平分线的交点.故答案为:角平分线的交点.15. 【答案】M17936【解析】在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面成轴对称图形.【解答】解:根据镜面对称的性质,题中所显示的图片所显示的数字与M17936成轴对称,该车牌的牌照号码是M17936.故答案为M17936.16. 【答案】30【解析】由AB=AC,∠A=40∘,即可推出∠C=∠ABC=70∘,由垂直平分线的性质可推出AD=BD,即可推出∠A=∠ABD=40∘,根据图形即可求出结果.【解答】解:∵AB=AC,∠A=40∘,∴∠C=∠ABC=70∘,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠A=∠ABD=40∘,∴∠DBC=30∘.故答案为30∘.17. 【答案】15【解析】P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N.【解答】解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.故答案为:1518. 【答案】解:作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置.【解析】根据两点间线段最短可知作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置.【解答】解:作点A关于直线a对称的点C,连接BC交a于点P,则点P就是抽水站的位置.19. 【答案】; (−1, 2),(−3, 1),(2, −1); 4.5【解析】(1)根据网格结构找出点A、B、C的对应点A1、B1、C1的位置,然后顺次连接即可;; (2)根据平面直角坐标系写出各点的坐标;; (3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.【解答】解:(1)△A1B1C1如图所示;; (2)△A1(−1, 2),B1(−3, 1),C1(2, −1);; (3)△A1B1C1的面积=5×3−12×1×2−12×2×5−12×3×3,=15−1−5−4.5,=15−10.5,=4.5.20. 【答案】解:∵△ABC≅△ADE,∴∠DAE=∠BAC=12(∠EAB−∠CAD)=12(120∘−10∘)=55∘.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10∘+55∘+25∘=90∘∠DGB=∠DFB−∠D=90∘−25∘=65∘.综上所述:∠DFB=90∘,∠DGB=65∘.【解析】由△ABC≅△ADE,可得∠DAE=∠BAC=12(∠EAB−∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B,因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形内角和定理可得∠DGB=∠DFB−∠D,即可得∠DGB的度数.【解答】解:∵△ABC≅△ADE,∴∠DAE=∠BAC=12(∠EAB−∠CAD)=12(120∘−10∘)=55∘.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10∘+55∘+25∘=90∘∠DGB=∠DFB−∠D=90∘−25∘=65∘.综上所述:∠DFB=90∘,∠DGB=65∘.21. 【答案】解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90∘.∠BAE=∠DAC=90∘+∠CAE,在△BAE和△DAC中AB=AC∠BAE=∠DACAE=AD∴△BAE≅△CAD(SAS).; (2)由(1)得△BAE≅△CAD.∴∠DCA=∠B=45∘.∵∠BCA=45∘,∴∠BCD=∠BCA+∠DCA=90∘,∴DC⊥BE.【解析】①可以找出△BAE≅△CAD,条件是AB=AC,DA=EA,∠BAE=∠DAC= 90∘+∠CAE.②由①可得出∠DCA=∠ABC=45∘,则∠BCD=90∘,所以DC⊥BE.; ①可以找出△BAE≅△CAD,条件是AB=AC,DA=EA,∠BAE=∠DAC=90∘+∠CAE.②由①可得出∠DCA=∠ABC=45∘,则∠BCD=90∘,所以DC⊥BE.【解答】解:(1)∵△ABC,△DAE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90∘.∠BAE=∠DAC=90∘+∠CAE,在△BAE和△DAC中AB=AC∠BAE=∠DACAE=AD∴△BAE≅△CAD(SAS).; (2)由(1)得△BAE≅△CAD.∴∠DCA=∠B=45∘.∵∠BCA=45∘,∴∠BCD=∠BCA+∠DCA=90∘,∴DC⊥BE.22. 【答案】解:垂直.理由:∵在△ABC中,AB=AC,AD是高,∴∠BAD=∠CAD,∵AE=AF,∴∠E=∠EFA,∵∠BAC=∠E+∠EFA=2∠EFA,∴∠EFA=∠BAD,∴EF // AD,∵AD⊥BC,∴EF⊥BC.故EF与BC的位置关系为:垂直.【解析】根据等腰三角形三线合一的性质可得到∠BAD=∠CAD,再根据三角形外角的性质可推出∠EFA=∠BAD,再根据内错角相等两直线平行得到EF // AD,已知AD⊥BC,则EF与BC的关系为垂直.【解答】解:垂直.理由:∵在△ABC中,AB=AC,AD是高,∴∠BAD=∠CAD,∵AE=AF,∴∠E=∠EFA,∵∠BAC=∠E+∠EFA=2∠EFA,∴∠EFA=∠BAD,∴EF // AD,∵AD⊥BC,∴EF⊥BC.故EF与BC的位置关系为:垂直.23. 【答案】(1)证明:如图,∵AD⊥CE,∠ACB=90∘,∴∠ADC=∠ACB=90∘,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,∠ADC=∠CEB∠CAD=∠BCE,AC=BC∴△ADC≅△CEB(AAS);; (2)由(1)知,△ADC≅△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE−DE,∴BE=AD−DE=5−3=2(cm),即BE的长度是2cm.【解析】(1)根据全等三角形的判定定理AAS推知:△ADC≅△CEB;; (2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD−DE.【解答】(1)证明:如图,∵AD⊥CE,∠ACB=90∘,∴∠ADC=∠ACB=90∘,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,∠ADC=∠CEB∠CAD=∠BCE,AC=BC∴△ADC≅△CEB(AAS);; (2)由(1)知,△ADC≅△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE−DE,∴BE=AD−DE=5−3=2(cm),即BE的长度是2cm.24. 【答案】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90∘,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中AB=CG∠ABD=∠ACG,BD=CA∴△ABD≅△GCA(SAS),∴AD=GA(全等三角形的对应边相等);; (2)位置关系是AD⊥GA,理由为:∵△ABD≅△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90∘,∴AD⊥GA.【解析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得到一对角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形BHF与三角形CHE相似,由相似三角形的对应角相等得到一对角相等,再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,; (2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90∘,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90∘,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中AB=CG∠ABD=∠ACG,BD=CA∴△ABD≅△GCA(SAS),∴AD=GA(全等三角形的对应边相等);; (2)位置关系是AD⊥GA,理由为:∵△ABD≅△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90∘,∴AD⊥GA.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吴中区2019-2019学年第一学期期中统一测试初二数学试卷本试卷由选择题、填空题和解答题三部分组成,共28题,满分130分,考试时间120分钟. 注意事项:1.答题前,考生务必将学校、班级、姓名、考试号等信息填写在答题卡相应的位置上;2.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效,一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上) 1.下列各选项的图形中,不是..轴对称图形的是( ▲ )A B C D2.如图,DEF ABC ∆∆≌,点A 与D ,B 与E 分别是对应顶点,且测得cm BC 5=,cm BF 7=,则EC 长为( ▲ ) A. cm 1 B. cm 2 C. cm 3 D. cm 4 3.等腰三角形的两边长分别为2、4,则它的周长为 ( ▲ )A.8B.10C.8或10D.以上都不对4.有四个三角形,分别满足下列条件: 其中直角三角形有 ( ▲ )(1)一个内角等于另外两个内角之和: (2)三个内角之比....为3:4:5; (3)三边..之比为5:12:13; (4)三边长分别为7、24、25. A .1个 B .2个 C .3个 D .4个5.若点P 在x 轴的上方、y 轴的左侧,且到两条坐标轴的距离都是4,则点P 的坐标是( ▲ ).A .(4,4)B .(4,-4)C .(-4,-4)D .(-4,4) 6.在△ABC 内部取一点P ,使得点P 到△ABC 的三边的距离相等,则点P 应是△ABC 的下列哪三条线段的交点( ▲ ). A .角平分线 B .高 C .中线 D .垂直平分线7. 如图所示,在△ABC 中,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则三个结论:①AS=AR; ②QP ∥AR; ③△BPR ≌△QPS 中一定正确....的是 ( ▲ ) A.全部正确 B. 仅①和②正确 C.仅①正确 D. 仅①和③正确8.如图,在△ABC 中,AD ⊥BC ,垂足为D ,若AD =3,∠B =45°,△ABC 的面积为6,则AC 边的长是( ▲ )第2题第7题AB CDEFG第8题A .10B.2 2C .6D.329.如图1所示,将矩形纸片先沿虚线AB按箭头方向向右..对折,接着将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是(▲)A.B.C.D.10. 平面直角坐标系中,已知A(8,0),△AOP为等腰三角形且面积为16,满足条件的P点有( ▲ )A.12个B.10个C.8个D.6个二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.若等腰三角形的一个角是80°,则其底角为_ ▲ .12.已知点A(3,4)先向左平移5个单位,再向下平移2个单位得到点B,则点B的坐标为▲ .13. 点A(m+2,m+1)在轴上,则A点的坐标为▲ .14. 如图,在△ABC中,DE是AC的垂直平分线,AE=4 cm,△ABD的周长为13cm,则△ABC的周长为▲ cm.15. 如图,在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是▲.16.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于▲.17.已知等腰三角形一腰上的中线将它周长分成18cm和9cm 两部分,则这个等腰三角形的底边长是▲ cm.18. 如图,矩形ABCD中,AB=12cm,BC=24cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积是▲ cm2.EC′AB CD第18题第14题第15题第16题吴中区2019-2019学年第一学期期中统一测试初二数学答题卷一、选择题(把每题的答案填在下表中,每小题3分,共30分。
)题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(把答案填在题中横线上,每小题3分,共24分。
)11. ;12. ;13. ;14.15. ;16. ;17. ;18. 三、解答题(本大题共76分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上19.(9分)如图已知△ABC .(1)请用尺规作图法作出BC 的垂直平分线DE ,垂足为D ,交AC 于点E,(保留作图痕迹,不写作法);(2)请用尺规作图法作出∠C 的角平分线CF ,交AB 于点F ,(保留作图痕迹,不写作法);(3)请用尺规作图法在BC 上找出一点P ,使△PEF 的周长最小.(保留作图痕迹,不写作法).20.(本题6分)如图,点E 、F 在AB 上,且AF =BE ,AC =BD ,AC ∥BD .求证:CF ∥DE .21.(本题6分)如图,是一块四边形草坪,∠B =90°,AB =24m , BC =7m ,CD =15m ,AD=20m,求草坪面积.22. (本题9分) 如图,点E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别是C 、D .ABCD考式号______ ________ 班级____________ 姓名____________ 学号____________ ————————————————————————装订线————————————————————————————求证:(1)∠EDC =∠ECD (2)OC =OD(3)OE 是线段CD 的垂直平分线23.(本题6分)已知:如图,∠ACD 是△ABC 的一个外角,CE 、CF分别平分∠ACB 、∠ACD,EF ∥BC ,分别交AC 、CF 于点H 、F. 求证: EH=HF24.(本题9分)已知,点A (-2,1),B (-1,3),C (-4,5) (1)在坐标系中描出点A 、点B 、点C ,并画出△ABC ;(2)若△ABC 关于轴成轴对称的图形为△A′B′C′,则△A′B′C′各点坐标为A′ ( , )、B′( , )、C′( , ); (3)求△ABC 面积.25.(本题6分)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地。
送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA 静止的时候,踏板离地高一尺(AC =1尺),将它往前推进两步(EB =10尺),此时踏板升高离地五尺(BD =5尺),求秋千绳索(OA 或OB)的长度.第22题图EDB C AO26.(本题共8分)如图,在△ABC 中,ACB 90∠=︒,AC BC =,D 是AB 的中点,点E 在AC 上,点F 在BC 上,且AE CF =.(1)求证:DE DF =,DE DF ⊥ (2)若2AC =,求四边形DECF 面积.27.(本题满分8分)如图,在△ABC 中,∠ABC =45°,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,F 为BC 中点,BE 与DF ,DC 分别交于点G ,H ,∠ABE =∠CBE .(1)求证:BH =AC ; (2)求证:BG 2-GE 2=EA 2.28. (本题满分9分)点P 、Q 分别是边长为4cm 的等边△ABC 的边AB 、BC 上的动点,点P 从顶点A 向点B,点Q 从顶点B 向点C 同时出发,且它们的速度都是1cm/s.(1)连接AQ 、CP 交于点M ,则在P 、Q 运动的过程中,∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)当t= 时,△PBQ 是直角三角形?(3)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则∠CMQ 变化吗?若变化,则说明理由,若不变,则求出它的度数.2019-2019学年初二期中考试数学参考答案一、选择题(把每题的答案填在下表中,每小题3分,共30分。
)题号 1 2 3 4 5 6 7 8 9 10答案 C C B C D A B A D B二、填空题(把答案填在题中横线上,每小题3分,共24分。
)11. 80°或50°;12. (-2,2);13. (1,0);14. 21 15. (7,3);16. 8 ;17. 3 ;18. 90三、解答题19(本题9分).解:(1)如图所示:DE即为所求;3’(2)如图所示:CF即为所求;3’(3)如图所示:P点即为所求.3’20.(本题6分)证明:∵AC∥BD,∴∠A=∠B,1’在△ACF和△BDE中,,AC=BD∠A=∠BAF=BE∴△ACF≌△BDE(SAS),3’∴∠AFC=∠BED,1’∴CF∥DE.1’21. (本题6分)解:连接AC,由题意得:AC2=AB2+BC2,∴AC2=625,∴AC=25m,2’又∵AD2+DC2=AC2,∴AD=20m,2’∴S四边形ABCD=S△ABC+S△ADC=1/2·AB•BC+ 1/2·AD•DC=234(m2).2’22.(本题9分)证明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,2’∴∠ECD=∠EDC;1’(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,2’∴Rt△OED≌Rt△OEC(HL),(3)设OE 与CD 交点为点F 在△DOF 和△COF 中,OC =OD∵ ∠EOC=∠BOE OF =OF∴△DOF ≌△COF , 2’ ∴DF=FC , ∵ED=EC ,∴OE 是线段CD 的垂直平分线. 1’ 或∵EC=ED ,∴E 点在线段CD 的垂直平分线上 1’ ∵OC=OD ,∴O 点在线段CD 的垂直平分线上, 1’ ∴OE 是线段CD 的垂直平分线. 1’23. (本题6分)证明:∵EF∥BC,∴∠HEC=∠ECB. 1’ ∵CE 平分∠ACB,∴∠ECB=∠ECA, ∴∠ECA=∠HEC, 1’ ∴EH = HC. 1’同理HC=HF 2’ ∴EH=HF 1’ 24. (本题9分)(1)画出 △ABC 3’ (2)A′ (2,1)、B′(1,3)、C′(4,5); 3’ (3)S △ABC =4 3’25(本题6分).解:设OA=OB=x 尺,∵EC=BD=5尺,AC=1尺, ∴EA=EC-AC=5-1=4(尺),OE=OA-AE=(x-4)尺, 在Rt △OEB 中,OE=(x-4)尺,OB=x 尺,EB=10尺, 根据勾股定理得:x 2=(x-4)2+102, 3’ 整理得:8x=116,即2x=29,ABC则秋千绳索的长度额14.5尺.1’26.(本题8分)证明:(1)如图,连接CD.∵AB=AC,∠BAC=90°,∴△ABC是等腰直角三角形,∠A=∠B=45°,1’∵D为BC中点,∴BD=CD,CD平分∠BCA,CD⊥AB.1’∴∠DCF=45°,1’在△ADE和△CFD中,∴△ADE≌△CFD(SAS),∴DE=DF,∠ADE=∠CDF.1’∵∠ADE+∠EDC=90°,∴∠CDF+∠EDC=∠EDF=90°,即DE⊥DF.1’(2)∵△ADE≌△CFD,∴S△AED=S△CFD,1’∴S四边形CEDF=S△ADC,1’∵D是AB的中点,∴S△ACD=1/2S△ACB=1/2 *2*2=2.∴S四边形CEDF=1.1’27.(本题8分)证明:(1)∵CD⊥AB,BE⊥AC,∴∠BDH=∠BEC=∠CDA=90°,1’∵∠ABC=45°,∴∠BCD=180°-90°-45°=45°=∠ABC∴DB=DC,1’∵∠BDH=∠BEC=∠CDA=90°,∴∠A+∠ACD=90°,∠A+∠HBD=90°,∴∠HBD=∠ACD,1’∵在△DBH和△DCA中,∠BDH=∠CDABD=CD∠HBD=∠ACD∴△DBH≌△DCA(ASA),∴BH=AC.1’由(1)知,DB=CD,∵F为BC的中点,∴DF垂直平分BC,1’∴BG=CG,1’∵点E为AC中点,BE⊥AC,∴EC=EA,在Rt△CGE中,由勾股定理得:CG2-GE2=CE2,1’∵CE=AE,BG=CG,∴BG2-GE2=EA2.1’28.解:(本题9分)(1)∠CMQ=60°不变.1’∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),1’∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.1’(2)设时间为t,则AP=BQ=t,PB=4-t (对一个1’,对两个3’)①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4-t=2t,t=4/3②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4-t),t=8/3;∴当第4/3秒或第8/3秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.1’∵在等边三角形中,AB=AC,∠B=∠CAP=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△QCA(SAS)1’∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°-60°=120°1’。