单管反激式直流变换器研究开题报告

单管反激式直流变换器研究开题报告
单管反激式直流变换器研究开题报告

华侨大学厦门工学院毕业设计(论文)开题报告

系:电气系专业班级:11级电气1班姓名

曾俊杰

学号

1102101042

指导

教师

王国玲

职称

学历

副教授

课题名称

单管反激式直流变换器研究

毕业设计(论文)类型(划√)

工程设计

应用研究

开发研究

基础研究

其他

本课题的研究目的和意义:

目的:高效反激式开关电源以其电路抗干扰、高效、稳定性好、成本低廉等许多优点,特别适合小功率的电源以及各种电源适配器,具有较高的实用性。随着电力电子技术的发展,工作在高频的开关电源己经广泛应用于电气和电子设备的各个领域。开关电源设计的目的是通过能量处理将输入能量变化为所需要的能量输出,通常的形式是产生一个符合要求的输出电压,这个输出电压的值不能受输入电压或者负载电流的影响。

意义:在开关电源设计初期,采用的都是分立元件,集成度很低,大部分电路只能在PCB 版上实现,极大的限制了小型化实现的可能。而且大量器件暴露在外,也影响了系统的稳定性。近年来,为了实现更高的效率和更小的体积,开关电源的工作频率有了很大的提高。高工作频率能够减小外围电感和电容的大小,从而减少系统的体积。

文献综述(国内外研究情况及其发展):

随着电力电子技术的发展,开关电源的应用越来越广泛。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点。开关电源是通过开关管关断和导通实现电压和电流变换的装置,亦称无工频变压器的电源,利用体积很小的高频变压器来实现电压变化及电网隔离。开关电源具有体积小、重量轻、效率高、发热量低、性能稳定等优点,代表着当今稳压电源的发展方向,已成为稳压电源的主导产品。

随着集成电路的发展,开关电源逐渐向集成化方向发展,趋于小型化和模块化。反激变压器的设计是一个难点,其往往导致电源设计周期延长。随着PI公司生产的以TOPSwitch为代表的新一代单片开关电源的问世,以上诸多问题都得到了很好的解决。应用TOPSwitch-HX 设计开关电源,不仅器件更少,结构更简单,发热量更少,工作更可靠,采用该系列芯片已成为一种高效的反激式开关电源设计方案。1977年国外首先研制成脉宽调制(PWM)控制器集成电路,美国Motorola公司、Silicon General公司、Unitrode公司等相继推出一系列PWM芯片。近些年来,国外研制出开关频率达1MHz的高速PWM、PFM芯片。第二个方向是实现中、小功率开关电源单片集成化。1994年,美国电源集成公司(Power Integrations)在世界上率先研制成功三端隔离式PWM型单片开关电源,其属于AC/DC电源变换器。之后相继推出TOPSwitch、TOPSwitch-II、TOPSwitch-Fx、TOPSwitch-GX、PeakSwitch、LinkSwitch等系列产品。意-法半导体公司最近也开发出VIPer100、VIPer100A、VIPer100B等中、小功率单片电源系列产品,并得到广泛应用。

本课题的主要研究内容(提纲)和成果形式:

1.复习、自学模拟电子技术、电力电子技术、自动控制理论、电路的仿真等方面有关书籍,理解掌握电路仿真软件的使用,如Pspice、Saber等。

2.重点学习Buck-Boost型功率变换器与反激式功率变换器的基本原理、功率电路与控制电路的设计方法与实现,控制电路的稳定性设计等。

3.电路的技术指标:输出功率为1kW,输入电压:48VDC,输出电压:400VDC,

电压纹波不大于20V,开关频率50kHz,动态响应时间小于10ms。

4.建立仿真模型,并通过仿真结果验证设计方法的正确性。

拟解决的关键问题:

问题一:如何设计单管反激式直流变换器系统?

解决方法:借助所学的书本知识或去图书管查阅相关资料或借助网络资源。

问题二:如何给出单管反激式直流变换器系统完整的仿真结果,并达到系统性能指标要求?

解决办法:借助书本知识和在老师的指导下解决问题。

研究思路、方法和步骤:

研究思路:

通过所学的知识及相关资料深入了解Buck-Boost型功率变换器与反激式功率变换器的基本原理、功率电路与控制电路的设计方法与实现,控制电路的稳定性设计等。

学习并掌握电路仿真软件的使用。

在这些基础上进行电路的设计和建立仿真模型,并通过仿真结果验证设计方法的正确性。方法和步骤:

参考文献设计电路。

基于matlab建立仿真模型,并通过仿真结果验证设计方法的正确性。

本课题的进度安排:

2015.1.15前收集资料,复习、自学模拟电子技术、电力电子技术、自动控制理论、电路的仿真等书籍,2015年1月下发任务书,确定(论文)的任务要求。

寒假期间完成外文翻译,确定初步的研究方案。

2015.3.1-2015.3.15进行课题的调研,完善课题研究方案,完成文献综述和开题报告。2015.3.15-2015.3.31进行课题的设计,完成设计(论文)提纲的编写。

2015.4.1-2015.4.30进行课题的仿真研究及仿真结果的处理与分析等,完成设计(论文)初稿。

2015.5.1-2015.5.31完成设计(论文)(按学校格式要求写作)。在最终定稿之前应与指导教师交换对设计(论文)的意见,并进行修改完善。

2015.6.1-2015.6.14制作PPT,答辩。

参考文献:

[1]康华光.电子技术基础:模拟部分[M].北京:高等教育出版社,2013.

[2]张占松,张心益编著.开关电源技术教程[M].北京:机械工业出版社,2012

[3](美)Simon Ang,(美)Alejandro Oliva著;徐德鸿[等]译.开关电源的原理、仿真和设计[M].北京:机械工业出版社,2011.

[4]胡寿松.自动控制原理基础教程[M].北京:科学出版社,2013.

指导老师意见:

指导老师(签名):年月日

系意见:

系主任(签名):年月日

反激变换器课程设计报告

电力电子课程实习报告 班级:电气10-3班 学号: 10053303 姓名:李乐

目录 一、课程设计的目的 二、课程设计的要求 三、课程设计的原理 四、课程设计的思路及参数计算 五、电路的布局与布线 六、调试过程遇到的问题与解决办法 七、课程设计总结

一、课程设计的目的 (1)熟悉Power MosFET的使用; (2)熟悉磁性材料、磁性元件及其在电力电子电路中的应用; (3)增强设计、制作和调试电力电子电路的能力。 二、课程设计的要求 本课程设计要求根据所提供的元器件设计并制作一个小功率的反击式开关电源。 电源输入电压:220V 电源输出电压电流:12V/1.5A 电路板:万用板手焊。 三、课程设计原理 1、引言 电力电子技术有三大应用领域:电力传动、电力系统和电源。在各种用电设备中,电源是核心部件之一,其性能影响着整台设备的性能。电源可以分为线性电源和开关电源两大类。 线性电源是把直流电压变换为低于输入的直流电压,其工作原理是在输入与输出之间串联一个可变电阻(功率晶体管),让功率晶体管工作在线性模式,用线性器件控制其“阻值”的大小,实现稳定的输出,电路简单,但效率低。通常用于低于10W的电路中。通常使用的7805、7815等就属于线性电源。 开关电源是让功率晶体管工作在导通和关断状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小),所以开关电源具有能耗小、效率高、稳压范围宽、体积小、重量轻等突出优点,在通讯设备、仪器仪表、数码影音、家用电器等电子产品中得到了广泛的应用。反激式功率变换器是开关电源中的一种,是一种应用非常广泛的开关电源。 2、基本反激变换器工作原理 基本反激变换器如图1所示。假设变压器和其他元件均为理想元器件,稳态工作下。

确定准谐振反激式变换器主要设计参数的实用方法

确定准谐振反激式变换器主要设计参数的实用方法 准谐振反激式变换器(Flyback Converter)由于能够实现零电压开通,减少了开关损耗,降低了EMI噪声,因此越来越受到电源设计者的关注。但是由于它是工作在变频模式,因此导致诸多设计参数的不确定性。如何确定它的工作参数,成为设计这种变换器的关键,本文给出了一种较为实用的确定方法。 近年来,一些著名的国际芯片供应商陆续推出了准谐振反激式变换器的控制IC,例如安森美的NCP1207、IR公司的IRIS40XX系列、飞利浦的TEA162X系列以及意法半导体的L6565等。正如这些公司宣传的那样,在传统的反激式变换器当中加入准谐振技术,既可以实现开关管的零电压开通,从而提高了效率、减少了EMI噪声,同时又保留了反激式变换器所固有的成本低廉、结构简单、易于实现多路输出等优点。因此,准谐振反激式变换器在低功率场合具有广阔的应用前景。但是,由于这种变换器的工作频率会随着输入电压及负载的变化而变化,这就给设计工作(特别是变压器的设计)造成一些困难。本文将从工作频率入手,详细阐述如何确定准谐振反激式变换器的几个主要设计参数:最低工作频率、变压器初级电感量、折射电压、初级绕组的峰值电流等。 图1是准谐振反激式变换器的原理图。其中: L P为初级绕组电感量,L LEAK为初级绕组漏感量, R P是初级绕组的电阻,C P是谐振电容。 由图1可见,准谐振反激式变换器与传统的反激 式变换器的原理图基本一样,区别在于开关管的 导通时刻不一样。图2是工作在断续模式的传统 反激式变换器的开关管漏源极间电压V DS的波 形图。这里V IN是输入电压,V OR为次级到初级 图1:准谐振反激式变换器原理图。 的折射电压。 由图2可见,当副边绕组中的能量释放完毕之后(即变压器磁通完全复位),在开关管的漏极出现正弦波振荡电压,振荡频率由L P、C P决定,衰减因子由R P决定。对于传统的反激式变换器,其工作频率是固定的,因此开关管再次导通有可能出现在振荡电压的任何位置(包括峰顶和谷底)。可以设想,如果控制开关管每次都是在振荡电压的谷底导通,如图3所示,那么就可以实现零电压导通(或是低电压导通),这必将减少开关损耗,降低EMI噪声。实现这一点并不困难,只要增加磁通复位检测功能(通常是辅助绕组来实现),以便在检测到振荡电压达到最低点时打开开关管,就能达到目的。这实质上就是准谐振反激式变换器的工作原理,前文提到的几种IC均能实现这个功能。由此带来的问题是其工作频率是变化的,从而影响了其它设计参数的确定。 设计参数的确定 设计反激式变换器,通常需要确定以下参数: f S:变换器的工作频率; I PMAX:初级绕组的最大峰值电流;

UCC38C43隔离单端反激式开关电源电路图

UC3842/UC3843隔离单端反激式开关电源电路 图 开关电源以其高效率、小体积等优点获得了广泛应用。传统的开关电源普遍采用电压型脉宽调制(PWM)技术,而近年电流型PWM技术得到了飞速发展。相比电压型PWM,电流型PWM具有更好的电压调整率和负载调整率,系统的稳定性和动态特性也得以明显改善,特别是其内在的限流能力和并联均流能力使控制电路变得简单可靠。 电流型PWM集成控制器已经产品化,极大推动了小功率开关电源的发展和应用,电流型PWM控制小功率电源已经取代电压型PWM控制小功率电源。Unitrode公司推出的UC3842系列控制芯片是电流型PWM控制器的典型代表。 DC/DC转换器 转换器是开关电源中最重要的组成部分之一,其有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。下面重点分析隔离式单端反激转换电路,电路结构图如图1所示。

图1 电路结构图 电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器 次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,使VD 导通,给输出电容C充电,同时负载R上也有电流I流过。M1导通与截止的等效拓扑如 图2所示。 图2 M1导通与截止的等效拓扑 电流型PWM 与电压型PWM比较,电流型PWM控制在保留了输出电压反馈控制外,又增加了一 个电感电流反馈环节,并以此电流反馈作为PWM所必须的斜坡函数。 下面分析理想空载下电流型PWM电路的工作情况(不考虑互感)。电路如图3所示。 设V导通,则有 L·diL/dt = ui (1) iL以斜率ui/L线性增长,L为T1原边电感。经无感电阻R1采样 Ud=R1·iL送到脉宽比较器A2与Ue比较,当Ud>Ue,A2输出高电平,送到RS锁存器 的复位端,此时或非门的两个输入中必有一个高电平,经过或非门输出低电平关断功率开

(整理)反激式开关电源变压器设计原理.

反激式开关电源变压器设计原理 (Flyback Transformer Design Theory) 第一节. 概述. 反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图. 一、反激式转换器的优点有: 1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2. 转换效率高,损失小. 3. 变压器匝数比值较小. 4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85~265V间.无需切换而达到稳定输出的要求. 二、反激式转换器的缺点有: 1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下. 2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 第二节. 工作原理 在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下: 当开关晶体管 Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2. 由图可知,导通时间 ton的大小将决定Ip、Vce的幅值: Vce max = VIN / 1-Dmax VIN: 输入直流电压 ; Dmax : 最大工作周期 Dmax = ton / T 由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN. 开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip 为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic 的大小,上式是按功率守恒原则,原副边安匝数相等 NpIp = NsIs而导出. Ip 亦可用下列方法表示: Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率 公式导出如下: 输出功率 : Po = LIp2η / 2T

(完整版)50W反激变换器的设计

50W反激变换器的设计(CCM) 电源规格输入电压:85Vac ~ 264Vac 输出电压:5Vdc 输出电流:10A 确定变压器初次级的匝比n 设定最大占空比: D=0.45 工作频率: f=100KHz,T=1/f=10uS 最大磁通密度: B=0.2 则主功率管开通时间为: Ton=T*D=10uS*0.45=4.5uS 选择变压器的磁芯型号为EER2834 磁芯的截面积:Ae=85.5mm 最低输入电压: Vin= 85 * √2 –20 = 100.2 V ( 设定低频纹波为20V )根据伏·秒平衡原理有: Vin * Ton = n * ( V o + Vf ) * Toff ( 设定整流管压降为1V ) 变压器的匝比n: n = 13.67 设定电源工作在连续模式Ip2 = 0.4 * Ip1 0.5 * ( Ip1 + Ip2 ) * Vin * D = Pout /η ( 设定电源的效率η为0.8 ) Ip1 = 1.98 A Ip2 = 0.79 A 变压器的感量 L = ( Vin * Ton ) / ( Ip1 – Ip2 ) = 379 uH 变压器的初级匝数 Np = ( Vin * Ton ) / ( Ae * B ) = 27 T 变压器的次级匝数Ns = Np / n = 2 T 变压器的实际初次级匝数可以取 Np = 27 T Ns = 2 T 重新核算变压器的设计 最大占空比:Vin * D = n * ( V o + Vf ) * ( 1 – D ) D = 0.447 最大磁通密度:Bmax = ( Vin * Ton ) / ( Np * Ae ) Bmax = 0.195 T 初级电流Ip1 和Ip2: 0.5 * ( Ip1 + Ip2 ) * Vin * D = Pout /η Ip2 + ( Vin * Ton ) / L = Ip1 Ip1 = 1.99 A Ip2 = 0.8 A Ip_rms = 0.93A 次级电流Is1和Is2 Is1 =Ip1*n=26.87A Is2=Ip2*n =10.8A Is_rms = 12.56A 次级电压折射到初级的电压 V or = n * ( V o + Vf ) = 81V 初级功率管Mosfet 的选择 Vmin = (√2 * 264 + V or +50 ) / 0.8 = 630 V Ip_rms = Ip_rms / 0.8 = 1.16 A ( 设定应力降额系数为0.8 ) 可以选择Infineon 的IPP60R450E6 次级整流管Diode 的选择 Vmin = (√2 * 264 / n + 5 +15 ) / 0.8 = 60 V Is_rms = Is_rms / 0.8 = 15.7 A ( 设定应力降额系数为0.8,噪音为15V ) 可以选择IR 的30CTQ060PBF 输出电容的选择 设定输出电压的纹波为50mv 输出电流的交流电流: Isac_rms = 0.5 * ( Is1 + Is2 ) * √D * ( 1- D ) Isac_rms = 9.36A Resr = Vripple / Isac_rms = 5.34 mohm 选择Nichicon 电容HD 系列6.3V/3900uF 四个并联使用50W反激变换器的设计(DCM) 电源规格输入电压:85Vac ~ 264Vac 输出电压:5Vdc 输出电流:10A 确定变压器初次级的匝比n 设定最大占空比: D=0.3 工作频率: f=100KHz,T=1/f=10uS 最大磁通密度: B=0.2 则功率管开通时间:Ton=T*D=10uS*0.3=3uS 假设关断时间:Toff=7uS,Tr=4uS 选择变压器的磁芯型号为EER2834 磁芯的截面积:Ae=85.5mm 最低输入电压: Vin= 85 * √2 –20 = 100.2 V ( 设定低频纹波为20V )根据伏·秒平衡原理有: Vin * Ton = n * ( V o + Vf ) * Tr ( 设定整流管压降为1V ) 变压器的匝比n: n = 12.53 设定电源工3作在续模式Io = Tr/T * Ip2 Ip2=Io*T/Tr=25A Ip1 = Ip2/n=1.99 A 变压器的感量 L = ( Vin * Ton ) / Ip1 = 151 uH 变压器的初级匝数 Np = ( Vin * Ton ) / ( Ae * B ) = 18 T 变压器的次级匝数 Ns = Np / n = 1.4 T=2T 变压器的实际初次级匝数可以取 Ns = 2 T Np=Ns * n=25.1T=26T 开关电源一次滤波大电解电容 开关电源决定一次侧滤波电容,主要影响电源的性能参数为输出低频交流纹波与保持时间. 滤波电容越大,电容器上的Vin(min)越高,可以输出较大功率的电源,但相对价格也提高了。 输入电解电容计算方法(举例说明): 1.因输出电压12V 输出电流2A, 故输出功率:Pout=V o*Io=1 2.0V*2A=24W。 2.设定变压器的转换效率约为80%,则输出功率为24W的 电源其输入功率:Pin=Pout/效率=W W 30 % 80 24 =. 3.因输入最小交流电压为90V AC,则其直流输出电压为:Vin=90*1.2=108Vdc 故负载直流电流为:I= Vin Pin =A Vac W 28 .0 108 30 = 4.设计允许的直流纹波电压V ?/V o=20%,并且电容要维持电压的时间为1/4周期t(即半周期的工频率交流电压在约 是4ms,T= f 1 = 60 1 =0.0167S=16.7 ms)则: C=uF V t I 9. 51 6. 21 10 * 4 * 28 .0 *3 = = ? - 故实际选择电容量47uF. 5.因最大输入交流电压为264Vac,则最高直流电压为:V=264*2=373VDC. 实际选用通用型耐压400Vdc的电解电容,此电压等级,电容有95%的裕度. 6.电容器的承受的纹波电流值决定电容器的温升,进而决定电容器的寿命.(电容器的最大纹波电流值与其体积,材质有关.体积越大散热越好耐受纹波电流值越高)故在选用电容器要考虑实际纹波电流值<电容器的最大纹波电流值. 7.开关源元器件温升一般较高,通常选用105℃电容器,在特殊情况无法克服温升时可选用125℃电容器. 故选用47uF,400v, 105℃电解电容器可以满足要求(在实际使用时还考虑安装机构尺寸,体种大小,散热环境好坏等)

单端反激开关电源方案

反激式开关电源变压器的设计 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D ,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我设计变压器的方法。 设计变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V 到265V ,输出5V ,2A 的电源,开关频率是100KHZ 。 第一步,选定原边感应电压V OR 这个值是由自己来设定的,这个值就决定了电源的占空比。可能朋友们不理解什么是原边感应电压,为了便于理解,我们从下面图一所示的例子谈起,慢慢的来。 这是一个典型的单端反激式开关电源,大家再熟悉不过了,下面分析一下一个工作周期的工作情况,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的电流: I 升=V S *Ton/L 这三项分别是原边输入电压、开关开通时间和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的电流: I降=V OR *T OFF /L 这三项分别是原边感应电压(即放电电压)、开关管关断时间和电感量.在经过一个周期后,原边电感电流会回到原来的值,不可能会变,所以,有: V S *T ON /L=V OR *T OFF /L 即上升了的等于下降了的,懂吗?好懂吧!上式中可以用D来代替T ON ,用(1-D)来代替T OFF 。移项可得: 图一

正激变换器工作原理

正激变换器 实际应用中,由于电压等级变换、安全、系统串并联等原因,开关电源的输入输出往往需要电气隔离。在基本的非隔离DC DC-变换器中加入变压器,就可以派生出带隔离变压器的DC DC-变换器。例如,单端正激变换器就是有BUCK变换器派生出来的。 一工作原理 1 单管正激变换器 单端正激变换器是由BUCK变换器派生而来的。图(a1)为BUCK 变换器的原理图,将开关管右边插入一个隔离变压器,就可以得到图(a2)的单端正激变换器 图(a1)BUCK变换器

图(a2)单端正激变换器 BUCK 变换器工作原理: 电路进入平恒以后,由电感单个周期内充放电量相等, 由电感周期内充放电平恒可以得到: ?==T dt L u T L U 001

即: 可得: 单端正激变换器的工作原理和和BUCK 相似。 其工作状态如图如图(a3)所示: 图(a3)单端正激变换器工作状态 开关管Q 闭合。如图所示,当开关管Q 闭合时的工作状态如图a4所示, ? ? =- -ON ON t T t o o i dt U dt U U 0 )(i i ON o o o i OFF o ON o i DU U T t U T D U DT U U t U t U U == -=-=-)1()()(

图(a4) 根据图中同名端所示,可以知道变压器副边也流过电流,D1导通,D2截止,电感电压为正,变压器副边的电流线性上升。在此期间,电感电压为: O I L U U N N u -= 1 2 开关管Q 截止。开关管截止时,变压器副边没有电流流过,副边电流经反并联二极管D2续流,在此期间,电感电压为负,电流线性下降: O L U U -= 在稳定时,和BUCK 电路一样,电感电压在一个周期内积分为零,因此: ()S O S I T D U DT U U N N ?-?=??? ? ??-1120 得: I O DU N N U 1 2= 由此可见,单端正激变换器电压增益与开关导通占空比成正比,

反激变换器拓扑的电路设计

反激变换器拓扑的电路设计 1.介绍反激变换器拓扑在5W到150W的小功率场合中得到广泛的应用。这个拓扑的重要优点是在变换器的输出端不需要滤波电感,从而节约了成本,减小了体积。在以往一些中文参考资料的叙述中,由于同时涉及电路和磁路的设计,容易造成设计过程中的混乱,反激变换器电路本身的一些特性却没有得到应有的体现。在文中,介绍了反激变换器的基本工作原理,对不连续模式反激变换器的设计过程,各参数之间的决定关系作了简练而准确的描述。由于电路设计和磁路设计分别介绍,对读者掌握反激变换器的设计有很好的帮助。 2.不连续模式反激变换器的基本原理反激变换器在开关管导通期间,变压器储能,负载电流由输出滤波电容提供。在开关管关断期间,储存在变压器中的能量转换到负载,提供负载电流,同时给输出滤波电容充电,并补偿开关管导通期间损失的能量。 图1a是反激变换器的基本拓扑。图中有两个输出电路,一个主输出和一个从输出。负反馈闭合环路采样主输出电压V om。V om的采样值与参考值比较,输出的误差信号放大信号控制Q1的导通时间脉冲,使得V om的采样值在电网和负载变化时等于参考电压,从而稳定输出电压。从输出跟随主输出得到相应的调节。 电路的工作过程如下:当Q1导通,所有线圈的同名端(带)相对于非同名端(不带)是负极性。输出整流二极管D1和D2反向偏置,输出负载电流由输出滤波电容C1和C2提供。 在Q1导通期间,Np上施加了一个固定的电压(Vdc-1)(这里假设开关管的导通压降是1V),并且流过以斜率dI/dt=(Vdc-1)Lp线性上升的电流,这里Lp是原边的磁化电感。在导通时间的最后,原边电流上升到Ip=(Vdc-1)Ton/Lp。这个电流代表电感上储存的能量为 (1) 这里E单位焦耳,Lp单位亨,Ip单位安培 当Q1关断,磁性电感上的电流强制使所有线圈上的极性反向。假设这时没有从次级绕组,

2019年反激式开关电源设计大全

2019年反激式开关电源设计大全

前言 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它 的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消 副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负 载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水 泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整 个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电 流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分 量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝 数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很 小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。

可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压 器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没 有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向 磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁 感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动 势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开 关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下, 首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源 变压器设计的思考二中讨论。 反激式开关电源设计的思考二---气隙的作用 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁 芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢? 由全电流定律可知:

有源钳位正激变化器的工作原理

第2章有源箝位正激变换器的工作原理 2.1 有源箝位正激变换器拓扑的选择 单端正激变换器具有结构简单、工作可靠、成本低廉、输入输出电气隔离、易于多路输出等优点,因而被广泛应用在中小功率变换场合。但是它有一个固有缺点:在主开关管关断期间,必须附加一个复位电路,以实现高频变压器的磁复位,防止变压器磁芯饱和[36]。传统的磁复位技术包括采用第三个复位绕组技术、无损的LCD箝位技术以及RCD箝位技术。这三种复位技术虽然都有一定的优点,但是同时也存在一些缺陷[37-39]。 (1)第三复位绕组技术采用第三个复位绕组技术正激变换器的优点是技术比较成熟,变压器能量能够回馈给电网。 它存在的缺点是:第三复位绕组使得变压器的设计和制作比较复杂;变压器磁芯不是双向对称磁化,因而利用率较低;原边主开关管承受的电压应力很大。 (2)RCD箝位技术采用RCD箝位技术正激变换器的优点是电路结构比较简单,成本低廉。 它存在的缺点是:在磁复位过程中,磁化能量大部分都消耗在箝位网络中,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 (3) LCD箝位技术采用无损的LCD箝位技术正激变换器的优点是磁场能量能够全部回馈给电网,效率较高。 它存在的缺点是:在磁复位过程中,箝位网络的谐振电流峰值较大,增加了开关管的电流应力和通态损耗,因而效率较低;磁芯不是双向对称磁化,磁芯利用率较低。 而有源箝位正激变换器是在传统的正激式变换器的基础上,增加了由箝位电容和箝位开关管串联构成的有源箝位支路,虽然与传统的磁复位技术相比,有源箝位磁复位技术增加了一个箝位开关管,提高了变换器的成本,但是有源箝位磁复位技术有以下几个优点: (1)有源箝位正激变换器的占空比可以大于0.5,使得变压器的原副边匝

反激式开关电源设计的思考(一到五)

反激式开关电源设计的思考一 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步: 第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。 可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下,首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源变压器设计的思考二中讨论。 关键词:开关电源反激式磁芯饱和 反激式开关电源设计的思考二 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢?由全电流定律可知:

开关电源学习笔记(含推导公式)

《开关电源》笔记 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。

反激式变压器的设计

反激式变压器的设计 反激式变压器的工作与正激式变压器不同。正激式变压器两边的绕组是同时流过电流的,而反激式变压器先是通过一次绕组把能量存储在磁心材料中,一次侧关断后再把能量传到二次回路。因此,典型的变压器阻抗折算和一次、二次绕组匝数比关系不能在这里直接使用。这里的主要物理量是电压、时间、能量。 在进行设计时,在黑箱估计阶段,应先估计出电流的峰值。磁心尺寸和磁心材料也要选好。这时,为了变压器能可靠工作,就需要有气隙。 刚开始,在开关管导通时把一次绕组看作是一个电感器件,并满足式(24)。 (24) 把 Lpri移到左边,用Ton=Dmax/f 代到上式中,用已知的电源工作参数,通过式(25) 就可以算出一次最大电感 ——最大占空比(通常为50%或0.5)。 (25) 这个电感值是在输入最小工作电压时,电源输出仍能达到额定输出电压所允许选择的最大电感值。 在开关管导通的每个周期中,存储在磁心的能量为: (26) 要验证变压器最大连续输出的功率能否满足负载所需的最大功率,可以使用下式: (27)

所有磁心工作在单象限的场合,都要加气隙。气隙的长度(cm)可以用下式近似(CGS制(美 国)): (28a) 式中Ac——有效磁心面积,单位为; Bmax——最大磁通密度,单位为G(Wb/cm )。 在MKS系统(欧洲)中气隙的长度(m)为 (28b) 式中Ac——有效磁心面积,单位为; Bmax——最大磁通密度,单位为T(Wb/m )。 这只是估算的气隙长度,设计者应该选择具有最接近气隙长度的标准磁心型号。 磁心制造厂商为气隙长度提供了一个A L的参数。这参数是电感磁心绕上1000 匝后的数据(美 国)。根据设计好的电感值,绕线的匝数可以用式(29)计算确定。 (29) 式中 Lpri——一次电感量,单位为mH。 如果有些特殊的带有气隙的磁心材料没有提供A L。的值,可以使用式(30)。注意不要混淆CGS和MKS两种单位制(G和cm与T和m)。 (30)

单端反激式开关电源-主电路设计

摘要开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制、IC 和MOSFET构成。 本设计在大量前人设计开关电源的的基础上,以反激式电路的框架,用TOP244Y 构成12V、2.5A开关电源模块,通过整流桥输出到高频变压器一次侧,在二次侧经次级整流滤波输出。输出电压经采样与TL431稳压管内部基准电压进行比较,经过线性光偶合器PC817改变TOP244Y的占空比,从而使电路能直流稳压输出。 关键词开关电源;脉冲宽度调制控制;高频变压器;TOP244Y ABSTRACT Switching power supply is the use of modern electronic technology, control switching transistor turn-on and turn-off time ratio of the output voltage to maintain a stable power supply, switching power supply generally by the pulse width modulation (PWM) control,IC and MOSFET form. The design of a large number of predecessors in the switching power supply design based on the flyback circuit to the framework, using TOP244Y constitute a 12V, 2.5A switching power supply module, through the rectifier bridge output to high-frequency transformer primary side, the secondary side by the time level rectifier output. TL431 by sampling the output voltage regulator with an internal reference voltage comparison, after a linear optical coupler PC817 change TOP244Y duty cycle, so the circuit can be DC regulated output. Keyword Switching Power Supply;PWM Control;high frequency transformer;TOP244Y 目录 前言 (3) 1.反激式PWM高频开关电源的工作原理 (4)

正激式变压器开关电源工作原理

正激式变压器开关电源工作原理 正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。 1-6-1.正激式变压器开关电源工作原理 所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。 图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R 是负载电阻。 在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。 我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua ,而输出电压的幅值Up不变。因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。 图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。 正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。 反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对电源进行充

反激设计最牛笔记

【最牛笔记】大牛开关电源设计全过程笔记! 反激变换器设计笔记 1、概述 开关电源的设计是一份非常耗时费力的苦差事,需要不断地修正多个设计变量,直到性能达到设计目标为止。本文step-by-step 介绍反激变换器的设计步骤,并以一个6.5W 隔离双路输出的反激变换器设计为例,主控芯片采用NCP1015。 基本的反激变换器原理图如图1 所示,在需要对输入输出进行电气隔离的低功率(1W~60W)开关电源应用场合,反激变换器(Flyback Converter)是最常用的一种拓扑结构(Topology)。简单、可靠、低成本、易于实现是反激变换器突出的优点。 2、设计步骤

接下来,参考图2 所示的设计步骤,一步一步设计反激变换器 1.Step1:初始化系统参数 ------输入电压范围:Vinmin_AC 及Vinmax_AC ------电网频率:fline(国内为50Hz) ------输出功率:(等于各路输出功率之和) ------初步估计变换器效率:η(低压输出时,η取0.7~0.75,高压输出时,η取0.8~0.85)根据预估效率,估算输入功率: 对多路输出,定义KL(n)为第n 路输出功率与输出总功率的比值:

单路输出时,KL(n)=1. 2. Step2:确定输入电容Cbulk Cbulk 的取值与输入功率有关,通常,对于宽输入电压(85~265VAC),取2~3μF/W;对窄范围输入电压(176~265VAC),取1μF/W 即可,电容充电占空比Dch 一般取0.2 即可。

一般在整流后的最小电压Vinmin_DC 处设计反激变换器,可由Cbulk 计算Vinmin_DC: 3. Step3:确定最大占空比Dmax 反激变换器有两种运行模式:电感电流连续模式(CCM)和电感电流断续模式(DCM)。两种模式各有优缺点,相对而言,DCM 模式具有更好的开关特性,次级整流二极管零电流关断,因此不存在CCM 模式的二极管反向恢复的问题。此外,同功率等级下,由于DCM模式的变压器比CCM 模式存储的能量少,故DCM 模式的变压器尺寸更小。但是,相比较CCM 模式而言,DCM 模式使得初级电流的RMS 增大,这将会增大MOS 管的导通损耗,同时会增加次级输出电容的电流应力。因此,CCM 模式常被推荐使用在低压大电流输出的场合,DCM 模式常被推荐使用在高压小电流输出的场合。

(完整版)单端反激式开关电源的设计..

《电力电子技术》 课程设计报告 题目:单端反激式开关电源的设计学院:信息与控制工程学院

一、课程设计目的 (1)熟悉Power MosFET的使用; (2)熟悉磁性材料、磁性元件及其在电力电子电路中的使用; (3)增强设计、制作和调试电力电子电路的能力; 二、课程设计的要求与内容 本课程设计要求根据所提供的元器件设计并制作一个小功率 的反激式开关电源。我设计的是一个输入190V,输出9V/1.1A的反激式开关电源,要求画出必要的设计电路图,进行必要的电路参数计算,完成电路的焊接任务。有条件的可以用protel99 SE进行PCB电路板的印制。 三、设计原理 1、开关型稳压电源的电路结构 (1)按驱动方式分,有自激式和他激式。 (2)按DC/DC变换器的工作方式分:①单端正激式和反激式、推挽式、半桥式、全桥式等;②降压型、升压型和升降压型等。 (3)按电路组成分,有谐振型和非谐振型。 (4)按控制方式分:①脉冲宽度调制(PWM)式;②脉冲频率调制(PFM)式; ③PWM与PFM混合式。 DC/DC变换器用于开关电源时,很多情况下要求输入与输出间进行电隔离。这时必须采用变压器进行隔离,称为隔离变换器。这类变换器把直流电压或电流变换为高频方波电压或电流,经变压器升压或降压后,再经整流平滑滤波变为直流电压或电流。因此,这类变换器又称为逆变整流型变换器。 DC/DC变换器有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。下面重点分析隔离式单端反激转换电路,电路结构图如图1所示。

图1 电路结构图 电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,使VD导通,给输出电容C充电,同时负载R上也有电流I 流过。M1导通与截止的等效拓扑如图2所示。 图2 M1导通与截止的等效拓扑 2、反激变换器工作原理 基本反激变换器如图3所示。假设变压器和其他元器件均为理想元器件,稳态工作如下: (1)当有源开关Q导通时,变压器原边电流增加,会产生上正下负的感应电动势,从而在副边产生下正上负的感应电动势,如图 3(a)所示,无源开关VD1因反偏而截止,输出由电容C向负 载提供能量,而原边则从电源吸收能量,储存于磁路中。 (2)当有源开关Q截止时,由于变压器磁路中的磁通不能突变,所以在原边会感应出上负下正的感应电动势,故VD1正偏而导通,

相关文档
最新文档