抽象导函数不等式补位解法
抽象函数的解题方法与技巧窍门

抽象函数的解题方法与技巧摘要:抽象函数是没有具体的解析式,只给出它的一些特征、性质或一些特殊关系式的函数。
因而显得特别抽象。
所以解决抽象函数问题需要从函数的本质出发,考虑其定义,性质,加之解决抽象函数问题时常用的技巧——赋值法,换元法等。
尽可能使抽象函数变得不再抽象。
关键词:抽象函数;性质;求值;解析式;解题方法;技巧Problem-solving methods and skills of abstract functionsXue JieSchool of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract:: abstract function is not analytic type specific, given only the function characteristics, its nature or some special relationship. So it is especially abstract. So to solve the abstract function problems need from the view of function essence, considering its definition, nature, and solve the abstract function problems commonly used techniques -- assignment method, substitution method etc.. As far as possible to make the abstract function is no longer abstract.Keywords: abstract function; property; evaluation; analytic method; problem solving skills;1.提出问题的背景抽象函数问题是函数中的一类综合性较强的问题,这类问题通过对函数性质结构的代数表述,能够综合考查学生对于数学符号语言的理解和接受能力,考查对函数性质的代数推理和论证能力,考查学生的抽象思维和对知识的灵活运用能力,考查学生对于一般和特殊关系的认识,因而成为近几年高考命题的热点。
抽象函数常见题型解法

抽象函数常见题型解法抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。
由于抽象函数表现形式的抽象性,使得这类问题成为函数容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。
常见的目录:一、定义域问题 二、求值问题 三、值域问题 四、解析式问题 五、单调性问题 六、奇偶性问题七、周期性与对称性问题 八、综合问题一、定义域问题 --------多为简单函数与复合函数的定义域互求。
例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为11≤≤-x 。
解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。
评析:已知f(x)的定义域是A ,求()()x f ϕ的定义域问题,相当于解函数()x ϕ的不等式问题。
练习:已知函数f(x)的定义域是[]2,1- ,求函数()⎪⎪⎭⎫ ⎝⎛-x f 3log 21 的定义域。
例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。
[]11log ,13 评析: 已知函数()()x f ϕ的定义域是A ,求函数f(x)的定义域。
相当于求函数()x ϕ的值域。
二、求值问题-----抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。
怎样赋值?需要明确目标,细心研究,反复试验;练习: 1. f(x)的定义域为(0,)+∞,对任意正实数x,y 都有f(xy)=f(x)+f(y) 且f(4)=2 ,则f = (12) 2.的值是则且如果)2001(f )2000(f )5(f )6(f )3(f )4(f )1(f )2(f ,2)1(f ),y (f )x (f )y x (f ++++==+ 。
破解导数问题常用到的4种方法

第2课时破解导数问题常用到的4种方法构造函数法解决抽象不等式问题以抽象函数为背景、题设条件或所求结论中具有“f(x)±g(x),f(x)g(x),f(x)g(x)”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.类型一构造y=f(x)±g(x)型可导函数[例1]设奇函数f(x)是R上的可导函数,当x>0时有f′(x)+cos x<0,则当x≤0时,有()A.f(x)+sin x≥f(0)B.f(x)+sin x≤f(0)C.f(x)-sin x≥f(0) D.f(x)-sin x≤f(0)[解析]观察条件中“f′(x)+cos x”与选项中的式子“f(x)+sin x”,发现二者之间是导函数与原函数之间的关系,于是不妨令F(x)=f(x)+sin x,因为当x>0时,f′(x)+cos x<0,即F′(x)<0,所以F(x)在(0,+∞)上单调递减,又F(-x)=f(-x)+sin(-x)=-[f(x)+sin x]=-F(x),所以F(x)是R上的奇函数,且F(x)在(-∞,0)上单调递减,F(0)=0,并且当x≤0时有F(x)≥F(0),即f(x)+sin x≥f(0)+sin 0=f(0),故选A.[答案] A[题后悟通]当题设条件中存在或通过变形出现特征式“f′(x)±g′(x)”时,不妨联想、逆用“f′(x)±g′(x)=[f(x)±g(x)]′”.构造可导函数y=f(x)±g(x),然后利用该函数的性质巧妙地解决问题.类型二构造f(x)·g(x)型可导函数[例2]设函数f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(3)=0,则不等式f(x)g(x)>0的解集是()A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3)[解析]利用构造条件中“f′(x)g(x)+f(x)g′(x)”与待解不等式中“f(x)g(x)”两个代数式之间的关系,可构造函数F(x)=f(x)g(x),由题意可知,当x<0时,F′(x)>0,所以F(x)在(-∞,0)上单调递增.又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以F(x)是定义在R上的奇函数,从而F(x)在(0,+∞)上单调递增,而F(3)=f(3)g(3)=0,所以F(-3)=-F(3),结合图象可知不等式f(x)g(x)>0⇔F(x)>0的解集为(-3,0)∪(3,+∞),故选A.[答案] A[题后悟通]当题设条件中存在或通过变形出现特征式“f′(x)g(x)+f(x)g′(x)”时,可联想、逆用“f′(x)g(x)+f(x)g′(x)=[f(x)g(x)]′”,构造可导函数y=f(x)g(x),然后利用该函数的性质巧妙地解决问题.类型三构造f(x)g(x)型可导函数[例3] 已知定义在R 上函数f (x ),g (x )满足:对任意x ∈R ,都有f (x )>0,g (x )>0,且f ′(x )g (x )-f (x )g ′(x )<0.若a ,b ∈R +且a ≠b ,则有( ) A .f ⎝⎛⎭⎫a +b 2g ⎝⎛⎭⎫a +b 2>f (ab )g (ab ) B .f ⎝⎛⎭⎫a +b 2g ⎝⎛⎭⎫a +b 2<f (ab )g (ab ) C .f ⎝⎛⎭⎫a +b 2g (ab )>g ⎝⎛⎭⎫a +b 2f (ab ) D .f ⎝⎛⎭⎫a +b 2g (ab )<g ⎝⎛⎭⎫a +b 2f (ab )[解析] 根据条件中“f ′(x )g (x )-f (x )g ′(x )”的特征,可以构造函数F (x )=f (x )g (x ),因为f ′(x )g (x )-f (x )g ′(x )<0,所以F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2<0,F (x )在R 上单调递减.又因为a +b 2>ab ,所以F ⎝⎛⎭⎫a +b 2<F (ab ),即f ⎝⎛⎭⎫a +b 2g⎝⎛⎭⎫a +b 2<f (ab )g (ab ),所以f ⎝⎛⎭⎫a +b 2g (ab )<g ⎝⎛⎭⎫a +b 2·f (ab ),故选D.[答案] D [题后悟通]当题设条件中存在或通过变形出现特征式“f ′(x )g (x )-f (x )g ′(x )”时,可联想、逆用“f ′(x )g (x )-f (x )g ′(x )[g (x )]2=⎣⎡⎦⎤f (x )g (x )′”,构造可导函数y =f (x )g (x ),然后利用该函数的性质巧妙地解决问题. [方法技巧]构造函数解决导数问题常用模型(1)条件:f ′(x )>a (a ≠0):构造函数:h (x )=f (x )-ax . (2)条件:f ′(x )±g ′(x )>0:构造函数:h (x )=f (x )±g (x ). (3)条件:f ′(x )+f (x )>0:构造函数:h (x )=e x f (x ). (4)条件:f ′(x )-f (x )>0:构造函数:h (x )=f (x )e x. (5)条件:xf ′(x )+f (x )>0:构造函数:h (x )=xf (x ). (6)条件:xf ′(x )-f (x )>0:构造函数:h (x )=f (x )x. [针对训练]1.已知定义域为R 的函数f (x )的图象经过点(1,1),且对于任意x ∈R ,都有f ′(x )+2>0,则不等式f (log 2|3x -1|)<3-log2|3x-1|的解集为( )A .(-∞,0)∪(0,1)B .(0,+∞)C .(-1,0)∪(0,3)D .(-∞,1)解析:选A 根据条件中“f ′(x )+2”的特征,可以构造F (x )=f (x )+2x ,则F ′(x )=f ′(x )+2>0,故F (x )在定义域内单调递增,由f (1)=1,得F (1)=f (1)+2=3,因为由f (log 2|3x -1|)<3-log2|3x-1|可化为f (log 2|3x-1|)+2log 2|3x -1|<3,令t =log 2|3x -1|,则f (t )+2t <3.即F (t )<F (1),所以t <1.即log 2|3x -1|<1,从而0<|3x -1|<2,解得x <1且x ≠0,故选A.2.设定义在R 上的函数f (x )满足f ′(x )+f (x )=3x 2e -x ,且f (0)=0,则下列结论正确的是( ) A .f (x )在R 上单调递减 B .f (x )在R 上单调递增 C .f (x )在R 上有最大值 D .f (x )在R 上有最小值解析:选C 根据条件中“f ′(x )+f (x )”的特征,可以构造F (x )=e x f (x ),则有F ′(x )=e x [f ′(x )+f (x )]=e x ·3x 2e-x=3x 2,故F (x )=x 3+c (c为常数),所以f (x )=x 3+c e x ,又f (0)=0,所以c =0,f (x )=x 3e x .因为f ′(x )=3x 2-x 3e x,易知f (x )在区间(-∞,3]上单调递增,在[3,+∞)上单调递减,f (x )max =f (3)=27e 3,无最小值,故选C.3.已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x ),则不等式x 2f ⎝⎛⎭⎫1x -f (x )<0的解集为________. 解析:因为f (x )>xf ′(x ),所以xf ′(x )-f (x )<0,根据“xf ′(x )-f (x )”的特征,可以构造函数F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2<0,故F (x )在(0,+∞)上单调递减.又因为x >0,所以x 2f ⎝⎛⎭⎫1x -f (x )<0可化为xf ⎝⎛⎭⎫1x -f (x )x <0,即f ⎝⎛⎭⎫1x 1x -f (x )x <0,即f ⎝⎛⎭⎫1x 1x <f (x )x ,即F ⎝⎛⎭⎫1x <F (x ),所以⎩⎪⎨⎪⎧x >0,1x >x ,解得0<x <1,故不等式x 2f ⎝⎛⎭⎫1x -f (x )<0的解集为(0,1). 答案:(0,1)分类讨论法解决含参函数单调性问题函数与导数问题中往往含有变量或参数,这些变量或参数取不同值时会导致不同的结果,因而要对参数进行分类讨论.常见的有含参函数的单调性、含参函数的极值、最值等问题,解决时要分类讨论.分类讨论的原则是不重复、不遗漏,讨论的方法是逐类进行,还必须要注意综合讨论的结果,使解题步骤完整. [例1] 已知函数f (x )=x 3+ax 2+x +1. (1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝⎛⎭⎫-23,-13内是减函数,求a 的取值范围. [解] (1)因为f ′(x )=3x 2+2ax +1.①当Δ≤0⇒-3≤a ≤3,f ′(x )≥0,且在R 的任给一子区间上,f ′(x )不恒为0,所以f (x )在R 上递增; ②当Δ>0⇒a <-3或a > 3.由f ′(x )=0⇒x 1=-a -a 2-33,x 2=-a +a 2-33.所以f (x )1212(2)因为f (x )在⎝⎛⎭⎫-23,-13内是减函数,所以⎝⎛⎭⎫-23,-13⊆(x 1,x 2). 所以f ′(x )=3x 2+2ax +1≤0在⎝⎛⎭⎫-23,-13上恒成立. 所以2a ≥-3x -1x 在⎝⎛⎭⎫-23,-13上恒成立,所以a ≥2. [题后悟通]本题求导后,转化为一个二次型函数的含参问题,首先考虑二次三项式是否存在零点,即对判别式Δ进行Δ≤0和Δ>0两类讨论,可归纳为“有无实根判别式,两种情形需知晓”. [例2] 函数f (x )=2ax -a 2+1x 2+1,当a ≠0时,求f (x )的单调区间与极值.[解] 因为f ′(x )=-2ax 2+2(a 2-1)x +2a (x 2+1)2=-2a (x 2+1)2·(x -a )⎝⎛⎭⎫x +1a . (1)a >0时f (x )的极小值为f (-(2)当a <0时,f (x )的极小值为f (-综上,当a >0时,f (x )的递增区间是(-a -1,a ),递减区间是(-∞,-a -1),(a ,+∞),f (x )的极小值为f (-a-1)=-a 2,极大值为f (a )=1.当a <0时,f (x )的递增区间是(-∞,a ),(-a -1,+∞),递减区间是(a ,-a -1),f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1. [题后悟通]求导后,若导函数中的二次三项式能因式分解需考虑首项系数是否含有参数.若首项系数有参数,就按首项系数为零、为正、为负进行讨论.可归纳为“首项系数含参数,先证系数零正负”. [例3] 已知函数f (x )=ln(x +1)-axx +a (a >1),讨论f (x )的单调性.[解] f ′(x )=x (x -(a 2-2a ))(x +1)(x +a )2.①当a 2-2a <0时,即1<a <2,又a 2-2a =(a -1)2-1>-1.②当a =2时,f ′(x )=x (x +1)(x +2)2≥0,f (x )在(-1,+∞)上递增.③当a 2-2a >0时,即a >2时,综上,当1<a <2时,f (x )的递增区间是(-1,a 2-2a ),(0,+∞),递减区间是(a 2-2a,0);当a >2时,f (x )的递增区间是(-1,0),(a 2-2a ,+∞),递减区间是(0,a 2-2a );当a =2时,f (x )在(-1,+∞)上递增. [题后悟通]求导后且导函数可分解且首项系数无参数可求出f ′(x )的根后比较两根大小,注意两根是否在定义域内,可归纳为“首项系数无参数,根的大小定胜负.定义域,紧跟踪,两根是否在其中”.[方法技巧]利用分类讨论解决含参函数的单调性、极值、最值问题的思维流程[口诀记忆]导数取零把根找,先定有无后大小; 有无实根判别式,两种情形需知晓. 因式分解见两根,逻辑分类有区分; 首项系数含参数,先论系数零正负. 首项系数无参数,根的大小定胜负; 定义域,紧跟踪,两根是否在其中.[针对训练]4.已知函数f (x )=e x (e x -a )-a 2x ,讨论f (x )的单调性. 解:函数f (x )的定义域为(-∞,+∞), f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增. ②若a >0,则由f ′(x )=0,得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. ③若a <0,则由f ′(x )=0,得x =ln ⎝⎛⎭⎫-a2. 当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0; 当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减,在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增.转移法解决求解最值中计算困难问题[典例] 函数f (x )=e x -e -x -2x ,设g (x )=f (2x )-4bf (x ),当x >0时,g (x )>0,求b 的最大值.[解题观摩] 因为g (x )=e 2x -e-2x-4x -4b e x +4b e -x +8bx ,所以g ′(x )=2(e x +e -x -2)(e x +e -x -2b +2). 因为e x +e -x ≥2e x ·e -x =2.①当b ≤2时,g ′(x )≥0,所以g (x )在R 上递增. 所以当x >0时,g (x )>g (0)=0.②当b >2时,由e x +e -x -2b +2=0⇒x 1=ln(b -1+b 2-2b )>0,x 2=ln(b -1-b 2-2b )<0. 所以当0<x <ln(b -1+b 2-2b )时,g ′(x )<0. 所以g (ln(b -1+b 2-2b ))<g (0)=0,不合题意. 综上,b ≤2,∴b max =2. [题后悟通]在一些不等式证明或恒成立的问题中,通常需要判定函数极值或最值的正负.有时直接计算函数的极值涉及复杂的运算,甚至无法算出一个显性的数值.这时可以考虑不直接计算函数极值,通过计算另一个特殊点的函数值来确定函数极值或最值的正负,这个特殊点通常在解题过程中已出现过.如在本题②中要直接算出g (ln(b -1+b 2-2b ))很难,转移到计算g (0)就很简单,而且g (0)在解题过程中已出现过,这就是转移法.[口诀记忆]最值运算入逆境,位置挪移绕道行; 挪动位置到何处,解题过程曾途经.[针对训练]5.函数f (x )=1+x 1-x e -ax,对任意x ∈(0,1)恒有f (x )>1,求a 的取值范围.解:①当a ≤0时,因为x ∈(0,1), 所以1+x 1-x>1且e -ax >1,所以f (x )>1. 因为f ′(x )=a e -ax (1-x )2⎝⎛⎭⎫x 2-1+2a =0⇒x 2=1-2a . ②当0<a ≤2时,f ′(x )≥0,所以f (x )在(0,1)上递增, 所以f (x )>f (0)=1. ③当a >2时,f (x )在⎝⎛⎭⎫-1-2a , 1-2a 上递减.所以当x ∈⎣⎡⎭⎫0,1-2a 时,f (x )<f (0)=1,不合题意.综上a ≤2.二次求导法解决判断f ′(x )符号困难问题[例1] 若函数f (x )=sin xx,0<x 1<x 2<π.设a =f (x 1),b =f (x 2),试比较a ,b 的大小. [解题观摩] 由f (x )=sin xx ,得f ′(x )=x cos x -sin x x 2,设g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x -cos x =-x sin x .∵0<x <π,∴g ′(x )<0,即函数g (x )在(0,π)上是减函数. ∴g (x )<g (0)=0,因此f ′(x )<0,故函数f (x )在(0,π)是减函数, ∴当0<x 1<x 2<π,有f (x 1)>f (x 2),即a >b . [题后悟通]从本题解答来看,为了得到f (x )的单调性,须判断f ′(x )的符号,而f ′(x )=x cos x -sin xx 2的分母为正,只需判断分子x cos x -sin x 的符号,但很难直接判断,故可通过二次求导,判断出一次导函数的符号,并最终解决问题.[例2] 已知函数f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,其中e 为自然对数的底数. (1)求函数f (x )的图象在点(1,f (1))处的切线方程;(2)若g (x )≥f (x )对任意的x ∈(0,+∞)恒成立,求t 的取值范围. [解题观摩] (1)由f (x )=e x -x ln x ,知f ′(x )=e -ln x -1, 则f ′(1)=e -1,而f (1)=e ,则所求切线方程为y -e =(e -1)(x -1), 即y =(e -1)x +1.(2)∵f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,∴g (x )≥f (x )对任意的x ∈(0,+∞)恒成立等价于e x -tx 2+x -e x +x ln x ≥0对任意的x ∈(0,+∞)恒成立, 即t ≤e x +x -e x +x ln x x 2对任意的x ∈(0,+∞)恒成立.令F (x )=e x +x -e x +x ln xx 2,则F ′(x )=x e x +e x -2e x -x ln x x 3=1x 2⎝⎛⎭⎫e x +e -2e xx -ln x , 令G (x )=e x+e -2e xx -ln x ,则G ′(x )=e x-2(x e x -e x )x 2-1x =e x (x -1)2+e x -xx 2>0,对任意的x ∈(0,+∞)恒成立.∴G (x )=e x+e -2e xx -ln x 在(0,+∞)上单调递增,且G (1)=0,∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0,即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0, ∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴F (x )≥F (1)=1,∴t ≤1,即t 的取值范围是(-∞,1].[题后悟通]本题从题目形式来看,是极其常规的一道导数考题,第(2)问要求参数t 的范围问题,实际上是求F (x )=e x +x -e x +x ln x x 2极值问题,问题是F ′(x )=1x 2( e x+e -2e x x -ln x )这个方程求解不易,这时我们可以尝试对G (x )=x 2·F ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.[方法技巧]判定函数的单调性和求函数极值,都需要判定导函数的正负.有些导函数形式很复杂,它的正负很难直接判定,常常需要建立新函数再次求导,通过探求新函数的最值,以此确定导函数的正负.[针对训练]6.讨论函数f (x )=(x +1)ln x -x +1的单调性.解:由f (x )=(x +1)ln x -x +1,可知函数f (x )的定义域为(0,+∞).易得f ′(x )=ln x +x +1x -1=ln x +1x ,用f ′(x )去分析f (x )的单调性受阻.因此再对f ′(x )=ln x +1x 求导,得f ″(x )=1x -1x 2=x -1x 2.令f ″(x )=x -1x 2=0,得x =1.当0<x ≤1时,f ″(x )≤0,即f ′(x )=ln x +1x 在区间(0,1)上为减函数;当x >1时,f ″(x )>0,即f ′(x )=ln x +1x 在区间(1,+∞)上为增函数.因此f ′(x )min =f ′(1)=1>0,所以函数f (x )在(0,+∞)上单调递增.[课时跟踪检测]1.设定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论一定错误的是( ) A .f ⎝⎛⎭⎫1k <1k B .f ⎝⎛⎭⎫1k >1k -1 C .f ⎝⎛⎭⎫1k -1<1k -1D .f ⎝⎛⎭⎫1k -1>1k -1解析:选C 根据条件式f ′(x )>k 得f ′(x )-k >0,可以构造F (x )=f (x )-kx ,因为F ′(x )=f ′(x )-k >0,所以F (x )在R 上单调递增.又因为k >1,所以1k -1>0,从而F ⎝⎛⎭⎫1k -1>F (0),即f ⎝⎛⎭⎫1k -1-k k -1>-1,移项、整理得f ⎝⎛⎭⎫1k -1>1k -1,因此选项C 是错误的,故选C.2.已知f (x )是定义在R 上的增函数,其导函数为f ′(x ),且满足f (x )f ′(x )+x <1,则下列结论正确的是( )A .对于任意x ∈R ,f (x )<0B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1)时,f (x )<0D .当且仅当x ∈(1,+∞)时,f (x )>0解析:选A 因为函数f (x )在R 上单调递增,所以f ′(x )≥0,又因为f (x )f ′(x )+x <1,则f ′(x )≠0,综合可知f ′(x )>0.又因为f (x )f ′(x )+x <1,则f (x )+xf ′(x )<f ′(x ),即f (x )+(x -1)f ′(x )<0,根据“f (x )+(x -1)f ′(x )”的特征,构造函数F (x )=(x -1)f (x ),则F ′(x )<0,故函数F (x )在R 上单调递减,又F (1)=(1-1)f (1)=0,所以当x >1时,x -1>0,F (x )<0,故f (x )<0.又因为f (x )是定义在R 上的增函数,所以当x ≤1时,f (x )<0,因此对于任意x ∈R ,f (x )<0,故选A.3.设y =f (x )是(0,+∞)上的可导函数,f (1)=2,(x -1)[2f (x )+xf ′(x )]>0(x ≠1)恒成立.若曲线f (x )在点(1,2)处的切线为y =g (x ),且g (a )=2 018,则a 等于( ) A .-501 B .-502 C .-503D .-504解析:选C 由“2f (x )+xf ′(x )”联想到“2xf (x )+x 2f ′(x )”,可构造F (x )=x 2f (x )(x >0).由(x -1)[2f (x )+xf ′(x )]>0(x ≠1)可知,当x >1时,2f (x )+xf ′(x )>0,则F ′(x )=2xf (x )+x 2f ′(x )>0,故F (x )在(1,+∞)上单调递增;当0<x <1时,2f (x )+xf ′(x )<0,则F ′(x )=2xf (x )+x 2f ′(x )<0,故F (x )在(0,1)上单调递减,所以x =1为极值点,则F ′(1)=2×1×f (1)+12f ′(1)=2f (1)+f ′(1)=0.由f (1)=2可得f ′(1)=-4,曲线f (x )在点(1,2)处的切线为y -2=-4(x -1),即y =6-4x ,故g (x )=6-4x ,g (a )=6-4a =2 018,解得a =-503,故选C. 4.设f ′(x )是函数f (x )(x ∈R)的导函数,且满足xf ′(x )-2f (x )>0,若在△ABC 中,角C 为钝角,则( ) A .f (sin A )·sin 2B >f (sin B )·sin 2A B .f (sin A )·sin 2B <f (sin B )·sin 2A C .f (cos A )·sin 2B >f (sin B )·cos 2A D .f (cos A )·sin 2B <f (sin B )·cos 2A解析:选C 根据“xf ′(x )-2f (x )”的特征,可以构造函数F (x )=f (x )x 2,则有F ′(x )=x 2f ′(x )-2xf (x )x 4=x [xf ′(x )-2f (x )]x 4,所以当x >0时,F ′(x )>0,F (x )在(0,+∞)上单调递增.因为π2<C <π,所以0<A +B <π2,0<A <π2-B ,则有1>cos A >cos ⎝⎛⎭⎫π2-B =sin B >0,所以F (cos A )>F (sin B ),即f (cos A )cos 2A >f (sin B )sin 2B ,f (cos A )·sin 2B >f (sin B )·cos 2A ,故选C.5.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( ) A .e x 1f (x 2)>e x 2f (x 1) B .e x 1f (x 2)<e x 2f (x 1) C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定解析:选A 设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,由题意知g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即f (x 1)e x 1<f (x 2)ex 2,所以e x 1f (x 2)>e x 2f (x 1). 6.设定义在R 上的函数f (x )满足f (1)=2,f ′(x )<1,则不等式f (x 2)>x 2+1的解集为________.解析:由条件式f ′(x )<1得f ′(x )-1<0,待解不等式f (x 2)>x 2+1可化为f (x 2)-x 2-1>0,可以构造F (x )=f (x )-x -1,由于F ′(x )=f ′(x )-1<0,所以F (x )在R 上单调递减.又因为F (x 2)=f (x 2)-x 2-1>0=2-12-1=f (12)-12-1=F (12),所以x 2<12,解得-1<x <1,故不等式f (x 2)>x 2+1的解集为{x |-1<x <1}. 答案:{x |-1<x <1}7.若定义在R 上的函数f (x )满足f ′(x )+f (x )>2,f (0)=5,则不等式f (x )<3e x +2的解集为________.解析:因为f ′(x )+f (x )>2,所以f ′(x )+f (x )-2>0,不妨构造函数F (x )=e x f (x )-2e x .因为F ′(x )=e x [f ′(x )+f (x )-2]>0,所以F (x )在R 上单调递增.因为f (x )<3e x +2,所以e xf (x )-2e x <3,即F (x )<3,又因为F (0)=e 0f (0)-2e 0=3,所以F (x )<F (0),则x <0,故不等式f (x )<3e x +2的解集为(-∞,0).答案:(-∞,0)8.已知函数f (x )=x -2x +1-a ln x ,a >0,讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ≤0,即0<a ≤22时,对一切x >0都有f ′(x )≥0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.由f ′(x )>0,得0<x <x 1或x >x 2. 由f ′(x )<0,得x 1<x <x 2.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.9.设a ≥0,求证:当x >1时,恒有x >ln 2x -2a ln x +1. 证明:令g (x )=x -ln 2x +2a ln x -1(x >1), 所以g ′(x )=x -2ln x +2ax. 令u (x )=x -2ln x +2a ,所以u ′(x )=1-2x =x -2x .所以u (x )≥u (2)=2(1-ln 2+a 因为x >1,所以g (x )>g (1)=0,所以原不等式成立. 10.已知函数f (x )=ln(ax +1)+1-x1+x,x ≥0,其中a >0.若f (x )的最小值为1,求a 的取值范围. 解:因为f ′(x )=ax 2+a -2(ax +1)(x +1)2.①当a ≥2时,f ′(x )≥0,所以f (x )在[0,+∞)递增, 所以f (x )min =f (0)=1,满足题设条件. ②当0<a <2时,f (x )在⎣⎢⎡⎭⎪⎫0,2-a a 上递减,在( 2-aa ,+∞ )递增.所以f(x)min=f( 2-a a )<f(0)=1,不满足题设条件.综上,a≥2.。
巧构函数妙解抽象函数导数与不等式问题

巧构函数妙解抽象函数导数与不等式问题广东省汕头市澄海华侨中学(515800)潘敬贞山东省邹平县黄山中学(256200)韩景岗云南省昆明高新区第三中学(650500)唐明超摘要抽象函数导数与不等式问题具有高度的抽象性,处理该类问题对数学抽象、逻辑推理核心素养和数学综合能力的要求比较高.针对该类问题本文给出两种求解策略:构造特殊函数满足题目条件和根据题意构造辅助函数进行求解.根据常见的抽象函数导数与不等式问题进行归类,并针对每一类型题给出例题及两种求解策略,旨在与同行交流、探讨.关键词巧构函数;抽象函数;导数与不等式抽象函数导数不等式问题具有高度的抽象性,解决该类问题对数学抽象、逻辑推理等数学核心素养和数学综合能力的要求比较高,因此不少学生对其望而生畏.欲正面突破,求解难度较大,如果能够根据题设中已知的不等式或方程的式子结构特点,构造满足题目条件的特殊函数或构造一般的辅助函数,将抽象问题具体化、简单化,最后通过研究辅助函数的单调性、极值、最值等函数性质即可将问题顺利解决.本文将常见的抽象函数导数与不等式问题进行归类,针对每个类型题,给出相应例题,每道例题给出两种求解策略,并给出相应变式题供大家参考.类型题1已知函数y=f(x)(x∈R),且f(x0)=kx0+b,其导函数f′(x)<k(k>0)或f′(x)<k(k<0)或f′(x)>k(k>0)或k<f′(x)<0,求不等式f(x)<kx+b的解集.例1已知函数y=f(x)(x∈R),且f(1)=1,其导函数f′(x)<12,则不等式f(x)<x2+12的解集为()A.{x|−1<x<1}B.{x|x<1}C.{x|x<−1或x>1}D.{x|x>1}解析策略一:构造特殊函数.观察得知导函数小于某一个常数,故考虑构造一个常函数满足题目条件即可.令f(x)=1,则f′(x)=0满足题目条件,把f(x)=1代入f(x)<x2+12得1<x2+12,解得x>1,故选D.策略二:构造辅助函数.令g(x)=f(x)−x2−12,则g′(x)=f′(x)−12<0,所以g(x)在R上单调递减,又因为g(1)=f(1)−12−12=0,所以当x>1时满足g(x)<0,即f(x)<x2+12成立,故选D.评注对比以上两种解题策略,发现解答过程有很大的差别,策略一的解答过程更简洁,效率更高,达到小题小做的目的;策略二更具有一般性,适用范围更广一些,是处理一些不等式恒成立问题的一般方法,但是过程相比策略一更复杂一些.变式1已知函数y=f(x)(x∈R),且f(1)=2,其导函数f′(x)<1,则不等式f(x)<x+1的解集为()A.{x|x<−1}B.{x|−1<x<1}C.{x|x<−1或x>1}D.{x|x>1}解析策略一:构造特殊函数.令f(x)=2,则f′(x)=0满足题目条件,把f(1)=2代入f(x)<x+1得2<x+1,解得x>1,故选D.策略二:构造辅助函数.令g(x)=f(x)−x−1,则g′(x)=f′(x)−1<0,所以g(x)在R上单调递减,f(x)<x+1即g(x)<0,又因为g(1)=f(1)−1−1=0,所以当x>1时满足g(x)<0即f(x)<x+1成立,故选D.变式2已知函数y=f(x)(x∈R),且f(−1)=2,其导函数f′(x)>2,则不等式f(x)>2x+4的解集为.解析策略一:构造特殊函数.令f(x)=3x+5,则f′(x)=3满足题目条件,把f(x)=3x+5代入f(x)>2x+4得3x+5>2x+4,解得x>−1,故不等式f(x)>2x+4的解集为{x|x>−1}.策略二:构造辅助函数.令g(x)=f(x)−2x−4,则g′(x)=f′(x)−2>0,所以g(x)在R上单调递增,f(x)>2x+4即g(x)>0,又因为g(−1)=f(−1)−2(−1)−4=0,所以当x>−1时满足g(x)>0即f(x)>2x+4成立,故不等式的解集为{x|x>−1}.变式3已知函数y=f(x)(x∈R),且f(1)=1,其导函数f′(x)<12,则不等式f(lg2x)<lg2x2+12的解集为()A.(0,110)B.(10,+∞)C.(110,10) D.(0,110)∪(10,+∞)解析策略一:构造特殊函数.令f (x )=1,则f ′(x )=0满足题目条件,把f (x )=1代入f (x )<x 2+12得x >1,令lg 2x 2+12>1,解得x >10或0<x <110,故选D.策略二:构造辅助函数.令g (x )=f (x )−x 2−12,则g ′(x )=f ′(x )−12<0,所以g (x )在R 上单调递减,又因为g (1)=f (1)−12−12=0,所以当x >1时满足g (x )<0即f (x )<x 2+12成立,从而得lg 2x >1,解得x >10或0<x <110,故选D.变式4(2015年高考福建卷理科第12题)若定义在R 上的函数f (x )满足f (0)=−1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是()A.f (1k )<1kB.f (1k )>1k −1C.f (1k −1)<1k −1D.f (1k −1)>kk −1解析策略一:构造特殊函数.令f (x )=(k +m )x −1(k,m ∈R 且k >1,m >0),则f ′(x )=k +m >k 满足题目条件,当m =12时,f (1k )=k +12k−1=12k <1k 成立,故A 正确;当m =2时,f (1k )=k +2k −1=2k >1k −1有解,故B 正确;当m =1时,f (1k −1)=2k −1>k k −1有解,故D 正确,从而选C.策略二:构造辅助函数.设g (x )=f (x )−kx +1,且g ′(x )=f ′(x )−k >0,所以g (x )在R 上单调递增,又因为g (0)=f (0)+1=0,k >1,对选项一一判断,可得C 错,故选C.类型题2若f ′(x )+f (x )>1(或<1),则构造辅助函数g (x )=e xf (x ).例2已知函数y =f (x )(x ∈R ),且f (0)=2015,对于任意的x ∈R 都有f ′(x )+f (x )>1,则不等式e x f (x )>e x +2014的解集是()A.(2014,+∞)B.(−∞,0)∪(2014,+∞)C.(−∞,0)∪(0,+∞)D.(0,+∞)解析策略一:构造特殊函数.观察得知导函数小于某个常数,故考虑构造一个常函数满足题目条件即可,因此令f (x )=2015,则f ′(x )+f (x )=2015>1满足题目条件,把f (x )=2015代入e x f (x )>e x +2014得2015e x >e x +2014解得x >0,故选D.策略二:构造辅助函数.令g (x )=e x f (x )−e x ,则g ′(x )=e x (f (x )+f ′(x )−1)>0,所以g (x )在R 上单调递增,又因为g (0)=f (0)−1=2014,所以e x f (x )>e x +2014⇔g (x )>g (0),所以x >0,故选D.评注策略一的关键是找到满足f (0)=2015,对于任意的x ∈R 都有f ′(x )+f (x )>1的特殊函数,然后将特殊函数代入不等式e x f (x )>e x +2014即可求出答案;策略二根据类型题构造合适的辅助函数,并对其进行求导,判断导数的符号即可得出辅助函数的单调性,最后求出不等式的解集.变式1已知函数y =f (x )(x ∈R ),且f (0)=2,对于任意的x ∈R 都有f ′(x )+f (x )>1,则不等式e x f (x )>e x +1的解集是()A.{x |x <−1或0<x <1}B.{x |x <0}C.{x |x <−1或x >1}D.{x |x >0}解析策略一:构造特殊函数.令f (x )=2,则f ′(x )+f (x )=2>1满足题目条件,把f (x )=2代入e x f (x )>e x +1得2e x >e x +1,解得x >0,故选D.策略二:构造辅助函数.令g (x )=e x f (x )−e x ,则g ′(x )=e x (f (x )+f ′(x )−1)>0,所以g (x )在R 上单调递增,又因为g (0)=f (0)−1=1,所以e x f (x )>e x +1⇔g (x )>g (0),所以x >0,故选D.类型题3若f ′(x )−f (x )>0(或<0),则构造辅助函数g (x )=f (x )ex .例3已知函数y =f (x )(x ∈R ),满足导函数f ′(x )>f (x )恒成立,若x 1<x 2则e x 1f (x 2)与e x 2f (x 1)的大小关系为()A.e x 1f (x 2)>e x 2f (x 1)B.e x 1f (x 2)<e x 2f (x 1)C.e x 1f (x 2)=e x 2f (x 1)D.e x 1f (x 2)与e x 2f (x 1)的大小不确定解析策略一:构造特殊函数.令f (x )=−2,则f ′(x )>f (x )满足题目条件,所以e x 1f (x 2)=−2e x 1,e x 2f (x 1)=−2e x 2.因为y =e x 在R 上单调递增,x 1<x 2,所以e x 1<e x 2,所以−2e x 1>−2e x 2,所以e x 1f (x 2)>e x 2f (x 1),故选A.策略二:构造辅助函数.令g (x )=f (x )e x,则g ′(x )=f ′(x )−f (x )e x>0,所以g (x )在R 上单调递增,又因为x 1<x 2,所以g (x 1)<g (x 2),所以f (x 1)e x 1<f (x 2)e x 2,即e x 1f (x 2)>e x 2f (x 1),故选A.评注策略一在构造特殊函数时,若f ′(x )>f (x )一般令f (x )=c (c <0),若f ′(x )<f (x )一般令f (x )=c (c >0);策略二是根据题意直接构造辅助函数并对其进行求导、判断导数的符号,可得出辅助函数的单调性即可选出正确选项.变式1已知f (x )是可导函数,且f ′(x )<f (x )对于任意的x ∈R 恒成立,则()A.f (1)<ef (0),f (2016)>e 2016f (0)B.f (1)>ef (0),f (2016)>e 2016f (0)C.f (1)>ef (0),f (2016)<e 2016f (0)D.f (1)<ef (0),f (2016)<e 2016f (0)解析策略一:构造特殊函数.令f (x )=2,则f ′(x )<f (x )满足题目条件,所以f (1)=2,ef (0)=2e,f (2016)=2,e 2016f (0)=2e 2016,故选D.策略二:构造辅助函数.令g (x )=f (x )e x,则g ′(x )=f ′(x )−f (x )e x<0,所以g (x )在R 上单调递减,又因为,所以g (0)>g (1),所以f (0)e 0>f (1)e,即f (1)<ef (0),g (0)>g (2016),所以f (0)e 0>f (2016)e 2016,即f (2016)<e 2016f (0),故选D.变式2已知函数y =f (x )(x ∈R ),满足导函数f ′(x )>f (x ),则()A.3f (ln 2)>2f (ln 3) B.3f (ln 2)=2f (ln 3)C.3f (ln 2)<2f (ln 3)D.3f (ln 2)与2f (ln 3)的大小不确定解析策略一:构造特殊函数.令f (x )=−2,则f ′(x )<f (x )满足题目条件,所以3f (ln 2)=−6,2f (ln 3)=−4,所以3f (ln 2)<2f (ln 3),故选C.策略二:构造辅助函数.令g (x )=f (x )e x ,则g ′(x )=f ′(x )−f (x )e x>0,所以g (x )在R 上单调递增,又因为,所以g (ln 3)>g (ln 2),所以f (ln 3)e ln 3>f (ln 2)e ln 2,即2f (ln 3)>3f (ln 2),故选C.类型题4若xf ′(x )+nf (x )>0(或<0),则构造辅助函数g (x )=x n f (x ).例4已知函数y =f (x )定义在(−∞,0)上可导函数,导函数为f ′(x ),且对于任意的x ∈R 都有2f (x )+xf ′(x )>x 2,则不等式(x +2014)2f (x +2014)−4f (−2)>0的解集为.解析策略一:构造特殊函数.令f (x )=x 2,则2f (x )+xf ′(x )=2x 2+2x 2=4x 2>x 2满足题目条件,若(x +2014)2f (x +2014)−4f (−2)>0成立,即(x +2014)2(x +2014)2−4×4>0成立,所以x +2014>2或x +2014<−2,又因为x +2014<0,所以解得x <−2016,故不等式(x +2014)2f (x +2014)−4f (−2)>0的解集为{x |x <−2016}.策略二:构造辅助函数.令g (x )=x 2f (x )(x <0),则g ′(x )=2xf (x )+x 2f ′(x )=x (2f (x )+xf ′(x ))<x 3<0,所以g (x )在(−∞,0)上单调递减,因为(x +2014)2f (x +2014)−4f (−2)>0,即g (x +2014)>g (−2),所以x +2014<−2,即x <−2016,故不等式(x +2014)2f (x +2014)−4f (−2)>0的解集为{x |x <−2016}.评注策略一的关键是找到特殊函数满足2f (x )+xf ′(x )>x 2,然后求出f (x +2014)与f (−2)的值代入不等式即可,同时需要注意y =f (x )定义在(−∞,0)上,即x +2014<0这一重要条件.策略二根据题意直接构造辅助函数g (x )=x 2f (x )(x <0),并对其进行求导,判断导数的符号即可得出辅助函数g (x )=x 2f (x )(x <0)的单调性,最后求出不等式的解集.类型题5若xf ′(x )−f (x )>0(或<0),则构造辅助函数g (x )=f (x )x.例5(2015年高考全国II 卷理科第12题)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (−1)=0,当x >0时,xf ′(x )−f (x )<0,则使得f (x )>0成立的x 的取值范围是()A.(−∞,−1)∪(0,1)B.(−1,0)∪(1,+∞)C.(−∞,−1)∪(−1,0)D.(0,1)U (1,+∞)解析策略一:构造特殊函数.令f (x )=−x 3+x ,则xf ′(x )−f (x )=x (−3x 2+1)−(−x 3+x )=−2x 3,满足题目条件f (−1)=0,当x >0时,xf ′(x )−f (x )=−2x 3<0.由f (x )>0得−x 3+x >0,解得x <−1或0<x <1,故选A.策略二:构造辅助函数.令g (x )=f (x )x,则g ′(x )=xf ′(x )−f (x )x2,因为当x >0时,xf ′(x )−f (x )<0,所以当x >0时g ′(x )<0,所以g (x )在(0,+∞)上单调递减,因为函数f (x )是奇函数,所以g (x )=f (x )x是偶函数,所以g (x )在(−∞,0)上单调递增,又因为f (−1)=0,所以f (1)=−f (−1)=0,所以g (−1)=0,g (1)=0.所以当x <−1时,g (x )<0,即f (x )x <0,所以f (x )>0;当−1<x <0时,g (x )>0,即f (x )x >0,所以f (x )<0;当0<x <1时,g (x )>0,即f (x )x>0,所以f (x )>0;当x >1时,g (x )<0,即f (x )x<0,所以f (x )<0,故选A.评注策略一的关键是找到满足题目条件的特殊函数,首先f (x )是奇函数,且f (−1)=0,然后要满足xf ′(x )−f (x )<0,最后解不等式f (x )>0即可.同时需要注意y =f (x )定义在(−∞,0)上,即x +2014<0这一重要条件.策略二根据题意直接构造辅助函数g (x )=f (x )x,并对其进行求导、判断导数的符号即可得出辅助函数g (x )=f (x )x的单调性,由函数f (x )是奇函数,可得g (x )=f (x )x是偶函数,最后结合f (−1)=0画出辅助函数的草图,分析图像即可求出不等式的解集.变式1(2019广东化州一模)设定义在R 上的函数y =f (x )满足任意t ∈R 都有f (t +2)=1f (t ),且x ∈(0,4]时,f ′(x )>f (x )x,则6f (2017),3f (2018),2f (2019)的大小关系是()A.6f (2017)<3f (2018)<2f (2019)B.3f (2018)<6f (2017)<2f (2019)C.2f (2019)<3f (2018)<6f (2017)D.3f (2018)<2f (2019)<6f (2017)解析策略一:构造特殊函数.观察得知导函数小于某个一常数,故考虑构造一个常函数满足题目条件即可.令f (x )=−1,则f (x )满足题目条件,从而A.策略二:构造辅助函数.因为函数f (x )满足f (t +2)=1f (t ),可得f (t +4)=1f (t +2)=f (t ),所以f (x )是周期为4的函数.令g (x )=f (x )x,x ∈(0,4],则g ′(x )=xf ′(x )−f (x )x 2,因为x ∈(0,4]时,f ′(x )>f (x )x,所以g ′(x )>0,所以g (x )在(0,4]上单调递增,所以f (1)<f (2)2<f (3)3,又因为6f (2017)=6f (1),3f (2018)=3f (2),2f (2019)=2f (3),所以可得:6f (1)<3f (2)<2f (3),即6f (2017)<3f (2018)<2f (2019),故选A.类型题6若函数f (x )满足f ′(x )−kf (x )>0(或<0),则构造辅助函数g (x )=f (x )ekx .例6已知函数f (x )满足f (0)=2019,2f (x )−f ′(x )>0,则不等式f (x )>2019e 2x 的解集为()A.(0,+∞)B.(1,+∞)C.(−∞,0)D.(−∞,1)解析策略一:构造特殊函数.令f (x )=2019,则f (0)=2019,2f (x )−f ′(x )>0满足题目条件,f (x )>2019e 2x ⇔e 2x <1,解得x <0,故选C.策略二:构造辅助函数.令g (x )=f (x )e 2x,则g ′(x )=f ′(x )−2f (x )e 2x<0,所以g (x )在R 上单调递减,又因为g (0)=f (0)=2019,所以g ′(x )=f ′(x )−2f (x )e 2x<0,即e 2x <1,所以x <0,故选C.类比以上几种常见的抽象函数导数模型的处理基本策略,在高中阶段还可能会碰到以下模型,它们各有特点,但是又在一定程度上呈现着一般规律,需要在学习的过程中不断总结基本活动经验,多思多想,紧扣知识本源,基于导数基本求导法则探究并总结它们的内在联系,做到以不变应万变.规律1利用和差函数求导法则构造函数(1)若f ′(x )+g ′(x )>0(或<0),则构造辅助函数h (x )=f (x )+g (x );(2)若f ′(x )−g ′(x )>0(或<0),则构造辅助函数h (x )=f (x )−g (x );特别的,若f ′(x )>k (或<k )(k =0),则构造辅助函数g (x )=f (x )−kx .规律2利用积商函数求导法则构造函数(1)若f ′(x )g (x )+f (x )g ′(x )>0(或<0),则构造辅助函数g (x )=f (x )g (x );(2)若f ′(x )g (x )−f (x )g ′(x )>0(或<0),则构造辅助函数g (x )=f (x )g (x ).规律3常见的构造特殊函数的模型(1)若xf ′(x )+f (x )>0(或<0),则构造辅助函数g (x )=xf (x );(2)若xf ′(x )−nf (x )>0(或<0),则构造辅助函数g (x )=f (x )xn ;(3)若f ′(x )+kf (x )>0(或<0),则构造辅助函数g (x )=e kx f (x );(4)若f (x )+f ′(x )tan x >0(或<0),则构造辅助函数g (x )=sin xf (x );(5)若f (x )−f ′(x )tan x >0(或<0),则构造辅助函数g (x )=f (x )sin x;(6)若f ′(x )−f (x )tan x >0(或<0),则构造辅助函数g (x )=sin xf (x ).解决抽象函数导数不等式问题的关键是,构造出满足题目条件的特殊函数或根据题意构造出合适的辅助函数,但在解决有关解决抽象函数导数不等式问题的过程中,由于条件隐蔽、需要转化处理等,加大了解题难度.因此,只有熟练此类问题的解法,积累丰富的解题经验,全面提升自己的数学素养等,方可正确的构造出满足题目条件的特殊函数或构造出合适的辅助函数,最后顺利解决问题.。
第6讲 利用函数性质解决抽象函数不等式(解析版)

7.【2018年普通高校招生全国卷一】已知函数 ,任取两个不相等的正数 , ,总有
,对于任意的 ,总有 ,若 有两个不同的零点,则正实数 的取值范围为__________.
3.已知函数 的定义域为 , , 是偶函数,任意 满足 ,则不等式 的解集为()
A. B.
C. D.
【来源】(全国1卷)2021届高三5月卫冕联考数学(理)试题
【答案】D
【分析】
由 是偶函数,得函数图像关于直线 对称,结合单调性求解不等式即可得到结果.
【详解】
因为 是偶函数,所以 的图像关于直线 对称,
【详解】
令 , ,
则 ,
因为 , ,所以 ,所以 在 上为单调递减函数,
当 时,由 可知 ,不满足 ;
当 时, ,所以 可化为 ,即 ,
因为 在 上为单调递减函数,所以 ,
所以不等式 的解集为 .
故选:A
【变式演练3】定义在非零实数集上的函数 满足 ,且 是区间 上的递增函数.
(1)求 的值;
(2)求证: ;
【详解】
令 ,则 可得
所以 是 上的奇函数,
,
当 时, ,所以 ,
是 上单调递增,
所以 是 上单调递增,
因为 ,
由 可得 即 ,
由 是 上单调递增,可得 解得: ,
所以不等式 的解集为 ,
故选:A.
【点睛】
关键点点睛:本题解题的关键点是:构造函数 ,根据已知条件判断 的奇偶性和单调性,利用单调性解不等式.
【答案】A
导数中的不等式问题的解题策略

导数中的不等式问题的解题策略导数的综合问题是高考数学的压轴题之一,其包含信息量大,计算繁琐,对学生的思维能力要求较高,令很多同学望而生畏,造成严重失分。
而利用导数解决不等式问题更是压轴题中的压轴题,很多同学直接选择放弃,其实导数中的不等式问题并不像很多同学想象的那样,只是我们缺少对它的研究才觉得它高不可攀,下面我们通过具体的实例来分析导数中的不等式问题,解密其隐藏的规律轻松解决导数中的不等式问题。
1。
承上启下型在解决导数问题中的不等式时,经常会出现这样一类问题,其证明需要应用到前一问的结论。
由前一问的结论得到一个不等式,再根据其与要证明的不等式的关系进行证明,这类题在证明的过程中也经常应用到一些常见的结论,如:ln(1),1xx x e x +≤≥+等。
例1。
已知(),P x y 为函数1ln y x =+图象上一点,O 为坐标原点,记直线OP 的斜率()k f x =.(I )若函数()f x 在区间1,3m m ⎛⎫+ ⎪⎝⎭()0m >上存在极值,求实数m 的取值范围; (II)当 1x ≥时,不等式()1t f x x ≥+恒成立,求实数t 的取值范围; (III)求证()()()22*1!1n n n en N -+>+∈⎡⎤⎣⎦。
分析:本题考查了函数的极值、恒成立问题及不等式的证明。
(I)由极值的定义其极值点,极值点在1,3m m ⎛⎫+ ⎪⎝⎭内,从而确定m 的范围。
(II)分离参数t,利用导数求最值。
(III)利用第(II)问的结论结合所要证明的不等式的特点进行适当的放缩求解。
解:(Ⅰ)由题意()1ln x k f x x +==,0x > 所以()21ln ln x x f x x x '+⎛⎫'==- ⎪⎝⎭当01x <<时,()0f x '>;当1x >时,()0f x '<。
所以()f x 在()0,1上单调递增,在()1,+∞上单调递减. 故()f x 在1x =处取得极大值 因为函数()f x 在区间1,3m m ⎛⎫+ ⎪⎝⎭(其中0m >)上存在极值, 所以01113m m <<⎧⎪⎨+>⎪⎩得213m <<。
函数三要素

高中数学函数的三要素函数的三要素是指定义域、值域、对应法则。
每个要素里掌握的方向不一样。
定义域从具体函数和抽象函数两个方向去把握,值域掌握求值域的方法有哪些,对应法则也掌握的是方法有哪些,下面一一介绍。
一、定义域1、具体函数定义域,主要从以下几个方面去掌握:(1)整式函数的定义域是全体实数。
(2)分式函数的定义域是使得分母不为0的自变量的取值。
(3)含有偶次根式是被开放数大于等于0(4)对数函数是真数大于0(5)若f(x)是由几个式子构成的,则函数的定义域要使各个式子都有意义。
2、抽象函数的定义域,此部分只需记住2句话即可:(1)、凡是出现定义域三个字,统统是指的取值范围。
(2)、相同准则条件下,相同位置取值范围一样。
通俗一句话就是括号里的取值范围一样。
3、实际问题,既要使构建的函数解析式有意义,又要考虑实际问题的要求。
二、对应法则函数解析式的求法(1)待定系数法:若已知函数的类型,可用待定系数法(例如一次函数、二次函数)。
(2)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围。
(3)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的解析式。
(4)消去法(构造方程组法):已知f(x)与fx(1)或f(-x)之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x)。
三、求值域:求值域的方法:(1)分离常数法:适合分子分母都是一次函数。
(2)反解法。
(3)配方法。
(4)不等式法。
(5)单调性法。
(6)换元法。
(7)数形结合法。
(8)导数法。
利用导数证明或解决不等式问题

利用导数证明或解决不等式问题导数是微积分中的一个重要概念,它可以描述函数的变化率,并在解决不等式问题中起到重要的作用。
在这篇文章中,我们将探讨如何利用导数证明或解决不等式问题。
让我们回顾一下导数的定义。
对于一个函数f(x),在某一点x处的导数f'(x)表示函数在该点的斜率,即函数曲线在该点的切线的斜率。
导数可以用极限定义来求取,即f'(x) = lim(h->0) [f(x+h) - f(x)] / h利用导数证明不等式的方法有很多种,下面我们将分别介绍其中的几种常用方法。
第一种方法是利用导数的性质,结合数学推理和几何直观来证明不等式。
具体做法是首先求出函数f(x)在给定区间的导数f'(x),然后根据导数的符号来判断函数的增减性。
如果导数f'(x)在该区间上恒大于零,则说明函数在该区间上是单调递增的;如果导数f'(x)在该区间上恒小于零,则说明函数在该区间上是单调递减的。
通过分析函数的增减性,我们可以得到不等式的证明。
举个例子,假设需要证明函数f(x) = x^2 + 1在区间[0, +∞)上是单调递增的。
首先求出函数的导数f'(x) = 2x,然后根据导数的符号来判断函数的增减性。
在区间[0, +∞)上,导数f'(x)恒大于零,即2x > 0,所以函数f(x)在该区间上是单调递增的。
我们可以得出结论:对于任意的x1, x2 ∈ [0, +∞),当x1 < x2时,有f(x1) < f(x2),即 x1^2 + 1 < x2^2 + 1。
第二种方法是利用极值点来解决不等式问题。
我们知道,在函数f(x)的极值点处,导数f'(x)等于零。
如果我们能够找到函数的所有极值点,并根据导数的符号来判断函数在各个区间上的增减性,那么我们就可以得到不等式的解。
第三种方法是利用导数的性质和中值定理来解决不等式问题。
中值定理是微积分中的一个重要定理,它表明如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,那么存在一个点c,使得f'(c) = (f(b) - f(a)) / (b - a)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽象导函数不等式补位解法
教学目标:1.理解导数意义和求导方法 2.应用导数判断函数的单调性 3.应用导数解不等式的问题 4.判断函数极值求参数范围 教学重点难点:抽象导函数解不等式 教学过程:
抽象导函数是近年高考的热点,往往出现在小题的12题,很多考生只会用构造法,这要求我们必须非常熟悉两个函数的和、差、积、商的求导公式;另外一方面,由于此类问题往往是选填题,问题的结构往往有一定的暗示,在选填中,我们可以考虑用图像法,改函数解析式法,补位法来解不等式,这样可以直接秒杀,节省时间提高效率。
一.用单调性求解不等式
例1.(2015全国2卷12题)设)(,x f 是奇函数R x x f ∈),(的导函数,0)1(=-f ,
当0>x 时,,0)()(<-x f x xf ,
则0)(>x f 的x 的取值范围( )
例2.设)(x f 是偶函数,0)1(=f ,当0>x 时,0)()(,>+x xf x f ,则不等式0)(>x f 的解集
例3. 定义在(0,)2
π
上的函数()f x ,导数为'()f x ,且()'()tan f x f x x <,则下式恒成立
的是( )
()()4
3
π
π>
B.(1)2()sin16f f π
<
()()64f ππ> ()()63
f ππ
<
例4.(2011年辽宁)设()f x 的定义域为R ,2)1(=-f ,对任意R x ∈,'()f x >2,则
不等式42)(+>x x f 的解集
练习1. 设()f x 的定义域为R ,3)2(=f ,且()f x 在R 上的导函数满足'()f x -1<0,则
不等式1)(2
2+<x x f 的解集
练习2. 已知()f x 的定义域为R ,1)1(=f ,且()f x 在R 上的导函数满足2
1)(,
<x f ,则不等式2
1
2)(+<
x x f 的解集 练习3. 已知()f x 的定义域为R 的可导函数,满足)()(,x f x f <,且2)0(=f 则不等式
2(>x
e x
f )
的解集
例5.定义在R 上的函数()f x 满足2)()(x x f x f =+-,当x<0时,x x f <)(
,
,则不等式x x f x f +-≥+)1(2
1
)(的解集为
练习 4.已知函数()f x 满足2
()()f x f x x -+=,且在(0,)+∞上,'()f x x >,则不等式
(2)()22f a f a a --≥-的a 的取值范围( )
A. [1,)+∞
B. (,1]-∞
C. (,2]-∞
D. [2,)+∞
例6.设函数()f x 的定义域为R ,2)0(=f ,对任意的R x ∈,01)()(,>-+x f x f ,则不等式1)(+>x x e x f e 的解集
练习 5. ()f x 是定义在R 上的函数,1)()(,>+x f x f ,4)0(=f ,则不等式
3)(+>x x e x f e 的解集
例7.)()(,x f R x f 上的导函数在设,对任意R x ∈,满足)(4)(2x f x x f --=,当
)0,(-∞∈x 时,x x f 42
1
)(,<+
,若不等式24)()1(++-≤+x x f x f ,则实数x 的取值范围
练习6已知定义域为R 的奇函数()f x 的导函数为()'f x ,当0x ≠时
()()'0f x f x x
+
>,若1122a f ⎛⎫= ⎪⎝⎭,()22b f =,11ln ln 22c f ⎛⎫
= ⎪⎝⎭,则( )
A. a b c >>
B. a c b >>
C. c b a >>
D. b a c >>
例8(改例1)已知定义域为R 的奇函数()f x 的导函数为()
'f x ,当
<x 时,有
)()(,<+x f x xf 且
)2(=-f ,则不等式
)(<x xf 的解集
练习7.设()f x 是R 上的奇函数,0)2(=f ,当0
>x 时,0)
()(2
,<-x x f x xf ,则不等式
)(2>x f x 的解集
练习8(改练习7)设()f x 是R 上的奇函数,0)1(=f ,当0>x 时,0)
()(2,>-x
x f x xf ,则不等式0
)(>x f x 的解集
例9,设()f x 是R 上的奇函数,且
)1-(=f ,当
>x 时
)(2)()1(,2<-+x xf x f x ,
则0
)(>x f 的解集
练习9.设()
f x 是)
,(0-∞上的函数,且)(2)(2,x f x x xf +>,则不等式
)
2()2014()2014(42-+>+f x x f 的解集
练习10.定义+R 上的函数)(x f 满足2
1
)(,1)1(,<
=x f f ,则不等式2
1
2lg )(lg 22
+<x x f 的解集
二,判断极值求参数范围
例1.(2014年全国2卷12题)设m
x
x f πsin
3)(=,若存在)x f (的极值点0x ,满
足2202
]([0m x f x <+),则m 的取值范围( )
例2.设函数)x f (满足x e x xf x f x x =+)(2)(,
2
,且8
)2(2
e f =,则0>x 时)(x f ( )
A .有极大值无极小值 B.有极小值无极大值
C.既有极大值又有极小值
D.既无极大值也无极小值
练习1.设)x f (的定义域为 R, )()(,x f x f <恒成立,则 ( )
A. )0()2(2f e f > )0()2016(2016f e f >
B. )0()2(2f e f > )0()2016(2016f e f <
C. )0()2(2f e f < )0()2016(2016f e f <
D. )0()2(2f e f < )0()2016(2016f e f > 练习2.若()f x 的导函数为()'f x ,且满足()()'f x f x <,则()3f 与()30e f 的大小关系是( )
A. ()()330f e f >
B. ()()330f e f =
C. ()()330f e f <
D. 不能确定
附函数构造总结 关系式为“加”型
(1)'()()0f x f x +≥ 构造[()]'['()()]x
x
e f x e f x f x =+ (2)'()()0xf x f x +≥ 构造[()]''()()xf x xf x f x =+ (3)'()()0xf x nf x +≥ 构造1
1[()]''()()['()()]n
n
n n x f x x f x nx f x x xf x nf x --=+=+
(注意对x 的符号进行讨论) 关系式为“减”型
(1)'()()0f x f x -≥ 构造2()'()()'()()
[]'()x x x x x
f x f x e f x e f x f x e e e
--== (2)'()()0xf x f x -≥ 构造2
()'()()
[
]'f x xf x f x x x -= (3)'()()0xf x nf x -≥ 构造121
()'()()'()()
[]'()n n n n n f x x f x nx f x xf x nf x x x x
-+--==。