人教版七年级数学《乘方》教案

合集下载

七年级(人教版)集体备课教学设计:1.5.1《乘方(1)》

七年级(人教版)集体备课教学设计:1.5.1《乘方(1)》

七年级(人教版)集体备课教学设计:1.5.1《乘方(1)》一. 教材分析《乘方(1)》这一节的内容,主要让学生理解乘方的概念,掌握有理数的乘方运算法则。

通过学习乘方,学生能更好地理解数学中的指数运算,为以后学习更高级的数学知识打下基础。

教材通过丰富的例子,引导学生探究乘方的规律,让学生在实践中掌握乘方运算。

二. 学情分析七年级的学生已经掌握了有理数的乘法运算,但对乘方的概念和运算法则可能还比较陌生。

因此,在教学过程中,教师需要善于启发学生利用已有的知识经验来理解乘方,同时要注重培养学生的观察、思考、动手能力。

三. 教学目标1.让学生理解乘方的概念,掌握有理数的乘方运算法则。

2.培养学生观察、思考、动手的能力,提高学生解决实际问题的能力。

3.培养学生合作学习、积极探究的精神。

四. 教学重难点1.乘方的概念。

2.有理数的乘方运算法则。

3.运用乘方解决实际问题。

五. 教学方法1.启发式教学:通过提问、讨论等方式,引导学生主动探究乘方的规律。

2.实践性教学:让学生通过动手操作,加深对乘方概念和运算法则的理解。

3.案例教学:选取生活中的实际问题,让学生运用乘方知识解决。

六. 教学准备1.教案、PPT等教学资料。

2.练习题、黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)教师通过一个简单的例子,如“2的三次方等于多少?”引发学生对乘方的兴趣,然后简要介绍乘方的概念。

2.呈现(10分钟)教师利用PPT展示乘方的定义、运算法则等知识点,同时引导学生回顾有理数的乘法运算,从而自然地过渡到乘方运算。

3.操练(10分钟)教师设计一些练习题,让学生分组讨论、解答。

教师在这个过程中要注意引导学生运用已有的知识经验来理解乘方,并及时给予反馈、指导。

4.巩固(10分钟)教师继续设计一些练习题,让学生独立完成。

完成后,教师选取部分学生的答案进行讲解,巩固学生对乘方的理解和运用。

5.拓展(10分钟)教师引导学生思考:乘方在实际生活中有哪些应用?让学生举例说明,从而提高学生解决实际问题的能力。

人教版数学七年级上册1.5乘方教学设计

人教版数学七年级上册1.5乘方教学设计
3.合作交流,提高解决问题的能力
在教学过程中,组织学生进行小组合作学习,让学生在交流讨论中分享解题方法,提高学生团队协作和沟通能力。同时,鼓励学生从不同角度思考问题,培养学生的创新思维。
4.实践活动,巩固乘方知识
设计富有挑战性的实践活动,让学生在实际操作中运用乘方知识解决实际问题。例如,让学生计算学校操场的面积、体积等,使学生在解决问题的过程中,巩固乘方知识,提高数学素养。
人教版数学七年级上册1.5乘方教学设计
一、教学目标
(一)知识与技能
1.理解乘方的定义,知道乘方表示的是几个相同因数相乘的运算。
2.学会乘方的表示方法,掌握底数、指数和幂的概念,并能够正确书写乘方表达式。
3.掌握乘方的运算规则,能够进行同底数乘方、幂的乘法和除法、幂的乘方等运算。
4.能够运用乘方解决实际问题,如计算面积、体积、速度等。
3.部分学生可能在运用乘方解决实际问题时,难以找到问题与乘方知识之间的联系。
因此,在教学过程中,教师应关注学生的个体差异,提供充足的直观材料和实际例题,引导学生通过观察、思考、实践等方式,逐步理解并掌握乘方知识。同时,鼓励学生积极参与课堂讨论,发挥学生的主观能动性,提高乘方运算的熟练度和解决问题的能力。
(3)解决实际问题:
小华家的鱼缸是一个长方体,长为10dm,宽为6dm,高为8dm。计算鱼缸的体积。2.选做:(1)计算以下各题:
(4^2)^(1/2)、(9^1/2)^2
(2)思考题:
请思考乘方在生活中的其他应用,并举例说明。
3.探究题:
(1)探究乘方的性质:
a.同底数乘方的性质;
b.幂的乘方性质;
学生在进入七年级阶段,已经具备了一定的数学基础,掌握了整数、小数的四则运算以及简单的方程知识。在此基础上,乘方作为一项新的运算概念,对于学生来说既是挑战也是机遇。他们对于新鲜事物充满好奇心,但可能在学习过程中遇到以下困难:

七年级(人教版)集体备课教学设计:1.5.1《乘方(2)》

七年级(人教版)集体备课教学设计:1.5.1《乘方(2)》

七年级(人教版)集体备课教学设计:1.5.1《乘方(2)》一. 教材分析《乘方(2)》这一节内容位于人教版七年级数学第一章第五节,本节课主要让学生掌握有理数的乘方及其运算法则。

通过本节课的学习,学生能够理解乘方的概念,熟练运用乘方运算法则进行计算,为后续学习幂的运算、指数函数等知识打下基础。

二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数学符号和概念有一定的理解。

但部分学生在理解和运用乘方概念及运算法则方面可能会遇到困难。

因此,在教学过程中,需要关注学生的学习差异,针对性地进行引导和辅导。

三. 教学目标1.知识与技能:使学生理解乘方的概念,掌握有理数的乘方运算法则,能熟练运用乘方进行计算。

2.过程与方法:通过观察、讨论、探究等方法,培养学生发现问题、分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:乘方的概念,有理数的乘方运算法则。

2.难点:乘方运算法则在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入乘方概念,激发学生学习兴趣。

2.合作学习法:学生进行小组讨论,共同探究乘方运算法则。

3.引导发现法:教师引导学生发现乘方运算法则,培养学生独立思考的能力。

六. 教学准备1.教学课件:制作乘方概念、运算法则的相关课件。

2.教学素材:准备一些有关乘方的例子和练习题。

3.教学工具:黑板、粉笔、多媒体设备等。

七. 教学过程1.导入(5分钟)利用生活实例,如计算墙壁上挂钟的指针相遇次数,引导学生思考如何用数学方法表示这个问题。

进而引入乘方概念。

2.呈现(10分钟)呈现乘方的定义和运算法则,引导学生观察和思考乘方的特点。

3.操练(10分钟)让学生进行一些有关乘方的计算练习,教师及时给予指导和反馈。

4.巩固(10分钟)学生分组讨论,共同探究乘方运算法则在实际问题中的应用。

教师参与讨论,给予解答和指导。

七年级上册数学人教版教案《乘方》

七年级上册数学人教版教案《乘方》

1.5 有理数的乘方1.5.1 乘方第1课时乘方的概念及性质一、教学目标1.理解有理数乘方的意义.2.理解乘方、幂、底数等概念.3.有理数乘方的运算及幂的符号法则.二、教学重难点重点理解有理数乘方的意义,会进行有理数乘方的运算.难点有理数乘方的运算及幂的符号法则.重难点解读1.有理数的乘方,是求几个相同因数的积的运算,所以乘方是特殊的有理数的乘法运算,因而乘方结果的符号与有理数乘法中积的符号的确定方法是一样的.2.在乘方运算时,底数是负数或分数,要先用括号将底数括上,再在其右上角写上指数.负号在括号内,参与乘方的运算,负号在括号外,不参与乘方的运算,先保留,到最后再化简.3.有理数乘方的运算:(1)正数的任何次幂都是正数;(2)负数的偶次幂是正数,负数的奇次幂是负数;(3)0的任何正整数次幂都是0;(4)1的任何次幂都是1,-1的偶次幂是1,奇次幂是-1.三、教学过程活动1 旧知回顾1.回顾有理数的乘法法则.2.算式(-2.5)×0.37×1.25×(-4)×(-8)的值为.活动2 探究新知1.教材第41页内容.提出问题:(1)2个2相乘记作22,3个2相乘记作23,n 个2相乘记作多少?(2)引入负数后,4个-2相乘记作多少?-24和(-2)4一样吗?为什么?(3)求n 个相同因数的积的运算,叫做什么?它们的结果又叫做什么?(4)在a n 中,a 和n 分别叫做什么?2.教材第42页 思考.活动3 知识归纳1.一般地,n 个相同的因数a 相乘,即n a aa ⋅⋅个,记作 a n .在a n 中,a 叫做 底数 ,n 叫做 指数 .求n 个相同因数的积的运算,叫做 乘方 ,乘方的结果叫做 幂 .注意:乘方和幂的区别2.负数的奇次幂是 负 数,负数的偶次幂是 正 数;正数的任何次幂都是 正 数,0的任何正整数次幂都是 0 .活动4 典例赏析及练习例1 将下列各式写成乘方(即幂)的形式:(1)(-5)×(-5)×(-5)×(-5)×(-5)= (-5)5 ;(2)(-14)×(-14)×(-14)×(-14)= (14)4. 例2 (-3)4表示( B )A .-3个4相乘B .4个-3相乘C .3个4相乘D .4个3相乘例3 计算:(1)(-2)5;(2)(-0.4)4;(-75)3. 【答案】(-2)5=(-2)×(-2)×(-2)×(-2)×(-2)=-32.(2)(-0.4)4=(-0.4)×(-0.4)×(-0.4)×(-0.4)=0.025 6.(3)(-75)3=(-75)×(-75)×(-75)=-343125. 例4 用计算器计算下列各式:(1)(-11)5= -161 051 ;(2)(-9)6= 531 441 .练习:1.下列运算正确的是( B )A .-24=16B .-(-2)2=-4C .(-31)2=-91D .-(-21)2=-41 2.下列各组数:-52和(-5)2;(-3)3和-33;-(-2)3和-23;323和(32)3;02 022和 02 021;(-1)2n 和(-1)2 020,其中相等的有( B )A .2组B .3组C .4组D .5组3.35 cm 比较接近于( D )A .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高(2.26 m )D .一张纸的厚度活动5 课堂小结1.求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n 中,a 叫做底数,n 叫做指数.当把a n 看作a 的n 次方的结果时,也可读作“a 的n 次幂”.2.负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0.四、作业布置与教学反思第2课时 有理数的混合运算一、教学目标1.确定有理数混合运算的顺序.2.熟练地进行有理数的混合运算.二、教学重难点重点有理数的混合运算顺序的确定和符号的处理.难点利用运算律进行有理数的混合运算.重难点解读1.进行有理数的混合运算,应注意运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.括号内的运算同样按上述运算顺序进行.算式中有带分数,一般把带分数化为假分数,算式中有小数的,把小数化为分数.2.在进行有理数的混合运算时,若能利用运算律,就利用运算律计算.三、教学过程活动1 旧知回顾1.回顾有理数的加减乘除混合运算的顺序和乘方的相关概念.2.计算:(1)|-512|÷(13-12)×(-111);(2)(-2)3,(-12)3,(-13)3. 活动2 探究新知 观察3+50÷22×(15)-1. 提出问题:(1)式子中有哪几种运算?(2)如何计算这个式子?它的运算顺序是什么?(3)计算过程中,可以运用运算律吗?活动3 知识归纳有理数的混合运算顺序:(1)先 乘方 ,再 乘除 ,最后 加减 ;(2)同级运算,从 左 到 右 进行;(3)如有括号,先做括号内的运算,按 小 括号、 中 括号、 大 括号依次进行.活动4 典例赏析及练习例1 (1)-14-61×[2-(-3)2];(2)(-3)2-(211)3×92-6÷|-32|. 【答案】解:(1)原式=-1-61×(2-9)=-1-61×(-7)=-1+67=61. (2)原式=9-827×92-6÷32=9-43-6×23=9-43-9=-43.例2观察下列等式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62.请你在观察后用你得出的规律填空:(1)48×52+4= 502;(2)n×(n+4)+4= (n+2)2(n为正整数).练习:1.下列计算中:①74-22÷70=70÷70=1;②2×32=(2×3)2=62=36;③-6÷(2×3)=-6÷2×3=-3×3=-9;④223-(-2)×(14-12)=49-(12-1)=49+12=1718.错误的有( D )A.1个B.2个C.3个D.4个2.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中第100个数是( A )A.9 999 B.10 000 C.10 001 D.10 002 3.x,y是有理数,且满足|x-1|=0,|y+3|=0,求x2-3xy+2y2的值.解:因为x,y是有理数,且满足|x-1|=0,|y+3|=0,所以x=1,y=-3.x2-3xy+2y2=12-3×1×(-3)+2×(-3)2=1+9+18=28.活动5 课堂小结1.有理数混合运算的顺序.2.有理数的混合运算.四、作业布置与教学反思。

最新人教版初中七年级上册数学《乘方》教案

最新人教版初中七年级上册数学《乘方》教案

1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.理解有理数乘方的意义;2.掌握有理数乘方的运算;(重点、难点)3.能利用数学知识解决实际问题,激发学生学习的兴趣,树立解决问题的信心.一、情境导入古希腊数学家阿基米德与国王下棋,国王输了,问阿基米德要什么奖赏.阿基米德对国王说:“我只要在棋盘上第一格放一颗麦子,在第二个格子中放进前一个格子的两倍,每一个格子中都是前一个格子中麦子数量的两倍,一直将棋盘每一个格子摆满.”国王觉得很容易就可以满足他的要求,于是就同意了.但很快国王就发现,即使将国库所有的粮食都给他也不够.你们知道这是为什么吗?二、合作探究 探究点一:乘方的意义把下列各式写成乘方的形式,并指出底数和指数各是什么. (1)(-3.14)×(-3.14)×(-3.14)×(-3.14)×(-3.14); (2)25×25×25×25×25×25; (3)m ·m ·m ·…·m,\s \up 6(,2n 个m )).解析:首先化成幂的形式,再指出底数和指数各是什么.解:(1)(-3.14)×(-3.14)×(-3.14)×(-3.14)×(-3.14)=(-3.14)5,其中底数是-3.14,指数是5;(2)25×25×25×25×25×25=(25)6,其中底数是25,指数是6; (3)m ·m ·m ·…·m,\s \up 6(,2n 个m ))=m 2n,其中底数是m ,指数是2n .方法总结:乘方是一种特殊的乘法运算,幂是乘方的结果,当底数是负数或分数时,要先用括号将底数括起来再写指数.探究点二:乘方的运算计算:(1)-(-3)3;(2)(-34)2;(3)(-23)3;(4)(-1).解析:可根据乘方的意义,先把乘方转化为乘法,再根据乘法的运算法则来计算;或者先用符号法则来确定幂的符号,再用乘法求幂的绝对值.解:(1)-(-3)3=-(-33)=33=3×3×3=27; (2)(-34)2=34×34=916;(3)(-23)3=-(23×23×23)=-827;(4)(-1)=-1.方法总结:乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;-1的奇数次幂是-1,-1的偶数次幂是1.探究点三:与乘方有关的探求规律问题有一张厚度为0.1毫米的纸,将它对折一次后,厚度为2×0.1毫米,求: (1)对折2次后,厚度为多少毫米? (2)对折20次后,厚度为多少毫米?解析:要求每次对折后纸的厚度,应先求出每次折叠后纸的层数,再用每张的厚度乘以纸的层数即可.纸的对折次数与纸的层数关系如下:对折次数 1 2 3 4 … 20 纸的层数2 4 8 16 (21)222324…220解:(1)∵有一张厚度为0.1毫米的纸,将它对折一次后,厚度为2×0.1毫米, ∴对折2次的厚度是0.1×22毫米. 答:对折2次的厚度是0.4毫米;(2)对折20次的厚度是0.1×220毫米=104857.6(毫米), 答:对折20次的厚度是104857.6毫米.方法总结:解决本题的关键是将纸的层数化为幂的形式,找出这些幂与对折次数的对应关系. 三、板书设计1.有理数乘方的意义2.有理数乘方运算的符号法则:负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.3.与乘方有关的探求规律问题本节教学以故事引入,提出问题,引导学生积极思考,并归结出答案,由答案的表现形式向学生提出问题,激发学生的求知欲望.在教师的启发诱导下自然过度到新知识的学习,接着层层设问,引出乘方以及与乘方有关的概念,采用归纳类比的方法把新旧知识联系起来,既有利于复习巩固旧知识,又有利于新知识的理解和掌握.作者留言:非常感谢!您浏览到此文档。

人教新版(2024)七年级数学上册-2.3.1 乘方(教案)

人教新版(2024)七年级数学上册-2.3.1 乘方(教案)

2.3.1乘方第1课时【教学目标】1.理解有理数的乘方的意义,了解幂、底数、指数等相关概念.2.掌握有理数乘方运算的符号法则及相关性质,熟练进行有理数的乘方运算.3.经历动手操作和自主探究的过程,进一步探索乘方的意义.【教学重点难点】重点:有理数的乘方的意义及其计算.难点:有理数乘方符号法则及相关性质的理解与应用.【教学过程】一、创设情境1.师:珠穆朗玛峰是世界的最高峰,它的海拔高度是8 848.86米.把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰的高度.这是真的吗?生:不可能吧?师:通过今天的学习,我们就可以计算对折30次后的高度是多少,看一看能不能超过珠穆朗玛峰的高度.2.在小学我们已经学习过a·a,记作a2,读作a的平方(或a的二次方);a·a·a记作a3,读作a的立方(或a的三次方);那么,a·a·a·a可以记作什么?读作什么?a·a·a·a·a呢?a ·a ·a …a ⏟ n 个(n 是正整数)呢?二、探究归纳探究点1:乘方的意义问题1:某种细胞每30分钟便由一个分裂成两个.经过3小时这种细胞由1个能分裂成多少个?提示:这个细胞分裂一次可得多少个细胞?分裂两次呢?分裂三次呢?四次呢?那么,3小时共分裂了多少次?有多少个细胞?要点归纳:一般地,n 个相同的乘数a 相乘,即a ·a ·a …a ⏟ n 个,记作a n .例如,2×2×2=23;(-2)(-2)(-2)(-2)=(-2)4.这种求n 个相同乘数的积的运算,叫作乘方(involution),乘方的结果叫作幂(power).在a n 中,a 叫作底数,n 叫作指数,a n 读作a 的n 次方,a n 看作是a 的n 次方的结果时,也可读作a 的n 次幂.一个数可以看作这个数本身的一次方,例如8就是81,指数1通常省略不写.问题2:23和32一样吗?(-2)4与-24一样吗?为什么?追问:(23)2与223结果相等吗? 温馨提示:①负数的乘方,在书写时一定要把整个负数(连同符号)用小括号括起来,这样便于辨认底数;②分数的乘方,在书写时一定要把整个分数用小括号括起来.探究点2:乘方运算的符号法则例1:计算:)3.(1)(-4)3. (2)(-2)4. (3)(-23思考:根据例1的计算,你发现负数的幂的正负与指数有什么关系?再看下面的问题:问题3:不计算下列各式,你能确定其结果的符号吗?从计算结果中,你能得到什么规律?(1)(-2)51;(2)(-2)50;(3)250;(4)251;(5)(-1)2 022;(6)(-1)2 023;(7)02 022;(8)12 022.要点归纳:负数的奇次幂是负数,负数的偶次幂是正数.正数的任何正整数次幂都是正数,0的任何正整数次幂都是0.任何数的偶次幂都是非负数.1的任何次幂都是1.-1的偶次幂是1,-1的奇次幂是-1.例2:教材P52【例2】用计算器计算(-8)5和(-3)6.【问题解决】0.1×230=(mm)≈(m).计算器计算:230=1 073 741 8240.1×230=107 374 182.4(mm)≈107 374(m).现在同学们相信老师开始说的是真的了吧.探究点3:乘方的运算例3:计算:).(1)(-3)2×(-23(2)-23×(-32).(3)64÷(-2)5.(4)(-4)3÷(-1)200+2×(-3)4.思考:通过以上计算,对于乘除和乘方的混合运算,你觉得有怎样的运算顺序?要点归纳:先算乘方,后算乘除;如果遇到括号就先进行括号里的运算.三、检测反馈1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的数是 ( )A.-|-3|3B.-(-3)3C.(-3)3D.-332.对任意实数a ,下列各式一定不成立的是 ( )A.a 2=(-a )2B.a 3=(-a )3C.|a |=|-a |D.a 2≥0 3.填空:(1)(-3)2的底数是 ,指数是 ,结果是 .(2)-(-3)2的底数是 ,指数是 ,结果是 .(3)-33的底数是 ,指数是 ,结果是 .4.填空:(1)(-2)3= ;(-12)3= ;(-213)3= ;03= . (2)(-1)2n = ;(-1)2n +1= ;(-10)2n = ;(-10)2n +1= .(3)-12= ;-143= ;-324= ;-(-23)3= .四、本课小结1.求几个相同乘数的积的运算,叫作乘方.(1)正数的任何次幂都是正数.(2)负数的奇次幂是负数,负数的偶次幂是正数.(3)0的任何正整数次幂都是0.2.注意:(-a)n与-a n二者的区别及联系.(b a )n与b na之间的区别.五、布置作业P52练习、P56习题2.3T1,2六、板书设计七、教学反思本节课从现实生活中的具体情境出发,具体地阐述了乘方的概念,在教学过程中应用了“自主—合作—讨论—探究—交流”的教学方法,教师始终发挥着学生的主体作用,教师只是起到一个“引导—帮助—点拨”的作用.学生在小结时,对容易出现的错误概括得非常全面,甚至把课堂上没出现的错误也进行了举例,如:62不能写成2×6.可见,本节课学生对新知的掌握情况较好,教师有效地完成了教学目标.第2课时【教学目标】1.利用有理数的乘方进行运算及有理数的混合运算.能利用运算律的情况下灵活运用运算律,体会简便运算和提高计算能力.2.经历动手操作和自主探究的过程,进一步积累对乘方意义的理解,发展计算能力.【教学重点难点】重点:有理数的混合运算顺序、运算法则和运算律的应用. 难点:应用有理数的混合运算解决规律探究和实际应用问题.【教学过程】一、创设情境1.复习巩固:求n 个相同乘数的积的运算,叫作乘方.(1)正数的任何次幂都是正数.(2)负数的奇次幂是负数,负数的偶次幂是正数.(3)零的任何正整数次幂都是零.(4)(-a )n 与-a n 二者有什么区别及联系?(b a )n 与b n a 的意义相同吗? 2.情境导入:有一块蛋糕,一只小猴子第一天吃了一半,第二天吃了剩下的一半,第三天又吃了剩下的一半,这样继续下去,则第五天这只小猴子吃了这块蛋糕的 ( )A.125B.1-125C.124D.1-124 【解析】选A .因为小猴子第一天吃了12;第二天吃了(1-12)×12=14=122;第三天又吃了14×12=18=123;…;所以第五天这只小猴子吃了这块蛋糕的125.二、探究归纳探究点1:有理数的混合运算思考:下面的式子含有哪几种运算?先算什么,后算什么?30+5÷22×(-15)-1 要点归纳:做有理数的混合运算时,应注意以下运算顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.4.如有绝对值,先算绝对值.【典例剖析】 例1:教材P53【例3】师生活动:教师给学生两个完整的板书示范,边讲解边解释法则和运算顺序,让学生感受有理数的运算顺序和法则,加深对有理数的运算的理解与掌握.同时让学生养成运算每一步都说出依据的习惯.注意提示学生的易错点:①由于对乘方运算不熟练而出现的错误,如33=9,-42=(-4)2等;②运算顺序上的错误;③计算的熟练程度,有些学生常将自己计算出错归结为马虎、大意等,其实这是一个熟练程度的问题. 例2:计算:(-3)2×[-23+(-59) ].方法1:原式=9×(-119)=-11. 方法2:原式=9×(-23)+9×(-59)=-6+(-5)=-11.【解题反思】对比两种方法,感受运算律的应用.【针对性训练】P54练习探究点2:数字规律探究【典例剖析】例3:观察下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,…③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.【解题导引】1.观察①中各数与2存在什么关系?2.第②行的数字与第①行相同位置的数字之间有什么关系?3.你能看出第③行与第①行相同位置的数字之间的关系吗?教师引导学生时注意观察方法要点:本题是以第①行为标准进行探讨的,因此应当先观察第①行的特征,如果不考虑符号的话,第①行的数都是2的正整数次幂,由此再进行下一步的讨论.【针对性训练】1.观察下列各式:1=21-11+2=22-11+2+22=23-1猜想:1+2+22+23+…+263=?若n 是正整数,那么1+2+22+…+2n =? 思考2:若a 为有理数,则a 2是什么数? 若(a +3)2+|b -2|=0.则a b +1= .三、检测反馈1.计算:(1)3×(-2)3-4×(-3)2+8.(2)(-1)10×22+(-2)3÷2.2.计算:(1)-32-(-2)2.(2)-14-16×[2-(-3)2]. (3)(-10)2+[(-4)2-(3+32)×2].(4)(-1)4-(1-0.5)×13×[2-(-2)2]. (5)-0.52+14-|-22-4|-(-112)3×49. (6)(-2)3-3×[(-4)2+2]-(-3)2÷(-2).(7)(-1)10×2+(-2)3÷4.(8)(-5)3-3×(-12)4. 四、本课小结1.复习乘方的有关概念;2.乘方运算的规律等;3.乘方与加、减、乘、除的混合运算;运算顺序是:先乘方,再乘除,最后加减,有括号的先算括号内的.五、布置作业P56习题2.3T3六、板书设计七、教学反思对于有理数的混合运算,关键要把握两点:第一,运算问题;第二,符号问题.如果这两点弄清楚了,对于有理数的混合运算也就基本掌握了.上完这节课后,我感到有优点,也有不足.为了进一步搞好教学,特对这节课做了以下反思总结:首先让学生自主学习弄清有理数的混合运算顺序:加减是第一级运算;乘除是第二级运算;乘方和开方是第三级运算;以及有括号时先算括号里面的.然后给同学们几个混合运算,并提出:你能快速说出它的运算顺序吗?然后让学生在组内采取你答我评的方式,使学生既掌握了运算顺序,又培养了学生的语言表达能力,最后再进行运算,比一比谁的计算更快更准确.同时培养了学生的参与意识和竞争意识,并且板演,让学生互阅互评,这样,不仅能更好地激发学生的学习兴趣和热情,更能培养学生发现问题、解决问题的能力.。

人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,主要介绍有理数的乘方。

教材通过简单的实例让学生感受乘方的意义,理解乘方的运算规则,为后续学习指数幂、对数等概念打下基础。

本节课的内容在数学体系中起到承前启后的作用,既巩固了有理数的基本运算,又为高中阶段更深入的数学学习奠定基础。

二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数学符号和概念有一定的理解。

但乘方作为一个新的概念,需要学生从新的角度去理解。

学生在学习乘方时,可能会对乘方的意义和运算规则产生困惑,因此需要通过实例和练习来帮助学生理解和掌握。

三. 教学目标1.让学生理解乘方的意义,掌握有理数的乘方运算规则。

2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

3.激发学生对数学的兴趣,培养学生的自主学习能力。

四. 教学重难点1.乘方的意义和运算规则。

2.乘方在实际问题中的应用。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过问题引导学生的思考,实例让学生理解乘方的意义,小组合作学习法培养学生的团队协作能力。

六. 教学准备1.教学PPT。

2.实例和练习题。

3.小组合作学习的相关材料。

七. 教学过程1.导入(5分钟)通过一个实际问题引出乘方的概念:某商品打八折出售,即按原价的80%出售,问原价为100元的商品现价是多少?让学生思考如何用数学方法表示这个问题。

2.呈现(15分钟)讲解乘方的意义和运算规则,通过PPT展示实例,让学生理解乘方的概念。

例如,2的3次方表示2乘以自己3次,即2×2×2=8。

3.操练(15分钟)让学生进行乘方运算的练习,教师巡回指导,解答学生的疑问。

可以设置一些有趣的题目,让学生在练习中感受乘方的魅力。

4.巩固(10分钟)通过一些实际问题,让学生运用乘方解决实际问题。

例如,一个班级有30人,每次活动参加的人数是上一次的90%,问第三次活动参加的人数是多少?5.拓展(5分钟)讲解乘方在实际生活中的应用,如科学计算、金融理财等。

人教版七年级数学上册:1.5.1《乘方》教案

人教版七年级数学上册:1.5.1《乘方》教案

人教版七年级数学上册:1.5.1《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册的一个重要内容,主要介绍了乘方的概念、性质和运算法则。

通过学习乘方,学生能够理解和掌握乘方的基本概念,了解乘方的意义和作用,以及运用乘方解决实际问题。

二. 学情分析学生在学习乘方之前,已经掌握了有理数的乘法、除法和加减法等基础知识,具备了一定的数学思维能力。

但部分学生可能对乘方的概念和性质理解不够深入,需要通过实例和练习来进一步巩固。

三. 教学目标1.理解乘方的概念,掌握乘方的性质和运算法则。

2.能够运用乘方解决实际问题,提高解决问题的能力。

3.培养学生的数学思维能力和逻辑推理能力。

四. 教学重难点1.乘方的概念和性质。

2.乘方的运算法则。

3.运用乘方解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究乘方的概念和性质。

2.运用实例和练习,让学生通过实际操作来理解和掌握乘方的运算法则。

3.采用小组合作学习,培养学生的团队协作能力和沟通能力。

六. 教学准备1.教学PPT或黑板。

2.教学素材和练习题。

3.学生分组名单。

七. 教学过程1.导入(5分钟)利用PPT或黑板,展示一些生活中的实际问题,如温度、速度等,让学生感受到乘方的意义和作用。

引导学生思考:这些问题能否用乘法来解决?如何用乘法来解决?2.呈现(10分钟)介绍乘方的概念,讲解乘方的意义和作用。

通过实例和练习,让学生理解和掌握乘方的运算法则。

如:2^3 = 2 × 2 × 2 = 83.操练(10分钟)让学生进行乘方运算练习,巩固所学知识。

可以设置一些难度不同的练习题,让学生根据自己的实际情况选择适合自己的题目。

4.巩固(10分钟)通过小组合作学习,让学生运用乘方解决实际问题。

可以设置一些开放性问题,让学生分组讨论和解答。

5.拓展(10分钟)引导学生思考:乘方在实际生活中有哪些应用?如何运用乘方解决更复杂的问题?可以让学生举例说明,并进行讲解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的乘方目录乘方科学记数法、近似数乘方[教学目标]1.知识与能力:掌握有理数混合运算的法则,并能熟练地进行有理数加、减、乘、除、乘方的混合运算.2.过程与方法:在运算过程中能合理使用运算律简化运算,体会运算律的作用.3.情感、态度与价值观:在探索有理数的乘方法则的过程中培养学生的探索精神,同时培养学生良好的学习习惯.[教学重点]有理数的乘方法则的发现和有理数的混合运算.[教学难点]乘方法则的发现,混合运算中最佳运算方法的寻找.[教学方法]设置情境——探索发现——拓展应用.[教学过程]一、创设情境,自主探索,引入本节课所要研究的问题问题 1:几个不等于 0 的有理数相乘,积的符号是由什么决定的?学生活动设计:学生回忆,发现积的符号是由负因数的个数决定的.当负因数的个数为偶数时,积的符号为正;当负因数的个数为奇数时,积的符号为负.问题 2:我们可以如何表示 2×2×…×2(10 个 2)?你能举出类似的例子吗?学生活动设计:学生根据小学学过的知识,可以举出一些例子,如正方形的面积 a ·a ,读作 a 的平方(二次方),即 a 2;立方体的体积 a ·a ·a ,读作a 的立方(或 a 的三次方),即 a 3.所以可以猜想2×2×…×2(10 个 2)=210,表示 10 个 2 相乘.根据学生所举的例子的共同特点(求几个相同因数乘积的运算),由学生自主进行归纳相关概念.学生归纳(必要时教师进行启发补充等): n 个相同的因数相乘,即 a ·a ·…·a (n 个 a )记作 a n ,读作 a 的 n 次方.求 n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂,在 a n中,a 叫做底数,n 叫做指数,当 a n 看作一个结果时,也可以读作 a 的 n 次幂.注意:一个数可以看成是这个数本身的一次方.也可以这样来理解:指数就是指相乘的因数的个数,指数是 1,就是指只有一个因数.二、知识应用,巩固新知,引出新的要探究的问题例 1 计算:(1)(-4)3; (2)(-2)4 ;(3)⎪⎭⎫ ⎝⎛-214 ; (4)(-1)7.学生活动设计:乘方就是几个相同因数的积的运算,故可用有理数的乘法运算来进行乘方运算.〔解答〕略.注意:表示负数的乘方,书写时一定要把整个负数(连同符号)用括号括起来.例如,(-4)×(-4)×(-4)=(-4)3.例 2 不计算下列各式的值,你能确定其符号吗?你能得到什么规律吗?说出你的根据.(1)(-2)51 ; (2)(-2)50 ; (3)250 ; (4)251 .教师活动设计:这两个例题主要是让学生探索乘方的符号法则,刚开始一部分学生可能会找不到解决问题的思路,此时教师可以让学生进行充分的思考,必要时可以让学生进行适当的讨论,然后进行交流,学生在交流中逐步得到正确的结果,从而归纳出一定的规律.注意: (-2)51 和(-2)50 的区别.学生活动设计:学生独立思考,在独立思考的基础上进行交流,发现可以利用“几个不是零的有理数的积的符号”法则来确定乘方的符号.(-2)51表示有 51 个 -2 相乘,当然有奇数个(51 个)负因数,于是结果的符号应是负号;而(-2)50 表示有 50 个 -2 相乘,当然有偶数个(50 个)负因数,结果的符号应是正号.归纳:(1)正数的任何次幂是正数;(2)负数的偶次幂是正数,负数的奇次幂是负数;(3)0 的任何次幂等于零, l 的任何次幂等于 1.从而可得有理数乘方的符号法则.例 3 解决下列问题,你能从中发现什么?(1) 2×32 和(2×3)2 有什么区别?各等于什么?(2) 32 与 23 有什么区别?各等于什么?(3) -34 和(-3)4 有什么区别?各等于什么?学生活动设计:(1) 2×32 表示 2 与 3 的平方之积,等于 18;而(2×3)2 表示 2 与 3 的积的平方,等于 36.注意:没有括号时,应按先乘方,再乘除,最后加减的顺序计算.(2) 32 表示 3 的 2 次幂;而 23 表示 2 的 3 次幂,它们的结果分别是 9 和 8.(3) -34 表示 4 个 3 相乘的积的相反数或 3 的 4 次幂的相反数;而(-3)4 则表示 4 个(-3)相乘的积或(-3)的 4 次幂,结果分别是 -81 和 81.因此,不要出现 -34=(-3)4 这样的错误.归纳:在进行有理数的乘方运算时要辨别清楚底数和指数以及符号问题,避免出错.三、综合应用知识,培养学生综合计算的能力以及灵活运用知识的能力计算下列各题,请总结在进行有理数的混合运算时,运算顺序应是怎样的?(1)3+22×() ; (2)-72+2×(-3)2+(-6)÷⎪⎭⎫ ⎝⎛-312; (3)(-3)2×⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-9532.教师活动设计:(1)鼓励学生独立完成;(2)指定三名学生在黑板上演示.教师评析:(1)强调运算顺序;(2)注意-72=-(7×7)=-49;(3)第(3)小题还可以运用乘法分配律来计算.学生活动设计:学生独立解决上述问题,在解决问题的过程中进一步熟练法则,同时体会在运算过程中应该遵循一定的运算顺序,从而归纳出有理数混合运算时的运算顺序:1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.巩固练习:(1) 8+(-3)2×(-2); (2) 100÷(-2)2-(-2)÷⎪⎭⎫ ⎝⎛-32; (3) -34÷241×⎪⎭⎫ ⎝⎛-322. 四、拓展创新,引导学生解决新的问题,培养学生思维的灵活性和深刻性问题 1:观察下列三行数:-2,4,-8,16,-32,64,…; ① 0,6,-6,18,-30,66,…;②-1,2,-4,8, -16,32,…;③(1) 第①行数按什么规律排列?(2) 第②③行数与第①行数分别有什么关系?(3) 取每行数的第 10 个数,计算这三个数的和.学生活动设计:让学生充分观察、独立思考(必要时可以让学生进行小组讨论).对于第一个问题,通过观察可以发现第①行数的排列规律为:-2,(-2)2,(-2)3,(-2)4,….对于第二个问题,对比①②两行中位置对应的数,可以发现第②行数是第①行相应的数加2,即-2+2,(-2)2+2,(-2)3+2,….对比①③两行中位置对应的数,可以发现第③行数是第①行相应的数的倍,即-2×,(-2)2×,(-2)3×,(-2)4×,….对于第三个问题,可以发现每行数中的第 10 个数的和是(-2)10+[(-2)10+2]+(-2)10×=2 562.〔解答〕略.问题 2:有一张厚度是毫米的纸,将它对折 1 次后,厚度为 2×毫米.(1)对折 2 次后,厚度为多少毫米?(2)对折 20 次后,厚度为多少毫米?学生活动设计:探索:根据题意容易得到当对折两次后纸的厚度为 4×=22×(毫米).当考虑对折 20 次的厚度时,给学生充分思考的时间和空间,必要时可以让学生进行讨论,学生可以发现(必要时老师可以提醒、启发)对折 3 次时厚度变为 8×=23×(毫米),对折 4 次是16×=24×(毫米),对折 5 次是 32×=25×(毫米)……归纳:对折 20 次应是 220×(毫米).教师活动设计:在上述问题的解决过程中,教师要做好参与者、引导者的角色,当学生没有思路时应适时地引导和启发,以此开拓学生的思路,帮助学生更好地解决问题.五、小结与作业小结:1. 有理数的乘方;2. 乘方的符号法则;3. 有理数的混合运算.作业:练习,习题第 1、3、11 题.科学记数法、近似数[教学目标]1.知识与能力:(1)借助身边的熟悉的事物体会大数,并能够用科学记数法表示大数;(2)初步理解和掌握近似数和有效数字的概念,并由给出的一个四舍五入得到的近似数,能够准确地确定它的精确度和有效数字.2.过程与方法:(1)体会科学记数法的优点以及化繁为简的思想;(2)通过对实际问题的讨论,体验数学服务于生活的感受.3.情感、态度与价值观:正确使用科学记数法表示数,培养一丝不苟的精神,在学习中获得成功的体验.[教学重点]会用科学记数法表示大数;能够确定一个近似数的精确度和有效数字.[教学难点]正确地使用科学记数法表示数;准确地说出一个数的精确度和有效数字.[教学方法]主体性探索.[教学过程]一、创设问题情境,激发学生的学习兴趣,引出本节课所要讨论的内容问题 1:(出示教材第 54 页的图片和数据)现实中我们可能会遇到一些比较大的数,比如太阳的半径、光的速度、目前的世界人口等,像这样相当大的数写起来会比较困难,因此要采取特殊的记数方法——科学记数法.体验 1:观察下列各等式,你能发现什么?102=100,103=1 000,104=10 000,….学生发现:一般地,10 的n 次幂等于10······0(1 后有n 个 0),所以可以用 10 的乘方来表示大数.体验 2:根据以上发现,如何用含有 10 的乘方的形式表示 567 000 000?学生发现:表示方法可以有多种,此时教师提出一种:567 000 000=×108,读作乘以 10 的 8 次方(幂),这样不仅可以使书写简单,同时还便于读数.教师归纳科学记数法的定义:把一个大于 10 的数表示成a×10n 的形式(其中a是整数数位只有一位的数,n 是正整数),这样的记数方法是科学记数法.问题 2:学生活动设计:学生利用自己的直尺测量自己课桌的长度和书本的长度,数数某页书上的字数、本班的学生人数等,然后把所得到的数字写到黑板上.我们接触的数有准确数(比如本班学生有 50 人),还有的是近似数(比如经过测量某位同学的身高是 m),而近似数与准确数的接近程度可以用精确度来表示.比如π= 592 6…我们可以对π 取近似值:π≈3(精确到个位),π≈(精确到十分位或精确到),π≈(精确到百分位或精确到),如此等等.教师活动设计:教师归纳有效数字的定义:从一个数的左边第一个非 0 数字起到末位数字止,所有数字都是这个数的有效数字,比如数字的有效数字是 1,0,1.二、应用迁移,巩固提高例 1 用科学记数法表示下列各数,你有更好的方法来确定a和n吗?(1)1 000 000;(2)57 000 000;(3)123 000 000 000.学生活动设计:学生独立思考,根据科学记数法的定义容易得到结果,再对比原来的数和结果,会发现在用科学记数法表示数时,a是整数数位只有 1 位的数(1≤a<10),n是小数点移动的位数.比如57 000 000 中a 是,相当于把小数点向左移动了 7 位,于是有下面的结果.〔解答〕(1)106;(2)×107;(3)×1011.巩固练习:P56 练习.例 2 按括号里的要求用四舍五入法取近似数:(1) 8(精确到);(2) 2(精确到百分位);(3)万(精确到万位);(4) 2(保留 2 个有效数字);(5)30 542(保留 3 个有效数字).学生活动设计:学生独立完成,然后同学间相互交流,在交流中发现缺陷和不足,应及时纠正.〔解答〕(1);(2);(3)65 万;(4);(5)×104.例 3 下列各数是用四舍五入法得到的近似数,请问各精确到哪一位?(1)43;(2) 6;(3);(4);(5)万;(6).学生活动设计:这是逆向思维的考察,学生根据自己的思考容易得到答案,但是要注意第(5)题,当出现冲突时可以让学生进行讨论,学生经过讨论得到统一的答案.〔解答〕(1)个位;(2)万分位;(3)十分位;(4)百分位;(5)千位;(6)十分位.巩固练习:P58页练习.三、小结与作业小结:1.科学记数法;2.有效数字;3.近似数的精确度.作业:习题第 4、5、6 题.。

相关文档
最新文档