高中数学必修一高一数学第二章(第课时)反函数公开课教案课件课时训练练习教案课件
人教版高中数学必修一教案 :1.3反函数

反函数——课堂教学设计一、[教材依据]全日制普通高级中学教科书数学(人教版)第一册(上)第二章《函数》第四节“反函数”第一课时。
二、[教材分析][设计思路]1、体验教学的原则:重视学生的亲身体验与感悟,使学生具有对于知识生成、发展、形成及应用过程的体验和感悟。
本节课力求体现二期课改的思路,以学生发展为本。
整节课的概念、例题与练习都以学生讨论、探究、归纳为主,教师引导为辅。
使学生在形成概念、发展规律、获取知识和理解内化的数学学习过程中,在数学应用和实践的过程中发展数学能力和一般能力,学会数学学习和应用的基本方法,逐步增强学生的研习能力、批判思维能力、自学能力和交流合作能力,培养学生勇于探索的精神。
2、本节教材是在学生初步学习了函数及其性质后,再来接触的一个新概念-----“反函数”。
反函数是函数中的一个重要概念,对这个概念的研究是对函数概念和性质在认识上的深化和提高。
它是从研究两个函数关系的角度产生的函数的,反函数本身也是一个函数。
由于反函数的定义本身比较抽象,难度较大,故在本节教学中从具体实例出发,引导学生从函数的三要素的变化角度,认识反函数的特征,揭示反函数的本质,逐步概括出反函数的定义,进而明确求解反函数问题的步骤。
当然学生在具体求解指定函数的反函数时,可能会遇到反解x时正负的选择问题及求原来函数的值域问题,教学中要预以足够的重视。
为了突破“反函数存在的条件”与“反函数与原函数的相互关系”这一难点,在本节教学中采用由课本上前面的例题(本章第一节“函数”部分给出的3个对应,并且是3个从A到B的函数)来加深对反函数定义的理解,这样便于把抽象的问题直观化。
反函数概念的建立,对研究原函数的性质有着重要作用,对将要学习研究的“指数函数”与“对数函数”等函数之间图象与性质的关系也起着重要作用。
三、[教学目标]1、知识与技能目标:(1)、理解反函数的概念 (2)、会求一些简单函数的反函数。
2、过程与方法目标:通过师生的共同讨论,弄清反函数的概念,探索与原函数的相互关系,会求一些简单函数的反函数。
高中数学 第二章第二节反函数课件 新人教A版必修1 精品

又如x log2 y( y (0, ))是函数 y 2x
y 2x x R的反函数
对数函数y log2 x( x 0,)是 x log 2 y 指数函数y 2x x R的反函数
y log 2 x
对数函数y loga x(a 0, a 1)与 指数函数y a x (a 0, a 1)是互为反函数
对数函数与指数函数的图象
观察 y log a x 与 y a x 图像特点?
5
4
4
3
y=ax (a>1) 2
1
3
y=ax 2
0<a<1 1
-4
-2
2
4
6
-4
-2
-1 y=logax (a>1)
-1
-2
-2
2
4
6
y=logax
0<a<1
由于对数函数与指数函数互为反函数,故 图象关于直线 y x对称。
x
的图象关于y轴对称,
则f(x)=
(2)若h(x)的图象与g(x)=
1 4
x
的图象关于y=x对称,
则h(x)=
2.已知
f
(x)
a2x 1 2x
1
(a
R)
是R上的奇
函数,(1)求a的值;(2)求f(x)的反函数;
例如:
1.x y 3( y [6,8])是函数y 2x 6(x [0,1])的反函数. 2
2.y x 3(x [6,8])是函数 y 2x 6(x [0,1])的反函数. 2
3.t s (s 0)是函数s 2t(t 0)的反函数. 2
数学高考复习名师精品教案:第13课时:第二章 函数-反函数

数学高考复习名师精品教案第13课时:第二章 函数——反函数一.课题:反函数 二.教学目标:理解反函数的意义,会求一些函数的反函数;掌握互为反函数的函数图象间的关系,会利用)(x f y =与)(1x f y -=的性质解决一些问题.三.教学重点:反函数的求法,反函数与原函数的关系.四.教学过程:(一)主要知识:1.反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数;2.反函数的定义域、值域上分别是原函数的值域、定义域,若()y f x =与1()y f x -=互为反函数,函数()y f x =的定义域为A 、值域为B ,则1[()]()f f x x x B -=∈,1[()]()f f x x x A -=∈;3.互为反函数的两个函数具有相同的单调性,它们的图象关于y x =对称.(二)主要方法:1.求反函数的一般方法:(1)由()y f x =解出1()x f y -=,(2)将1()x f y -=中的,x y 互换位置,得1()y f x -=,(3)求()y f x =的值域得1()y f x -=的定义域.(三)例题分析:例1.求下列函数的反函数:(1)()1)f x x ≤-;(2)221(01)(){(10)x x f x x x -≤≤=-≤<; (3)32331y x x x =-++.解:(1)由1)y x =≤-得2211()(1)24y x x =+-≤-,∴10)2x y +=≥,∴所求函数的反函数为10)2y x =-≥.(2)当01x ≤≤时,得10)x y =-≤≤,当10x -≤<时,得1)x y =<≤,∴所求函数的反函数为10)1)x y x -≤≤=<≤⎪⎩.(3)由32331y x x x =-++得3(1)2y x =-+,∴1)x y R =∈,∴所求反函数为1()1)f x x R -=∈.例2.函数11(,)1ax y x x R ax a -=≠-∈+的图象关于y x =对称,求a 的值. 解:由11(,)1ax y x x R ax a -=≠-∈+得1(1)(1)y x y a y -=≠-+, ∴11()(1)(1)x f x x a x --=≠-+, 由题知:1()()f x f x -=,11(1)1x ax a x ax --=++,∴1a =. 例3.若(2,1)既在()f x =,m n 的值. 解:∵(2,1)既在()f x∴(1)2(2)1f f =⎧⎨=⎩,∴21==,∴37m n =-⎧⎨=⎩. 例4.(《高考A 计划》考点12“智能训练第5题”)设函数xx x f +-=121)(,又函数)(x g 与1(1)y f x -=+的图象关于y x =对称,求)2(g 的值.解法一:由121x y x -=+得12y x y -=+,∴11()2x f x x --=+,1(1)3x f x x --+=+, ∴)(x g 与3x y x -=+互为反函数,由23x x -=+,得(2)2g =-. 解法二:由1(1)y f x -=+得()1x f y =-,∴()()1g x f x =-, ∴(2)(2)12g f =-=-.例5.已知函数()y f x =(定义域为A 、值域为B )有反函数1()y f x -=,则方程()0f x =有解x a =,且()()f x x x A >∈的充要条件是1()y f x -=满足11()()(0)f x x x B f a --<∈=且.例6.(《高考A 计划》考点12“智能训练第15题”)已知21()()21x x a f x a R -=∈+,是R 上的奇函数.(1)求a 的值,(2)求()f x 的反函数,(3)对任意的(0,)k ∈+∞解不等式121()log x f x k-+>. 解:(1)由题知(0)0f =,得1a =,此时21212112()()021212112x x x xx x x xf x f x ------+-=+=+=++++, 即()f x 为奇函数.(2)∵21212121x x x y -==-++,得12(11)1x y y y+=-<<-, ∴121()log (11)1x f x x x-+=-<<-. (3)∵121()log x f x k -+>,∴11111x x x k x ++⎧>⎪-⎨⎪-<<⎩,∴111x k x >-⎧⎨-<<⎩, ①当02k <<时,原不等式的解集{|11}x k x -<<, ②当2k ≥时,原不等式的解集{|11}x x -<<.(四)巩固练习:1.设21(01)(){2(10)x x x f x x +≤≤=-≤<,则15(4f -= . 2.设0,1a a >≠,函数log a y x =的反函数和1log ay x =的反函数的图象关于( )()A x 轴对称 ()B y 轴对称 ()C y x =轴对称 ()D 原点对称3.已知函数1()(1x f x =+,则1()f x --的图象只可能是 ()()A ()B ()C ()D 4.若6y ax =-与13y x b =+的图象关于直线y x =对称,且点(,)b a 在指数函数()f x 的图象上,则()f x = .。
必修1 第二章 反函数教案

过程
教学内容
自主学习
不看不讲
1.复习
(1)函数的概念
(2)用列表描点法在同一个直角坐标点中画出 的函数图象.`
2.讲授新知
…
-3
-2
-1
0
1
2
3
…
…
1
2
4
8
…
…
1
2
4
8
…
…
-3
-2
-1
0
1
2
3
…
图象如下:
探究:在指数函数 中, 为自变量, 为因变量,如果把 当成自变量, 当成因变量,那么 是 的函数吗?如果是,那么对应关系是什么?如果不是,请说明理由.
引导学生通过观察、类比、思考与交流,得出结论.
反函数的概念:
当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数.
由反函数的概念可知,同底数的指数函数和对数函数互为反函数.
合作探究
不议不讲
高效训练
不练不讲
教学内容
第2课
(单元)
主题
第3课反函数概念
1课时
教学目标
知识
与技能
了解反函数的概念,加深对函数思想的理解.
过程
与方法
学生通过观察和类比函数图象,体会两种函数的单调性差异.
情感态度与价值观
(1)体会指数函数与指数;
(2)进一步领悟数形结合的思想.
教
材
分
析
重点
指数函数与对数函数内在联系
难点
反函数概念的理解
高一数学 2.4反函数(第一课时) 大纲人教版必修

§2.4 反函数课时安排2课时从容说课反函数是研究两个函数相互关系的重要内容,反函数的掌握有助于学生进一步了解函数的概念,得到比较系统的函数知识,并为以后的深入学习奠定基础。
由于反函数的定义,本身比较抽象,难度较大,故在本节教学中,从具体实例出发,引导学生从函数的三要素的变化角度认识反函数的特征,揭示反函数的本质,逐步抽象概括出反函数的定义,反函数定义的描述,便得求反函数问题有了明确的步骤,而学生在具体求指定函数的反函数时,可能会遇到反解x时,正负的选取问题及求原来函数的值域问题,教学中要予以足够的重视。
本节通过学习互为反函数的两个函数图象之间的关系,不仅使学生进一步从形的角度认识了互为反函数的两个函数之间的关系,也为后面将要学习的指数函数与对数函数的图象打下基础。
第一课时●课题§2.4.1 反函数●教学目标(一)教学知识点1.反函数的概念.2.反函数的求法.(二)能力训练要求1.使学生了解反函数的概念.2.使学生会求一些简单函数的反函数.(三)德育渗透目标培养学生用辩证的观点,观察问题、分析问题、解决问题的能力.●教学重点1.反函数的概念.2.反函数的求法.●教学难点反函数的概念.●教学方法师生共同讨论法通过师生的共同讨论,使学生清除自学中遇到的疑点、困感点,弄清楚反函数的概念,掌握求反函数的方法.●教具准备幻灯片两张:第一张:反函数的定义,记法、习惯记法(记作§2.4.1 A)第二张:本课时教案后面的预习内容及预习提纲(记作§2.4.1 B)●教学过程Ⅰ.新课引入[师]我们知道,物体做匀速直线运动的位移s是时间t的函数,即s=vt其中速度v是常量.反过来,也可以由位移s 和速度v(常量)确定物体做匀速直线运动的时间,即t =vs 。
问题1:函数s=vt 的定义域、值域分别是什么? 问题2:函数t=vs 中,谁是谁的函数? 问题3:函数s=vt 与函数t=v s 之间有什么关系? 〔以上问题1、2,学生不会感到困难,对于问题3,教师应帮助学生从函数的三要素变化,分析两个函数的关系,即两函数的对应法那么恰恰相反好相反,定义域与值域也恰好对调〕。
人教版高中数学教案:第2章:函数,教案,课时第 (29)

第三十教时教材:单元复习之一——函数概念、性质、指数运算及指数函数目的:通过复习与练习要求学生对函数概念、性质、指数、指数函数有更深的理解 过程:一、复习:映射、一一映射、函数定义、性质、反函数、指数、指数函数 二、《教学与测试》 P49 第34课 “基础训练题” 1 略 例一、(《教学与测试》 49 例1) 已知函数 12)(2++=ax xx f 在区间[-1,2]上的最大值是4,求 a 的值。
解:抛物线对称轴为 a x -= , 区间[-1,2]中点为211︒ 当 2≥-a , 即 a ≤-2时,由题设:f (-1) = 4, 即 1 - 2a +1 = 4, a = -1 (不合) 2︒ 当221<-≤a , 即 12≤<-a 时,由题设:f (-1) = 4, 即 a = -13︒ 当211<-≤-a , 即121≤<-a 时,由题设:f (2) = 4, 即 4 + 4a +1 = 4,41-=a4︒ 当 -a <-1, 即 a >1时,由题设:f (2) = 4, 即 4 + 4a +1 = 4, 41-=a(不合)注:若是已知最小值,此种分类同样适用,也可分 -a 在 ](,1,-∞- ]()(+∞-,2,2,1三个区间。
但本题亦可将1︒、2︒和3︒、4︒分别合并成两个区间讨论。
例二、已知函数 f (x ), 当 x , y ∈R 时,恒有f (x + y ) = f (x ) + f (y ) , 1︒ 求证: f (x ) 是奇函数。
2︒ 若 f (-3) = a ,试用 a 表示 f (24)3︒ 如果 x > 0 时,f (x ) > 0 且 f (1) < 0,试求 f (x ) 在区间[-2,6]上的最大值与最小值。
解:1︒ 令 x = y = 0 得 f (0) = 0,再令 y = - x 得 f (0) = f (x ) + f (- x ),∴f (x ) = f (- x ) ∴f (x )为奇函数2︒ 由 f (-3) = a 得 f (3) = - f (-3) = -a ,f (24) = f ( 3 + 3 + …… + 3) = 8 f (3) = - f (3)3︒ 设 x 1 < x 2 ,则 f (x 2) = f (x 1 + x 2 - x 1) = f (x 1) + f (x 2 - x 1) < f (x 1),( ∵ x 2 - x 1 > 0 , f ( x 2 - x 1) < 0 )∴f (x ) 在区间[-2,6]上是减函数。
高中数学复习课件-高中数学必修1 反函数课件

例3.求证:函数 f (x) 2x 1 的图像关于直线 y x
x2
对称.
分析:由于 f (x) 2x 1 存在反函数,且
x2
f (x) 与 f 1(x) 的图像关于 y x 对称,
因此,即证 f 1(x) f (x)
证:y 2x 1 yx 2y 2x 1 x 2 y 1
f 1(x1) y1, f 1(x2 ) y2 即 x1 f ( y1), x2 f ( y2 )
x1 x2 f ( y1) f ( y2 )
y1 y2
O
x1 x2
x
f (x) 是增函数 y1 y2 f 1(x) 是增函数
例题剖析
[例1] 求下列函数的反函数:
(1) y ex 1, x R
(2)
y
Inx
1,
x
1 e
, e
x2 1 ,0 x 1
(3) f (x)
x2
,1 x 0
变式训练 [练1] 求下列函数的反函数:
(1) y 3x 1, x R
(2) y x 1, x 0
(3) y 1 x , x 1 1 x
则
2 ab
a 3
1
2a b
,所以
b
7
则
f (x)
3x 7
探究性问题、单调函数的反函数的单调性 定理 单调函数的反函数也是单调函数 且两个函数具有相同的单调性.
y
y f (x) y x
y f 1(x)
O
x
y y f (x)
yx
y f 1(x)
O
x
谢谢观赏!
黄雪林Βιβλιοθήκη 探究、单调函数的反函数的单调性
人教版高中数学必修第一册反函数的概念及求法教案

ξ2.4.1《反函数的概念及求法》学案[学习要求]:理解反函数的概念,会求简单函数的反函数,掌握互为反函数的三要素的之间的关系。
[重点难点]:重点为反函数的求法;难点为反函数概念的理解。
[互动课堂]:一、 反函数的概念:1. 定义:一般地,设函数))((A x x f y ∈=的值域是C ,根据这个函数中x ,y 的关系,用表示出,得到。
假设对于y 在C 中的任何一个值,通过 ,x 在A 中都有唯一的值和它对应,那么,x =ϕ(y )就表示,这样的函数x =ϕ(y ) (C y ∈),叫做函数))((A x x f y ∈=的反函数,记作.习惯上,我们一般用x 表示自变量,用y 表示函数,为此我们常常对调)(1y f x -=中字母x ,y ,把它改写成 。
2. 理解:〔1〕反函数是函数吗?为什么?〔2〕所有的函数都有反函数吗?什么样的两个函数才是反函数?〔3〕)(1x f y -=的反函数是谁?注意符号)(1x f -含义及读法?〔4〕函数本质上是映射。
那么在映射观点下,反函数是什么?从映射的定义可知,函数)(x f y =是定义域A 到值域C 的映射,而它的反函数)(1x f y -=是集合到集合的映射,因此,函数)(x f y =的定义域正好是它的反函数)(1x f y -=的;函数)(x f y =的值域是它的反函数)(1x f y -=的 . 〔如右表〕: 〔5〕反函数定义给出了反函数的求法。
二、求反函数:1. 例题精讲:①②略 ③)0(1≥+=x x y ④)1,(132≠∈-+=x R x x x y 且. 解: 解:总结归纳:求反函数的步骤:〔1〕〔2〕〔3〕例2.求函数⎩⎨⎧〈≤-〈≤-=)()()(0110122x x x x x f 的反函数。
解:总结归纳:求分段函数的反函数应:.例3.函数f 〔x 〕=x 2-1 〔x ≤-2〕,求f -1〔4〕的值。
解:思考:假设函数y=f 〔x 〕存在反函数,且f 〔a 〕=b ,那么f -1〔b 〕=?三.课堂练习: 〔A 〕1.函数y=-x 2+1〔x ≤0〕的反函数是〔 ) A .)(11-≥+-=x x y B. )(11≤--=x x y C. )()(11-≤+-=x x y D.)(11-≥+±=x x y2.如以下图表示的函数中,存在反函数的只能是〔 〕A B C D3.函数f 〔x 〕=x 2〔x ≥0〕的反函数为.4.函数y=355-≠∈+x R x x x ,(〕的反函数是. 〔B 〕1.假设函数)(22≥--=x x y ,那么它的反函数是〔 〕A .y=x 2+2 〔x ∈R 〕 B. y=x 2+2 〔x>0〕C. y=x 2+2 〔x≤0〕D. y= -x 2+2 〔x≤0〕2.设函数f 〔x 〕=),(433412-≠∈++x R x x x ,那么f -1〔2〕=〔 〕 A .65- B. 115 C. 52 D.52- 3.函数y=f 〔x 〕有反函数y=f -1〔x 〕,那么=-][1)(m f f . 4.函数5+=x x f )(.〔1〕求反函数)(x f 1- ;〔2〕试研究该函数与反函数的单调性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课 题:2.4.1 反函数(一)教学目的:掌握反函数的概念和表示法,会求一个函数的反函数教学重点:反函数的定义和求法教学难点:反函数的定义和求法授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教材分析:反函数是数学中的一个很重要的概念,它是我们以后进一步研究具体函数类即五大类基本初等函数的一个不可缺少的重要组成部分 反函数是函数中的一个特殊现象,对反函数概念的讨论研究是对函数概念和函数性质在认识上的进一步深化和提高反函数概念的建立,关键在于让学生能从两个函数关系的角度去认识它,从而深化对函数概念的认识 本节是反函数的第一节课围绕如何理解反函数概念这个重难点展开由于函数是一种对应关系,这个概念本身不好理解,而反函数又是函数中的一种特殊现象,它是两个函数之间的关系所以弄清函数与其反函数的关系,是正确理解反函数概念必不可少的重要环节教学设计中,通过对具体例子的求解,不但使学生掌握求反函数的方法步骤,并有意识地阐明函数与反函数的关系深化了对概念的理解和掌握教学过程: 一、复习引入:我们知道,物体作匀速直线运动的位移s 是时间t 的函数,即s=vt,其中速度v 是常量,定义域t ≥0,值域s ≥0;反过来,也可以由位移s 和速度v (常量)确定物体作匀速直线运动的时间,即vs t =,这时,位移s 是自变量,时间t 是位移s 的函数,定义域s ≥0,值域t ≥0.又如,在函数62+=x y 中,x 是自变量,y 是x 的函数,定义域x ∈R ,值域y ∈R. 我们从函数62+=x y 中解出x ,就可以得到式子32-=y x . 这样,对于y 在R 中任何一个值,通过式子32-=y x ,x 在R 中都有唯一的值和它对应. 因此,它也确定了一个函数:y 为自变量,x 为y 的函数,定义域是y ∈R ,值域是x ∈R.综合上述,我们由函数s=vt 得出了函数vs t =;由函数62+=x y 得出了函数32-=y x ,不难看出,这两对函数中,每一对中两函数之间都存在着必然的联系:①它们的对应法则是互逆的;②它们的定义域和值域相反:即前者的值域是后者的定义域,而前者的定义域是后者的值域. 我们称这样的每一对函数是互为反函数.二、讲解新课:反函数的定义一般地,设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y f x -=,习惯上改写成)(1x f y -=开始的两个例子:s=vt 记为vt t f =)(,则它的反函数就可以写为vt t f =-)(1,同样62+=x y 记为62)(+=x x f ,则它的反函数为:32)(1-=-x x f . 探讨1:所有函数都有反函数吗?为什么?反函数也是函数,因为它符合函数的定义,从反函数的定义可知,对于任意一个函数)(x f y =来说,不一定有反函数,如2x y =,只有“一一映射”确定的函数才有反函数,2x y =,),0[+∞∈x 有反函数是x y =探讨2:互为反函数定义域、值域的关系从映射的定义可知,函数)(x f y =是定义域A 到值域C 的映射,而它的反函数)(1x f y -=是集合C 到集合A 的映射,因此,函数)(x f y =的定义域正好是它的反函数)(1x fy -=的值域;函数)(x f y =的值域正好是它的反函数)(1x fy -=的定义域x x f f x x f f ==--)]([,)]([11(如下表):探讨3:)(1x f y -=的反函数是?若函数)(x f y =有反函数)(1x f y -=,那么函数)(1x f y -=的反函数就是)(x f y =,这就是说,函数)(x f y =与)(1x fy -=互为反函数三、讲解例题:例1.求下列函数的反函数: ①)(13R x x y ∈-=; ②)(13R x x y ∈+=; ③)0(1≥+=x x y ; ④)1,(132≠∈-+=x R x x x y 且. 解:①由13-=x y 解得31+=y x ∴函数)(13R x x y ∈-=的反函数是)(31R x x y ∈+=, ②由)(13R x x y ∈+=解得x=31-y , ∴函数)(13R x x y ∈+=的反函数是)(13R x x y ∈-=③由y=x +1解得x=2)1(-y , ∵x ≥0,∴y ≥1. ∴函数)0(1≥+=x x y 的反函数是x=2)1(-y (x ≥1); ④由132-+=x x y 解得23-+=y y x ∵x χ{x ∈R|x ≠1},∴y ∈{y ∈R|y ≠2} ∴函数)1,(132≠∈-+=x R x x x y 且的反函数是)2,(23≠∈-+=x R x x x y 小结:⑴求反函数的一般步骤分三步,一解、二换、三注明 ⑵反函数的定义域由原来函数的值域得到,而不能由反函数的解析式得到 ⑶求反函数前先判断一下决定这个函数是否有反函数,即判断映射是否是一一映射例2.求函数23-=x y (R x ∈)的反函数,并画出原来的函数和它的反函数的图像解:由23-=x y 解得32+=y x∴函数)(23R x x y ∈-=的反函数是)(32R x x y ∈+=, 它们的图像为:例3求函数 211x y --=(-1<x<0)的反函数 解:∵ -1<x<0 ∴0<2x <1 ∴0<1 -2x < 1∴ 0 <21x -< 1 ∴0 < y <1 由:211x y --= 解得:22y y x --= (∵ -1< x < 0 ) ∴211x y --=(-1<x < 0)的反函数是:22x x y --=(0<x<1 )例4 已知)(x f = 2x -2x(x ≥2),求)(1x f -.解法1:⑴令y=2x -2x ,解此关于x 的方程得2442y x +±=, ∵x ≥2,∴2442y x ++=,即x=1+y +1--①, ⑵∵x ≥2,由①式知y +1≥1,∴y ≥0--②,⑶由①②得)(1x f -=1+x +1(x ≥0,x ∈R );解法2:⑴令y=2x -2x=2)1(-x -1,∴2)1(-x =1+y ,∵x ≥2,∴x-1≥1,∴x-1=y +1--①,即x=1+y +1,⑵∵x ≥2,由①式知y +1≥1,∴y ≥0,⑶∴函数)(x f = 2x -2x(x ≥2)的反函数是)(1x f -=1+x +1(x ≥0);说明:二次函数在指定区间上的反函数可以用求根公式反求x ,也可以用配方法求x ,但开方时必须注意原来函数的定义域.四、课堂练习:课本P63练习:已知函数)(x f y =,求它的反函数)(1x fy -= (1) 32+-=x y (x ∈R ) (2)x y 2-= (x ∈R ,且x ≠0) (3) 4x y = (x ≥0) (4)53+=x x y (x ∈R ,且x ≠35-) 五、小结 本节课学习了以下内容:反函数的定义及其注意点、求法步骤六、课后作业:课本第64习题2.4:1七、板书设计(略)八、课后记:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。
活动过程:1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!” 主持人口述谜语:“双手抓不起,一刀劈不开,煮饭和洗衣,都要请它来。
”主持人问:“谁知道这是什么?”生答:“水!”一生戴上水的头饰上场说:“我就是同学们猜到的水。
听大家说,我的用处可大了,是真的吗?”主持人:我宣布:“水”是万物之源主题班会现在开始。
水说:“同学们,你们知道我有多重要吗?”齐答:“知道。
” 甲:如果没有水,我们人类就无法生存。
小熊说:我们动物可喜欢你了,没有水我们会死掉的。
花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。
主持人:下面请听快板《水的用处真叫大》竹板一敲来说话,水的用处真叫大;洗衣服,洗碗筷,洗脸洗手又洗脚,煮饭洗菜又沏茶,生活处处离不开它。
栽小树,种庄稼,农民伯伯把它夸;鱼儿河马大对虾,日日夜夜不离它;采煤发电要靠它,京城美化更要它。
主持人:同学们,听完了这个快板,你们说水的用处大不大?甲说:看了他们的快板表演,我知道日常生活种离不了水。
乙说:看了表演后,我知道水对庄稼、植物是非常重要的。
丙说:我还知道水对美化城市起很大作用。
2.主持人:水有这么多用处,你们该怎样做呢?(1)(生):我要节约用水,保护水源。
(2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。
(3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。
(4)(生):我要用洗脚水冲厕所。
3.主持人:大家谈得都很好,下面谁想出题考考大家,答对了请给点掌声。
(1)(生):小明让爸爸刷车时把水龙头开小点,请回答对不对。
(2)(生):小兰告诉奶奶把洗菜水别到掉,留冲厕所用。
(3)一生跑上说:主持人请把手机借我用用好吗?我想现在就给姥姥打个电话,告诉她做饭时别把淘米水到掉了,用它冲厕所或浇花用。
(电话内容略写)(4)一生说:主持人我们想给大家表演一个小品行吗?主持人:可以,大家欢迎!请看小品《这又不是我家的》大概意思是:学校男厕所便池堵了,水龙头又大开,水流满地。
学生甲乙丙三人分别上厕所,看见后又皱眉又骂,但都没有关水管,嘴里还念念有词,又说:“反正不是我家的。
”旁白:“那又是谁家的呢?”主持人:看完这个小品,你们有什么想法吗?谁愿意给大家说说?甲:刚才三个同学太自私了,公家的水也是大家的,流掉了多可惜,应该把水龙头关上。
乙:上次我去厕所看见水龙头没关就主动关上了。
主持人:我们给他鼓鼓掌,今后你们发现水龙头没关会怎样做呢?齐:主动关好。
小记者:同学们,你们好!我想打扰一下,听说你们正在开班会,我想采访一下,行吗?主持人:可以。
小记者:这位同学,你好!通过参加今天的班会你有什么想法,请谈谈好吗?答:我要做节水的主人,不浪费一滴水。
小记者:请这位同学谈谈好吗?答:今天参加班会我知道了节约每一滴水要从我们每个人做起。