土壤源热泵技术
土壤源热泵

2 土壤源热泵系统的特点2.1 属可再生能源利用技术地表的土壤和水体自然地保持能量接受和发散的相对均衡。
这使得土壤源热泵利用储存于其中的近乎无限的太阳能或地能成为可能2.2 高效节能士壤源热泵机组可利用的土壤温度冬季为l5~18℃,土壤温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。
而夏季土壤为17~2O℃,土壤温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。
2.3 运行稳定可靠土壤的温度一年四季相对稳定,其波动的范围远远小于空气的变动,是热泵机组很好的冷热源,土壤温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。
自动控制程度高,使用寿命可长达25年以上。
不存在空气源热泵和冬季除霜等难点问题,克服了常规空调因外界气温的变化引起的多耗电、效果差等弊端。
室外地埋管的数量按照冬季设计负荷来计算,在夏季制冷工况下多余的热量由冷却塔来承担,冬季土壤所承担的吸热量为377 kW,钻孔数量为:377/(40~8o)=118个,所需占地面积为1 888 m ,地埋管系统图如图2所示。
蒜簟深层土壤温度全年恒定,冬季高于室外空气温度.夏季低于室外空气温度,是很好的热泵冷源或热源土壤源热泵比传统空调系统运行效率高出约40%~60%t 1,其制热性能系数也可达到2.2 3.2 .被称为最具发展潜力的空调技术。
土壤源热泵技术在我国已经进入到快速发展阶段.各省市示范项目已达300多个,通过几年的运行,土壤源热泵表现出环保、节能及运行费用低等优点,同时一些问题也逐步显现出来。
二十世纪八十年代.山东青岛建筑工程学院(青岛理工大学的前身)、天津商学院和天津大学是最早研究地源热泵技术的三所高校他们搭建了国内最早的地源热泵系统试验台,先后开始了水平埋管和聚乙烯竖直埋管的传热理论和实验研究工作.但对于系统运行特性和传热机理的研究不够深入二十世纪九十年代末.一些著名院校如同济大学、哈尔滨工业大学、天津大学、清华大学、山东建筑大学等.在地埋管热泵系统的运行特性及地下土壤温度场的分布规律方面做了很多的研究.为地埋管热泵技术的应用和系统的推广提供了理论和实验参考.可能出现的问题3.2系统不匹配问题在土壤源热泵系统的工程设计中.存在系统匹配不合理的情况.匹配问题包括埋管间距及深度的匹配.埋管与热泵的匹配.热泵与末端装置的匹配等等,某一个设备选择过大或过小都会直接影响整个系统性能的发挥。
土壤源热泵原理

土壤源热泵原理近年来,由于能源危机和环境污染的加剧,人们对于可再生能源的需求越来越迫切。
而土壤源热泵作为一种利用地下土壤的热能来供暖和制冷的新型能源技术,受到了广泛的关注和研究。
土壤源热泵是一种利用地下土壤的稳定温度来实现室内空调和供暖的热泵系统。
它通过在地下埋设换热器,利用土壤的热能来实现室内的舒适温度。
其原理可以简单地概括为:在冬季,土壤的温度高于室内空气温度,通过地下换热器吸收土壤的热能,然后通过热泵机组将热能传递到室内,实现供暖;而在夏季,土壤的温度低于室内空气温度,通过地下换热器排放室内的热能到土壤中,实现制冷。
这样一来,不仅能够节约能源,还能减少对环境的污染。
土壤源热泵利用地下土壤的稳定温度来实现室内的舒适温度,有以下几个优点:土壤源热泵具有高效节能的特点。
由于地下土壤的温度相对稳定,比空气源热泵更适合用于供暖和制冷。
相比传统的电暖气和空调,土壤源热泵能够显著降低能耗,达到节能减排的效果。
土壤源热泵具有环保的特点。
它不需要燃烧化石燃料,不会产生二氧化碳等温室气体的排放,减少了对大气的污染。
同时,由于土壤本身是一个良好的热媒介,能够有效地传递热量,减少能源的损耗。
土壤源热泵具有稳定可靠的特点。
地下土壤的温度相对稳定,不受季节和气候的影响,因此土壤源热泵能够在不同的气候条件下保持稳定的供暖和制冷效果。
而且由于地下土壤的保温性能较好,土壤源热泵的换热器也能够更好地保护和维护,延长使用寿命。
土壤源热泵具有经济实用的特点。
尽管土壤源热泵的设备和安装成本较高,但是其运行成本相对较低。
由于土壤本身就是一个免费的热媒介,不需要额外的能源消耗,因此土壤源热泵的运行费用较低,能够在长期使用中节约大量的费用。
土壤源热泵作为一种利用地下土壤的热能来供暖和制冷的新型能源技术,具有高效节能、环保、稳定可靠和经济实用的特点。
它不仅能够满足人们对于舒适温度的需求,还能够为社会的可持续发展做出贡献。
相信随着技术的不断进步和推广,土壤源热泵将会逐渐成为未来能源领域的主流。
土壤源热泵的原理、优缺点与应用前景

土壤源热泵的原理、优缺点与应用前景作者:王啟寅来源:《农家致富顾问·下半月》2014年第14期摘要:能源危机已经成为社会经济发展中重要的制约因素,因此我们必须寻找新的能源、或者尽量利用可再生能源,并且提高能源的利用效率,以减少能源消费,减轻能源污染,实现我国可持续发展战略。
土壤源热泵技术利用地球表面浅层地热资源作为冷热源进行能量转换,将储存于地表浅层近乎无限的可再生能源,也是清洁能源转换为可用能源。
它为土壤源热泵技术的发展提供了广阔的空间,土壤源热泵在我国的应用必将有着光明的发展前景。
关键词:土壤源热泵节能优点1.引言土壤源热泵是利用地下常温土壤温度相对稳定的特性,通过深埋于建筑物周围的管路系统与建筑物内部完成热交换的装置。
冬季从土壤中取热,向建筑物供暖;夏季向土壤排热,为建筑物制冷。
它以土壤作为热源、冷源,通过高效热泵机组向建筑物供热或供冷。
高效热泵机组的能效比一般能达到4.0kw/kw以上,与传统的冷水机组加锅炉的配置相比,全年能耗可节省40%左右,初投资偏高,机房面积较小,节省常规系统冷却塔可观的耗水量,运行费用低,不产生任何有害物质,对环境无污染,实现了环保的功效。
能源是人类赖以生存的重大要素之一,是国民经济和社会发展的重要战略物资。
在能源消耗中,建筑能耗占有很大的比例,发达国家建筑能耗占总能耗的30%~40%。
我国的建筑能耗占总能耗的比例也较大。
根据发达国家的经验,随着人民生活质量的改善,建筑能耗所占的比例还将上升,最终达到35~40%。
供暖、空调、照明、烹饪、洗衣等能耗是建筑能耗中的主导部分,而在建筑能耗中则又以建筑采暖和空调能耗为主,因此重点要放在降低采暖和空调能耗上。
因此作为空调冷热源中能源转换效率最高的热泵应用技术,正受到人们的日益重视和关注。
目前人们公认采用热泵技术是解决空调系统的能源与环境问题的有效措施之一。
因此,发展和应用热泵空调系统已成为暖通空调可持续发展的基本出发点之一。
地源热泵系统工程技术规范

地源热泵系统工程技术规范《地源热泵系统工程技术规范》1总则1.0.1 为使地源热泵系统工程设计、施工及验收,做到技术先进、经济合理、安全适用,保证工程质量,制定本规范。
1.0.2 本规范适用于以岩土体、地下水、地表水为低温热源,以水或添加防冻剂的水溶液为传热介质,采用蒸气压缩热泵技术进行供热、空调或加热生活热水的系统工程的设计、施工及验收。
1.0.3 地源热泵系统工程设计、施工及验收除应符合本规范外,尚应符合国家现行有关标准的规定。
2术语2.0.1 地源热泵系统 groud-source heat pump system以岩土体、地下水或地表水为低温热源,由水源热泵机组、地热能交换系统、建筑物内系统组成的供热空调系统。
根据地热能交换系统形式的不同,地源热泵系统分为地埋管地源热泵系统、地下水地源热泵系统和地表水地源热泵系统。
exchanger system传热介质通过竖直或水平地埋管换热器与岩土体进行热交换的地热能交换系统,又称土壤热交换系统。
2.0.7 地埋管换热器ground heat exchanger供传热介质与岩土体换热用的,由埋于地下的密闭循环管组构成的换热器,又称土壤热交换器。
根据管路埋置方式不同,分为水平地埋管换热器和竖直地埋管换热器。
2.0.8 水平地埋管换热器horizontal ground heat exchanger换热管路埋置在水平管沟内的地埋管换热器,又称水平土壤热交换器。
2.0.9 竖直地埋管换热器 vertical ground heat exchanger换热管路埋置在竖直钻孔内的地埋管换热器,又称竖直土壤热交换器。
2.0.10 地下水换热系统ground water system与地下水进行热交换的地热能交换系统,分为直接地下水换热系统和间接地下水换热系统。
2.0.11 直接地下水换热系统由抽水井取出的地下水,经处理后直接流经水源热泵机组热交换后返回地下同一含水层的地下水换热系统。
土壤源热泵的工作原理

土壤源热泵的工作原理
土壤源热泵是一种利用土壤中储存的地热能来进行供暖和制冷的设备,其工作原理如下:
1. 土壤换热:土壤层具有较稳定的温度,在地下深处温度较高。
土壤源热泵通过地下埋设的热交换器,将土壤中的热能传递给热泵系统。
2. 系统循环:土壤源热泵系统中包括蒸发器、压缩机、冷凝器和膨胀阀等组件。
在循环过程中,制冷剂在低温低压状态下进入蒸发器,与地下的温暖土壤交换热量,使制冷剂汽化吸收热量。
3. 压缩和冷凝:经过蒸发器后,制冷剂被压缩机压缩,使其温度和压力升高。
高温高压的制冷剂进入冷凝器,与室内的冷热源交换热量,释放出热能。
4. 膨胀阀和回流:经过冷凝器后,制冷剂通过膨胀阀进入低温低压状态,重新进入蒸发器循环,开始下一轮热交换。
通过这样的循环过程,土壤源热泵能够利用土壤中的地热能源,将地下储存的热能转化为供暖和制冷所需的热能。
这种方式不受气候的影响,且能够节约能源、环保节地,逐渐受到人们的关注和采用。
地源热泵的分类及原理

地源热泵的分类及原理地源热泵(Ground Source Heat Pump,GSHP)是一种利用地下水、地表水、地下土壤或岩石储热的热泵技术。
它具有环保、节能、高效的特点,是可持续发展的能源利用技术之一。
地源热泵可根据工作原理和热源类型等因素进行分类。
一、按工作原理分类:1.1 蒸发-压缩型地源热泵(evaporating-compression GSHP):蒸发-压缩型地源热泵是利用制冷剂在蒸发和压缩过程中释放和吸收热量的原理,完成对地源能量的提取和利用。
它由蒸发器、压缩机、冷凝器和膨胀阀等组成。
1.2 吸收型地源热泵(absorption GSHP):吸收型地源热泵利用吸收剂对二氧化碳和水蒸气的吸收和析出过程中产生的吸热和放热效应来完成地源能量的提取和利用。
它由吸收器、发生器、冷凝器和膨胀阀等组成。
1.3 热泵-ORC热量泵耦合系统(GSHP-ORC):热泵-ORC热量泵耦合系统将传统的蒸汽动力工作介质换成有机工作介质,既能进行地源能量的提取和利用,又能通过有机朗肯循环(ORC)将低温热量转化为机械能或电能。
它由地热升温机、热泵、ORC循环和发电机等组成。
二、按热源类型分类:2.1 地下水源热泵(GWHP):地下水源热泵以地下水为热源,通过地下井、地下水管或隔水层采集地下水进行热交换,并转移到热泵循环系统中。
由于地下水具有较高的稳定温度,所以地下水源热泵的性能更稳定,能效高。
2.2 地下土壤源热泵(GSHP):地下土壤源热泵以地下土壤为热源,通过埋入地下的换热器,利用土壤的稳定温度进行热交换。
地下土壤源热泵适用于性能需求较低的区域,且对土地利用要求较高。
2.3 地下岩石源热泵(GSHR):地下岩石源热泵以地下岩石为热源,通过为岩石体进行地热钻探,将岩石的稳定温度引入热泵循环系统。
地下岩石源热泵适用于地质条件优良的地区,如地下岩石层稳定、厚度较大的地区。
地源热泵的工作原理如下:首先,通过地下水、地下土壤或岩石的热交换体系获取低温热量。
地源热泵的基本概念

地源热泵的概念地源热泵是一种以土壤、地下水作为低温热源的热泵空调技术。
其原理是依靠消耗少量的电力驱动压缩机完成制冷循环,利用土壤温度相对稳定(不受外界气候变化的影响)的特点,通过深埋土壤的环闭管线系统进行热交换,夏天向地下释放热量,冬天从地下吸收热量,从而实现制冷或供暖。
换言之:地源、水源热泵空调系统把夏天室内多余的热量通过热泵机组储存到相对稳定的大地中去,而冬天再把夏天通过热泵机组储存在大地中的能源提取出来,重新回放到室内,来完成室内房间的冷暖空调的需求,完成该系统的能源循环只需要少量的电力驱动。
由于系统采取了特殊的换热方式,使之具有传统空调系统无法比拟的优点,是真正高效、节能、环保的一种空调设备。
地源热泵技术是利用地下的土壤、地表水、地下水温相对稳定的特性,通过消耗电能,在冬天把低位热源中的热量转移到需要供热或加温的地方,在夏天还可以将建筑物内的余热转移到低位热源中,达到给建筑物降温或制冷的目的。
地源热泵不需要人工的冷热源,可以取代锅炉或市政管网等传统的供暖方式和中央空调系统。
冬季它代替锅炉从土壤、地下水或者地表水中取热,向建筑物供暖;夏季它向土壤、地下水或者地表水放热,达到给建筑物降温的目的。
同时,它还可以供应生活热水,可谓一举三得,是一种有效利用能源的方式。
地耦管土壤源热泵系统是一个密闭的闭路循环系统,它保持了地下水水源热泵利用大地作为冷热源的优点,同时又不需要抽取地下水作为传热的介质。
地耦管土壤源热泵系统从根本上解决了地下水水源热泵的种种弊端,是一种真正可持续发展的建筑节能的新技术,而且还具有适用范围广、运行费用低、节能和环保效益显著等优点。
地耦管土壤源热泵系统中的土壤换热器按照埋管方式可以分为:水平式土壤换热器、垂直U型式土壤换热器、垂直套管式土壤换热器、热井式土壤换热器及直接膨胀式土壤换热器。
1)水平式土壤换热器水平地埋管普遍使用在单相运行状态的空调系统中,一般的设计埋管深度在2~4米之间,在只用于采暖时,土壤在整个冬天处于放热状态,沟的深度一定要深,管间距要大。
土壤热源热泵

土壤热源热泵
土壤热源热泵是一种利用地下土壤中的热量作为热源或冷源来进行能量转换的设备。
它通过高效热泵机组,将地下土壤中的低位热能提取出来,为建筑物供热或供冷。
土壤热源热泵的原理是利用土壤的蓄热性能和温度相对稳定的特性。
在冬季,热泵从地下土壤中吸收热量,通过循环系统将热量传递给建筑物内部的采暖系统,为建筑物供暖;在夏季,热泵将建筑物的热量吸收后排放到地下土壤中,利用土壤的蓄冷性能为建筑物降温。
土壤热源热泵的优点包括:
1.利用地下土壤的稳定温度特性,使得供暖和供冷的效果更加稳定可靠。
2.相对于传统空调系统,土壤热源热泵的能效比更高,运行费用更低。
3.土壤热源热泵技术环保,不产生任何有害物质,对环境无污染。
4.土壤热源热泵系统结构简单,安装方便,维护成本低。
然而,土壤热源热泵也存在一些局限性,例如在寒冷或炎热的极端气候条件下,地下土壤的温度可能会影响到热泵的效率。
此外,土壤的热传导效率也会受到土壤性质、地下水位等因素的影响。
因此,在实际应用中,需要根据当地的气候条件和土壤特性进行合理的系统设计和优化。
总的来说,土壤热源热泵是一种高效、环保、经济的供暖和供冷技术,尤其适用于那些需要大量供暖和供冷的建筑物,例如住宅、办公楼、工厂等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土壤源热泵技术
一、引言
目前,空调冷、热源用能主要以电力和常规能源(煤、石油、天然气)为主,特别是煤炭所占比例较大,能源结构不合理,能源利用率低,环境污染严重[1]。
首先,从可持续发展的方面来看,选择空调冷、热源时,应从环境保护、节能等方面考虑;同时,在技术方面,传统空调系统在冬季运行时,当室外温度过低时,存在蒸发器结霜的问题,这就阻碍了系统的正常运行,使得传统空调系统的应用受到地域的限制。
所以,如果能找到一种最佳冷、热源来代替空气源热泵,这样不但可以提高效率,而且可以减少空气源热泵对环境的污染和不受地域的限制。
土壤便是一种最佳的冷热源,而土壤源热泵系统在运行时不存在蒸发器结霜的问题。
二、土壤源热泵的工作原理土壤源热泵系统是把地下土壤作为热泵机组的低温热源,通过循环液体(水或者以水为主要成分的防冻液)在封闭的地下埋管中流动,实现系统与大地之间的换热。
冬季供热时,流体从地下收集热量,再通过热泵系统把热量带到室内;同时在地下储存冷量,以备夏季制冷用。
夏季制冷时,系统逆向进行,即从室内带走热量,再通过埋管内的循环液体将热量送到地下岩土中;同时在地下储存热量,以备冬季供热用。
土壤源热泵空调系统主要包括三套管路系统:室外环路系统、制冷剂环路系统和室内空调环路系统[2]。
土壤源热泵空调系统的工作原
理如图1-1 所示。
(一)室外环路系统由高强度塑料管(U型管)组成的地下循环封闭环路,循环介质为水或者防冻液。
冬季从周围土壤吸收热量,夏季向土壤释放热量,并与热泵机组之间交换热量。
其循环由一台或者数台低功率的循环泵来实现。
(二)制冷剂环路系统即在热泵机组内部的制冷循环,与空气源热泵相比,只是将空气―制冷剂换热器换成水―制冷剂换热器,其他结构基本相同。
(三)室内空调环路系统室内环路在建筑物内和热泵机组之间传递热量,传递热量的介质有空气、水或制冷剂等,因而相应的热泵机组分别应为水一空气热泵机组、水一水热泵机组和水―制冷剂热泵机组。
图 1 土壤源热泵空调系统的工作原理图
有的土壤源热泵系统还设有加热生活热水的环路。
将水从生活热水水箱送到冷凝器进行循环的封闭加压环路,是一个可供选择的生活热水的环路。
对于冬季工况,该循环可充分利用冷凝器排放的热量,基本不消耗额外的能量而得到热水供应;在冬季,其耗能也大大低于电热水器。
三、土壤源热泵的优缺点建筑的空调系统一般应满足冬季供热和夏
季制冷两种相反
的要求。
传统的空调系统通常需分别设置冷源(制冷机)和热源
(锅炉)。
建筑空调系统由于必须有冷源(制冷机),如果让它在冬季
以热泵模式运行,则可以省去锅炉和锅炉房,不但节省了初投资,而且全年仅采用电力这种清洁能源,大大减轻了供暖造成的大气污染问题。
与传统的空调系统相比,土壤源热泵系统具有以下优点:(一)利用可再生能源。
土壤源热泵是利用地球表层所吸收的太阳能和地热能作为冷热源进行能量转换空调系统。
而土壤中的能量大部分来源于太阳能的辐射,土壤源源不断地收集着太阳辐射能,吸收的这部分能量是人类每年利用总能量的500 倍还多,这就使得利用储存于其中近乎无限的地热能成为可能。
因此,土壤源热泵利用的是可再生能源。
(二)节能。
由于地下土壤温度冬季比环境高,夏季比环境低,且始终保持较为稳定的状态。
由于这一特点,土壤源热泵机组的性能系数(COP较高。
美国环保署估计,设计安装良好的土壤源热泵系统,平均来说可以比常规空调系统节约30%〜40% 的年运行费用[3]。
(三)环保效益显著。
土壤源热泵仅消耗电能,从而降低了一次能源消耗带来的污染物和二氧化碳温室气体的排放。
一个设计良好的土壤源热泵机组,所消耗的电能,与传统空调系统相比,可减少30%以上,与电供暖相比,可减少70%以上[4],这就大大降低了一次能源的消耗,从而有效遏制了环境的污染。
(四)一机多用。
土壤源热泵机组可供暖、制冷,还可提供生活热水,一套设备可以替代原来的锅炉加冷水机组两套设备,结构紧凑,节省机房面积。
主要缺点有:
(一)初投资较高。
与传统的空调系统相比,主要增加了地下埋管
施工的投资,而地下埋管换热器的初投资占系统初投资的20%〜30%左右。
(二)土壤导热系数小。
地下埋管换热器的持吸热速率仅为
20〜40W/m2 —般吸热速率为25 W/m2。
(三)地下埋管换热器占地面积大。
由于土壤导热系数小,当建筑物冷热负荷较大时,地下埋管换热器占地面积较大。
四、结语
土壤源热泵系统作为一种环保和节能的热泵技术,对需要冬季供热、夏季制冷的冬冷夏热地区提高室内环境和降低建筑能耗具有重大意义。
尽管土壤源热泵存在不足,但是由于其使用的是可再生能源,符合能源的可持续发展理论,因此被称为21 世纪最具有发展前途的绿色空调。