诱发电位及其临床应用

合集下载

肌电图诱发电位在临床各科室的应用

肌电图诱发电位在临床各科室的应用

L.评价脑干功能
(1)脑死亡 由于脑干结构(组织)的损害,使昏迷成为不可
逆时,可通过BAEP、SEP、VEP的测试确定脑 死亡。 (2)昏迷
由于BAEP较少受代谢性药物和巴比妥类的 影响,因此对昏迷的病因(药物中毒或脑干器质 性病变)有鉴别作用。同时对昏迷的预后有判 断价值。
M.神经再生的判定
在神经切断性损伤缝合后,如果神经有所恢 复,可记录到相应的SEP和相应EMG的再 生电位,这是神经纤维再生的唯一客观证 据。
进行BAEP、VEP或SEP的测试,然后在确定 诱发电位异常的基础上进行X线或CT检查, 可准确判断脑干、视觉通路或脊髓是否存 在肿瘤。在这一方面,当肿瘤较小时,诱发电 位就显得更有作用。
Hale Waihona Puke C、脊髓外伤必查:下肢体感诱发电位。
选查:上肢体感诱发电位。
意义和价值: SEP在脊髓的应用广泛,评价 脊髓功能受损程度、部位,早期检查可以 较准确的判断预后,对手术有一定的参考。 可通过SEP或脊髓诱发电位电位的测定,判 断是否是完全性截瘫,并为预后提供依据。 临床证实:SEP的恢复先于临床运动机能的 恢复,如果在外伤早期SEP可被记录者,一般 预后良好,反之,预后不佳。
F、脑干病变
必查:面肌肌电图、面神经运动传导、 听觉诱发电位、下肢体感诱发电位、 视觉诱发电位、瞬目反射。
意义和价值:评价脑干内的视觉、听 觉、本体感觉、运动等传导通路以及 三叉神经→面神经核通路的功能。
G、脑出血与脑梗塞
必查:上肢体感诱发电位、下肢体感诱发 电位、听觉诱发电位、视觉诱发电位。
D、周围神经损伤
必查:下肢体感诱发电位、肌电图。 意义和价值:通过SEP、EMG可判定周围
神经损伤程度,以及为手术提供可靠的依据。 并为治疗效果作客观评定。

诱发电位地形图及其临床应用

诱发电位地形图及其临床应用
长)
诱 发 电位地形 图( v kdp t t l a pn ) E o e oe i p ig nam
是研究 被检 查 者 在 给 予 外界 特 定 条 件 的刺 激下皮 层 电位的分 布状 态 。 常用 的刺 激 有 视 觉 刺 激 、 觉 刺 激 和 电 刺 听 激 。它 主要研 究在 特定 时间范 围 内。
迹 。我们 建议 , 阶段 B A 现 E M作 出的任 何新结 论
没 在平 均功率 中。 因此 我们 建 议 目前 只 能把 黑 白 曲线 与彩 图 同步显示 , 进行 对照 分析 以弥补 不足 。
和 医学上 的报 告 , 应有 常规 E G 的结 果 作 为 均 E
印证 和对照 。
4 智能 障碍 的诊 断 , 、 如脑发 育不全 、 痴呆 等 5 脱髓鞘 性疾病 , 、 如多发性 硬化 的诊断
6 脑死亡 的判 断和 昏迷 的预后判 断等 、
( ) 协助 眼科 和耳 鼻咽喉 科疾病 的诊 断 二 可

2 脑瘤视觉 诱发 电位 地形 图表现 、
( 可协助判 断上述 疾病 的疗效和预后 等 三) 四、 诱发 电位地形 图的诊断 原则
Ui : op T
将诱 发 电位 的 曲线 图进 行 快 速付 叶转 换
( F ) 变为地 形 图。 FT ,
三 、 发 电位地形 图 的临床应 用价值 诱 ( ) 一 可协助 大脑器 质性疾 病 的诊断
1 大脑 肿瘤 的诊断 、
2 急性脑 m管病 的诊 断 、 3 先天性 发育 畸形 的诊断 、
与健侧对 比 下降大 于百分之 五十 。
C、 个大 脑半球 极性变 化紊乱 , 整 失去 ¨ 常 的 |
极性 改变 ( 由正相 转 为负牛I } l 的改变发 牛改 变 ) 。 () 2 后视路 病变 A、 病变侧 枕 区 相 电位 消火 B、 变删枕 区 电』 病 下降 () 3 枕叶病变 , 视路痫 变改变大致相同 。 () 1 双侧 枕 区止 相 电位 不 对 称 , 差在 百 分 之

诱发电位发生、分类、感觉诱发电位检查、 视觉诱发电位、体感诱发电位及SEP、VEP、BAEP临床意义

诱发电位发生、分类、感觉诱发电位检查、 视觉诱发电位、体感诱发电位及SEP、VEP、BAEP临床意义

诱发电位发生、分类、感觉诱发电位检查主要目的、视觉诱发电位、体感诱发电位及SEP、VEP、BAEP临床意义诱发电位产生诱发电位是指中枢神经系统在感受到体内外各种特异性刺激后所产生的生物电活动,它反映了中枢神经系统各种传导通路功能的完整性。

诱发电位分类根据检测不同的神经传导通路可分为:运动诱发电位和感觉诱发电位,作为神经内科医师,应着重了解感觉诱发电位。

常用感觉诱发电位根据刺激方式的不同,分为体感诱发电位、视觉诱发电位和听觉诱发电位。

感觉诱发电位检查主要目的提供临床感觉神经传导通路上的亚临床病灶(尤其对那些临床症状和体征提示中枢神经系统可能有脱髓鞘病灶者);动态观察感觉神经传导通路上脱髓鞘病灶的变化;用于脊柱和颅脑外科中脊髓和颅脑手术的神经监护。

感觉诱发电位在临床应用上局限性首先,它仅能确定感觉传导通路上是否有异常,但不能确定病因。

其次,由于诱发电位最终记录部位在外周器官(眼、耳、外周皮肤),因此,这些器官有病变也可导致其结果异常。

视觉诱发电位视觉诱发电位(visual evoked potential,VEP)产生的解剖基础:视网膜的神经节细胞发出的轴突在视乳头处形成视神经,经视神经孔进入颅中窝,在蝶鞍上方形成视交叉,来自视网膜鼻侧的纤维交叉到对侧,来自颞侧的纤维不交叉,继续在同侧走行,并与来自对侧眼球的交叉纤维结合成视束,终止于外侧膝状体,在外侧膝状体换神经元后再发出神经纤维,经内囊后肢后部形成视放射,终止于枕叶视皮质中枢。

VEP 是枕叶皮质接受视觉刺激后从头皮上记录到的一个电反应。

而当视觉传导通路上任何部位发生病变时,视觉诱发电位都可以出现异常。

脑干听觉诱发电位脑干听觉诱发电位(brainstem auditory evoked potentials,BAEP)产生的解剖基础:耳分成三部分,分别是外耳、中耳和内耳。

内耳又称迷路,含有耳蜗、前庭和三个半规管。

听觉传导通路起自内耳螺旋神经节的双极神经元,其周围突感受内耳螺旋器毛细胞的冲动,中枢突进入内听道组成耳蜗神经,终止于脑桥的耳蜗神经核,发出的传入纤维一部分到双侧上橄榄核,尚有一部分纤维直接进入外侧纵束,并止于外侧纵束核。

诱发电位及其临床应用

诱发电位及其临床应用

2) 导联2:第七颈椎棘突CV7——正中 前额FP2,记录N13电位,记录到的是下 颈髓后角与延髓交界楔束核的综合电位。
3) 导联3:对侧顶部P3——正中前额 FP2纪录N20-P25复合波,是主感觉皮质最 早的反应波。
3. 测量指标
1) 上肢感觉神经传导速度
可由腕锁距离和欧勃电位N9潜伏期计算出。 2 ) 波 峰 间 潜 伏 期 ( IPL ) 及 左 右 侧 差 值
3. 按刺激后诱发电位出现的潜伏期长 短分短、中、长潜伏诱发电位。
4. 按纪录部分距离诱发电位神经发生 源的远近分近电场电位和远电场电位。
脑诱发电位的特征
1.
广义的脑诱发电位分两大类,即非特异
性和特异性。
1) 非特异性:脑自发电位经各种诱发刺激 (光、声、电、感觉、过度换气等)而形成的
脑电位变化。其特点为不同刺激形成相同的脑 波变化。如视反应、觉醒反应等。
神经发生源,是神经的脑群体突触后电 位的综合。
躯体感觉诱发电位
(短潜伏期躯体感觉诱发电位SLSEP) 基本特点:
1. 与刺激有锁时关系。潜伏期长短取决于 1) 传导通路长短 2) 神经传导速度 3) 突触延搁时间 2. 恒定的反应形式,即有固定的波形组成,他
们都有相应的神经发生源。刺激腕部正中神经, 在50ms分析时程内,可在刺激点对侧顶部恒常 纪录到一个“w”形波群,即N20-P25-N35-P45。 其中N20-P25复合波起源于主感觉皮质S1区。
2) 特异性:因不同刺激(体感、视或听)通
过特定的神经传导道路,在脑的不同部位形成 不同的诱发电位信号。其电位波幅低(2μv) 通常被埋没于自发电位中。
脑诱发电位的特征
2. 锁时特性:诱发电位信号的形成和刺 激有固定的时间间隔,是同步的,和叠 加次数形成正比的增大。

测量大脑皮质诱发电位的方法及其临床应用

测量大脑皮质诱发电位的方法及其临床应用

测量大脑皮质诱发电位的方法及其临床应用大脑皮质诱发电位(Cortical Evoked Potentials,CEP)是一种记录和分析大脑皮质反应的电生理技术。

它通过刺激外部或内部刺激源,如视觉、听觉、触觉和运动等刺激,记录大脑对刺激产生的电位变化。

该技术有着广泛的临床应用,用于疾病诊断、手术监测和神经系统疾病研究等领域。

测量大脑皮质诱发电位的方法多种多样,常用的方法包括视觉诱发电位(Visual Evoked Potentials,VEP)、听觉诱发电位(Auditory Evoked Potentials,AEP)、体感诱发电位(Somatosensory Evoked Potentials,SEP)、运动诱发电位(Motor Evoked Potentials,MEP)等。

这些方法具有各自的特点和应用范围。

首先是视觉诱发电位(VEP)。

VEP是记录和分析大脑对视觉刺激产生的电位变化。

通过让受测者观看特定图像或接受光刺激,测量和分析大脑对刺激的反应。

VEP广泛应用于癫痫、视觉障碍、脑损伤等疾病的诊断和监测。

其次是听觉诱发电位(AEP)。

AEP用于记录和分析大脑对听觉刺激的电位变化。

通过让受测者接受声音刺激,并记录和分析大脑对刺激的反应。

AEP被广泛应用于听觉系统疾病的早期检测、听力损失的评估以及中枢性耳聋的诊断。

第三是体感诱发电位(SEP)。

SEP用于记录和分析大脑对触觉和体感刺激的电位变化。

通过对受测者进行触摸、电刺激或热刺激,记录和分析大脑对刺激的反应。

SEP在脊髓损伤、周围神经系统疾病和感觉异常等领域的诊断和研究中有重要应用。

最后是运动诱发电位(MEP)。

MEP用于记录和分析大脑对动作刺激的电位变化。

通过对受测者进行运动刺激或经颅磁刺激,记录和分析大脑对刺激的反应。

MEP广泛应用于脊髓损伤、脑卒中和运动障碍等神经系统疾病的诊断和康复评估。

测量大脑皮质诱发电位的方法需要使用特定的设备,如EEG设备(Electroencephalography)和其他刺激装置。

第一章(诱发电位概论) 第二章(体感诱发电位)()

第一章(诱发电位概论) 第二章(体感诱发电位)()
第二部分
诱发电位学原理和临床应用
第一章 诱发电位概论
• 诱发电位(Evoked Potential)
• 是对周围神经、外周感觉器官或中枢 神经系统某一特定部位给以适宜刺激, 在周围或中枢神经系统相应部位记录 发电位(sensory evoked potentials),后者称为运动诱发电位 (motor evoked potentials)。
感觉诱发电位
• 定义:分别采用脉冲电流、闪光或变化的图象、 连续声音作为刺激源诱发的神经动作电位或突触 后电位。
• 感觉诱发电位特征 ①有一定潜伏期,潜伏期长短 取决于刺激部位与记录部位的距离、神经冲动传 导速度、传导通路中神经元突触的数目等。②由 于感觉特异性投射系统有特定的传入通路和皮层 代表区,不同种类的诱发电位有特定的局限性空 间分布。③不同种类的诱发电位有一定的反应形 式,并具有可重复性。
躯体感觉诱发电位(Somatosensory Evoked Potential,SEP) (体感诱 发电位)
第一节 体感诱发电位的传导通路
三叉神经系统基本感觉通路
第二节 体感诱发电位
一、基本原理(上肢)
上肢SEP成分与神经发生源
N13 (第7或5颈椎棘突-Fz导联 )——颈 髓后角突触后电位。
脑电性质 脑电强度 波形特征 波形含义 记录条件 与刺激相关性 分析内容
脑电图 自发脑电 30~100 µV 连续性 生理性 无需刺激 无时相关系 频率、幅度、相位
诱发电位 诱发脑电 0.2~20 µV 限程性(刺激后一段时间) 生理性、解剖性、心理性 必需刺激 有时相关系 潜伏期、波幅、相位
第二章
• P22波潜伏期正常参考值: 19.70±1.10ms;
• P14-P22 IPL正常参考值: 6.90±0.89ms;

脑电图和诱发电位及临床应用

脑电图和诱发电位及临床应用
锥体细胞【Ⅲ(小中)、Ⅴ层(中大)】在皮层排列整 齐,其顶树突相互平行并垂直伸入皮层表层(轴突伸入皮 层深层),其同步电活动易于发生总和而形成电场,从而 改变皮层表面的电位。
11
大量皮层神经元的同步电活动须依赖 丘脑的功能
某些自发脑电形成,就是皮层与丘脑非特异投
射系统之间的交互作用。
一定的同步节律的丘ຫໍສະໝຸດ 非特异投射系统的活动,• 单一神经元的突触后电位变化不足以引起皮层 表面的电位改变,必须有大量的神经元同时发 生突触后电位变化,才能同步起来引起皮层表 面出现电位改变。
• 锥体细胞分布特点-----电场形成
脑电波形成的机制?
细胞内记录到的突触后电位变化与皮层的电位节律变化 相一致:
认为皮层表面的电位变化是由突触后电位变化形成的。 大量神经元同步发生突触后电位总和引起皮层表面的电位 改变。
诱发电位 ---特异性 非特异性
• 非特异性诱发反应是指不同的刺激均能 产生相同的反应,
• 特异性诱发反应是指必须具有诱发电位 基本特点者
一、脑电图
• 在无明显刺激情况下,大脑皮层经常性地自发产 生节律性的电位变化,称为自发脑电活动 (spontaneous electric activity of the brain)。
• 3. 记录脑电图:记录清醒闭目状态下各导联的 脑电图,通常在记录过程中进行睁眼闭眼试验和 过度换气试验。由于过度的深呼吸,大量的C02排 出体外,造成呼吸性碱中毒,此时能引起一过性 的脑血管收缩及脑血流量减少,如有持续性或阵 发性的异常脑电波出现时,则有诊断价值。
• 分类:

脑电图(electroencephalogram, EEG),

皮质电图(electrocorticogram,ECoG)

听觉脑干诱发电位的原理及其临床应用

听觉脑干诱发电位的原理及其临床应用

听觉脑干诱发电位的原理及其临床应用发布时间:2009-8-4听觉脑干诱发电位是一种较准确的客观测听法。

测试时病人无痛苦,不受病人主观意志及意识状态的影响。

一、听觉脑干诱发电位的检测1.电极的放置听觉脑干电位测听为远场电位记录,记录电极放于颅顶或乳突,参考电极置于对侧耳垂或乳突,前额电极接地并与前置放大器输入盒连接。

2.刺激声信号多采用短声,刺激重复率每秒10~20次,叠加1000次;多通过单侧或双侧耳机给声,对侧耳给予白噪声掩蔽。

一般采用70-80dB刺激声强度开始为宜,检测时受检者需要完全放松,也可在睡眠、麻醉或昏迷状态下进行。

二、听觉脑干诱发电位分析在较强声刺激,如60~80dB声刺激下可从颅顶记录到7个波形,主要为Ⅰ~Ⅴ波,分别主要由听神经(波Ⅰ)、耳蜗核(波Ⅱ)、上橄榄核(波Ⅲ)、外侧丘系( 波Ⅳ)、下丘核波Ⅴ)产生。

其中,I、III、V三个波较稳定。

1.各波的潜伏期Ⅰ波的潜伏期约2ms,其余每波均相隔约1ms。

2.波间潜伏期即中枢传导时间,各波间时程在给予60dB以上刺激强度时,各波间期相对较稳定,因此,可作为中枢性病变诊断的可靠指标,多采用Ⅰ~Ⅲ波、Ⅲ~Ⅴ波和Ⅰ~Ⅴ波的测量,以Ⅰ~Ⅴ波最常用,一般为4ms。

3.两耳间各波潜伏期比较一般侧间差别不超过0.2ms。

4.波Ⅴ反应阈成人波Ⅴ反应阈一般高于行为测听阈10~20dB,因此可作为客观听阈检测;婴幼儿反应阈比成人高,但与其行为反射阈相对较低,这对聋耳的早期发现有较大价值。

三、听觉脑干诱发电位的临床运用1.客观听力测试适用于不合作的新生儿、婴幼儿和主观测试困难的成人,也适用于非器质性聋、职业性聋的判断、精神或神经系疾病的病人,可通过脑干电位测听确定其听觉功能的状态。

2.脑干肿瘤脑干肿瘤、小脑脑桥肿瘤压迫脑干时,可致各波潜伏期的延长,压迫听神经则可致波Ⅴ潜伏期延长,甚至消失,双潜伏期比较相差超过0.3ms。

3..脑干炎、脑干血管梗塞、出血、脑干损伤常导致I-V波异常改变,特别是波间期延长,波形变异甚至消失。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刺激方式:全视野、半视野; 记录电极:O1、Oz、O2,参考:Cz;地线 FPz
视诱发电位
Cz
右眼
AVERAGING
O'z A1 O1 Oz O2
70 cm
刺激.:棋盘格 大小:视角 频率.:最大. 2 Hz 暗室
O'1-Cz O'z-Cz O'2-Cz
N145 N75
P100
100
200 ms
• 反应从视网膜到视皮层的整个视觉通路的传导 功能。这条通路的解剖结构包括:视网膜→视 神经→视交叉→视放射→视觉皮层。
• VEP在检查视交叉前视神经传导障碍时最有价 值,但VEP的异常并没有特异性,例如,肿瘤 压迫视神经、缺血改变或脱髓鞘疾病都可引起 P100波潜伏期延长。
检测方法:
常用方法为棋盘格翻转VEP
正常VEP波性辨认及正常值
波形命名:N75、P100、N145 波形辨认及正常值:由三相复合波组成 异 常 : 波 形 消 失 ; 潜 伏 期 > M + 3 SD
(117.6ms) ;波幅降低;潜伏期和波幅均异常 N145
N75
P100 12
VEP异常的临床意义:
(1)波形消失:尤其是双眼波形消失,可能出现技 术问题、注意力不集中或势力极差。若排除, 说明视觉传导通路病变。单眼波形消失,提示 病变侧视交叉前部病变。
刺激强度:主观听阈+60dB 短声(click);频率:1030c/s 刺激方式:单耳,对侧白噪音掩盖;每侧重复2次 记录电极:Cz,参考:乳突或耳垂
脑干听觉诱发电位
VI VII
IV V III II
I
刺激
V
IV III II I
VI V II
I
耳蜗神经外周部分
II
耳蜗神经核
III
2.评价听力:对听力检查不合作、癔症、婴儿,可 判断是否有听力障碍。
3.昏迷:对昏迷预后的评估及可能的损害部位(脑 干还是大脑半球)有一定鉴别意义。
4.脑死亡的判断。
5.手术监护:监护后颅窝手术确保听神经发生不必 要损伤。
视觉诱发电位(VEP)
• VEP是枕叶皮质接受视觉刺激后从头皮上记录 到的一个电反应。
(5)I-V波间期延长,提示耳蜗后任何部位的病变, 还要根据,如果I-III波间期延长,提示病变可 能累及同侧听神经至脑干段,如果III-V波间 期延长提示病损可能影响到脑干内的听觉传导 通路。
BAEP的临床应用
1.多发性硬化:随着MRI普遍应用,更多的多发性 硬化病灶被发现,但对脑干上的病灶尤其是亚 临床病灶,BAEP有重要作用。早期表现V消失, 也可表现为III-V波间期延长。其次I-V波间 期延长,III消失。相比VEP、SEP,BAEP对 多发性硬化诊断的阳性率要低。
3.缺血性视神经病:一般不影响P100波的潜伏期, 但可出现波幅降低。
4.前视路压迫性病变:压迫严重侵犯视神经可以导 致P100波幅减低、潜伏期延长,但其延长没有脱髓 鞘病变明显。
体感诱发电位(SEP)
SEP是躯体感觉系统的外周神经部分在接受适当刺 激后,在其特定的感觉神经传导通路上记录出电 反应。主要反应周围神经、脊髓后索、脑干、丘 脑、丘脑放射区及皮质感觉区的功能状态。
诱发电位及其临床应用
诱发电位是指中枢神经系统在感受到体
内外各种特异性刺激后所产生的生物电活 动,它反应了中枢神经系统各种传导通路 功能的完整性。分为运动诱发电位和感觉 诱发电位。实际应用中,最常用和比较容 易检测到的是感觉诱发电位,包括体感诱 发电位(SEP)、视觉诱发电位(VEP)、 脑干听觉诱发电位(BAEP)。
(2)潜伏期延长:单眼延长,提示延长侧视神经病 变,部位在视交叉前。双眼明显延长,提示双 侧视神经交叉前病变。双眼轻度延长且程度相 近,视交叉后部病变可能行大。
(3)波幅降低:和潜伏期相比,波幅减低意义有限。 因为个体差异大,和视敏度有直接关系。注意 力不集中、眨眼、眼震均有影响。单眼VEP波 幅降低,提示视神经或眼部病变。
脑干听觉诱发电位(BAEP):是一
项检测脑干是否受损较为敏感的客观指标。 指经耳机传出的声音刺激听神经传导通路, 在头顶记录的电位。
检测时通常不需要病人的合作,婴幼儿和 昏迷病人均可进行测定。能客观敏感的反应 听觉传导通路的功能状态。凡是累及听通道 的任何病变或损伤都会影响BAEP。
检测方法:
多采用短声刺激,记录电极通常置于Cz,参考电极 置于耳垂或乳突,接地电极置于FPz。
• 目前临床上常用的体感诱发电位主要为:
• 上肢正中神经体感诱发电位和下肢胫神经体感 诱发电位。
• 上肢正中神经刺激SEP
方法和波形辨认 刺激:腕部正中神经 记录:对侧顶点(C3‘或C4’) (Cz':Cz后2-2.5cm,C3‘或C4’:Cz'旁开7cm)
• 下肢胫神经刺激SEP
与躯体感觉传导通路有关的解剖通路有两条:后索 -内侧丘索投射系统和脊髓-丘脑投射系统。
根据受到刺激后诱发电位出电位的潜伏期长短,分 为短、中、长潜伏期诱发电位,其中短潜伏期体 感诱发电位收到的影响因素相对较少,波形稳定, 可反复记录,临床上应用的最多。短潜伏期体感 诱发电位主要传导通路是后索-内侧丘索投射系统。
方法和波形辨认 刺激:踝部胫后神经 记录:Cz' (Cz':Cz后2-2.5cm)
SEP临床应用(感觉通路病变) 周围神经病 脊髓病变:后索病变 脊髓监护:手术 MS:发现临床下病灶 脑死亡:较BAEP更有意义
谢谢
上橄榄核
IV
外侧纵束核
V
下丘VI高位听Fra bibliotek枢VII
大脑听觉皮层
正常BAEP波性辨认及正常值
波形辨认:I、III和V波最有价值 正常值:I波:1.5ms左右;V波:5.5ms左右;III波:
I和V波之间 异常的判断:波形全部消失,潜伏期和波间期异常,
I/V比值(波幅比)异常(波幅在个体之间变化很 大,对临床诊断意义不大)
6
BAEP异常的临床意义:
(1)各波全部消失,可考虑听神经的严重损害,也 可根据其他临床表现判断是否存在脑死亡。
(2)I波或I、II之后各波消失,可考虑听神经颅内 段或脑干严重受损。
(3)各波绝对潜伏期均延长,两侧对称,可能为双 侧听力轻度下降。
(4)I未引出,其后各波都存在,且绝对潜伏期延 长,如果III-V波间期正常,则病损可能在脑 干听觉传导通路下段或听神经。
VEP的临床应用
是神经科和眼科的辅助诊断检查手段,对视交叉前 病变的定位提供了比较客观的依据。
1.多发性硬化:多发性硬化视神经是最长受累的部 位之一。视觉通路上局部的髓鞘脱失,受损的视纤 维传导速度明显减慢,是P100波潜伏期延长。
2.视神经炎:VEP突出的改变是P100波潜伏期明显 延长。结合临床单眼视力突然下降、眼球胀痛、及 眼底的检查。
相关文档
最新文档