数量关系解题套路——秘籍
事业编数量关系答题技巧

事业编数量关系答题技巧1. 哎呀呀,事业编数量关系答题技巧之一就是要学会“偷梁换柱”!比如说在算一个复杂的式子时,咱能不能找个简单的类似形式来替换它呢?就像你想搬个大石头觉得费力,那咱换个小点的石头先试试嘛!2. 嘿,一定要记住“以小见大”这个技巧哦!比如碰到一个大难题,就从它的小部分开始分析呀,这就好比吃蛋糕,一口一口来嘛!还记得之前那道很难的行程问题吗,从一小段路程入手是不是就清晰多啦?3. 哇塞,要善于“化整为零”呀!别被庞大的数字吓到,分成小块来解决。
就好像打游戏打大 boss,咱一点点削减它的血量不就好办啦!像那道很多数字的计算题,分成几个小步骤算不就好啦!4. 注意啦,“顺藤摸瓜”的技巧可不能忘!根据已知条件一步步推下去,就像沿着藤找到瓜一样。
比如说知道甲比乙大 5 岁,乙又和丙有啥关系,这不就能慢慢推出甲乙丙的情况啦!之前做过的那道年龄问题不就是这样解决的嘛!5. 哈哈,要懂得“借鸡生蛋”呀!有些看似很难的题,借用一下其他题目的方法或者思路可能就豁然开朗了呢!就好比你没笔写字,借别人一支用用不就好啦!那道几何题用之前做过的函数题思路来试试,说不定有惊喜哟!6. 哟呵,“见缝插针”也很重要呢!不放过题目中的任何一个小细节,可能那就是解题的关键哦!好比在一堆草里找一根针,仔细点就能发现呀!想想上次那道逻辑题,不就是因为注意到了一个小细节才做出来的嘛!7. 切记要用好“举一反三”哦!做完一道题,想想类似的题型怎么做,下次遇到就不怕啦!这就像学会了做一道菜,其他类似的菜也能试着做做啦!之前会做的那道工程问题变个数字变个条件,咱不也能应对嘛!8. 最后呀,“以不变应万变”才是王道!不管题目怎么变,掌握好基础的方法和思路就能搞定!就跟武林高手一样,有了深厚的内力,啥招式都不怕!不管遇到啥样的数量关系题,咱都有底气去应对,对吧!我的观点结论就是:掌握这些事业编数量关系答题技巧,绝对能让你在考场上如鱼得水,轻松应对!加油吧!。
国考数量关系解题技巧

国考数量关系解题技巧
国考数量关系是公务员考试中的一个重要模块,其难度相对较高,需要考生具备一定的数学基础和解题能力。
以下是一些数量关系解题技巧:
1. 利用整除思想解题:在数量关系中,经常出现一些数据具有
整除性质,如公倍数、最大公约数、最小公倍数等。
利用这些整除性质,可以快速求解问题。
2. 利用比例思想解题:比例是数量关系中的一种重要关系,通
常用倍数、分数等形式表示。
利用比例关系,可以求解一些复杂的问题。
3. 利用倍数特性解题:倍数特性是数量关系中的一个特殊性质,即如果一个数是另一个数的倍数,那么这个数乘以另一个数等于原数。
利用这个特性,可以快速求解一些倍数问题。
4. 利用代入排除法解题:在数量关系中,有时候无法确定最优解,可以通过代入排除法来求解问题。
即把不同的选项代入题目中,逐步排除,最终找到正确答案。
5. 利用图形特征解题:数量关系还可以通过图形特征来求解,
如直角三角形、等腰三角形、等边三角形等图形的特征,可以用来求解一些数量关系问题。
以上是一些数量关系解题技巧,当然,在实际考试中,还需要根据具体情况选择合适的解题方法。
因此,考生需要加强对数量关系题目的练习,提高解题能力和速度。
数量关系秒杀技巧

数量关系秒杀技巧数量关系是考试中常见的题型之一,需要我们根据给定的条件,推算出未知量的值。
然而,这种题型常常会给考生带来困扰,因为它需要我们运用一些特定的技巧和运算方法。
在本文中,我们将介绍一些有效的数量关系秒杀技巧,帮助大家更好地应对这种题型。
1. 利用比例比例是数量关系题中最常用的运算方法,它可以帮助我们快速推算出未知量的值。
比例的运算方法很简单,只需要将所给条件中的两个量进行比较,然后通过相乘或相除的方法得出未知量的值。
例如,某人每天能走50公里,要走到终点总共需要10天。
那么,这个人要走多少公里才能走到终点呢?可以通过设x为终点的距离,然后利用比例运算得出:50/10=x/1,解得x=500公里。
2. 利用倍数关系倍数关系是指两个量之间的数量关系可以表示为一个整数倍的关系。
例如,如果A的年龄是B的2倍,那么A的年龄就是B年龄的2倍。
在数量关系题中,如果我们能够找到两个量之间的倍数关系,就可以通过简单的乘法运算得出未知量的值。
例如,如果甲、乙、丙三人的工资分别是600元、300元、200元,且甲的工资是乙的两倍,乙的工资是丙的1.5倍,那么甲、乙、丙三人的工资分别是多少呢?可以通过倍数关系得出:甲的工资是乙的2倍,而乙的工资是丙的1.5倍,因此甲的工资就是乙的2×1.5=3倍,所以甲、乙、丙三人的工资分别是600元、200元、133.33元。
3. 利用平均数平均数是指一组数据的总和除以数据的个数,它可以用来表示这组数据的代表值。
在数量关系题中,如果我们能够找到两个量的平均数,就可以通过简单的乘除运算得出未知量的值。
例如,某班级共有50人,其中男生数是女生数的1.5倍,那么该班级男女生人数分别是多少呢?可以通过平均数得出:男女生人数的平均数是50÷2=25,而男生数是女生数的1.5倍,因此女生数是25÷2.5=10,男生数是15。
综上所述,数量关系题并不难,只要我们掌握一些有效的秒杀技巧,就能够快速准确地解答。
行测数量关系答题技巧

行测数量关系答题技巧
1. 嘿,你知道吗?行测数量关系答题技巧里,“代入排除法”超好用啊!就像你找钥匙,一个一个试,总能找到对的那把!比如那道年龄问题,直接把选项代进去试试不就清楚啦!
2. 哇塞,“数字特性法”可是个厉害的技巧哦!这就好比走捷径,一下子就能找到答案。
像那道关于整除的题,根据数字特性不就能快速选出来嘛!
3. 哎呀呀,“方程法”可是很基础但又超实用的呢!这就像给问题搭个桥,让你轻松走过去。
比如算那个购物的花费,设个方程不就迎刃而解啦!
4. 嘿,“赋值法”也很不错哟!就像给题目一个特定的值,让它变得简单易懂。
像那道工程问题,赋个值不就好算了嘛!
5. 哇哦,“画图法”简直太直观啦!就像给你一幅地图,答案一目了然。
比如那道几何题,画个图不就清楚各种关系啦!
6. 哈哈,“分类讨论法”能让你考虑得更全面呀!这就像把东西分类整理,清楚明白。
像那种有多种情况的题,分类讨论一下不就全搞定啦!
7. 哎哟喂,“比例法”也是很妙的呢!就如同掌握了一把钥匙,能打开很多难题的锁。
比如那道速度问题,用比例关系不就能轻松求解嘛!
8. 嘿呀嘿呀,“尾数法”有时候能快速出答案哦!就像一眼就能看出
特别之处。
像那道计算的题,看看尾数不就知道啦!
9. 哇哈哈,“归纳推理法”也很牛呀!就好像从一堆线索中找出关键。
比如那道规律题,归纳一下不就找到窍门啦!
10. 嘿嘿,这些行测数量关系答题技巧是不是很厉害?就像拥有了一群得力助手,帮你攻克难题!我觉得掌握这些技巧,那在考场上可就如鱼得水啦!。
2023行测数量关系题答题技巧

2023行测数量关系题答题技巧2023行测数量关系题答题技巧技巧一:特值法当我们遇到这样的描绘,一项工程由m个人需要n天完成,每天做p小时。
或者一项工程由m个机器需要n天完成,每天做p小时。
此时设1人1天1小时效率为1,或者1个机器1天1小时效率为1。
1.工程队接到一项工程,投入40台挖掘机。
如连续施工30天,每天工作10小时,正好按期完成。
但施工过程中遭遇大暴雨,有10天时间无法施工。
工期还剩8天时,工程队增派35台挖掘机并加班施工。
问工程队假设想按期完成,平均每天需工作多少个小时?A.1.5B.2C.2.5D.3【解析】 B。
“工程队接到一项工程,投入40台挖掘机。
如连续施工30天,每天工作10小时,正好按期完成。
” 可知,我们可以设1个机器1天1小时效率为1,“根据题干间的等量关系,可以设每天需要干t小时,那么40×30×10=40×12×10+75×8t。
解得t=12,12-10=2小时。
此题答案为B。
技巧二:整除法当我们在计算工程中要求一个乘积的结果,比方列式是M=AB,求M,此时可以利用M是A或B的整数倍来猜答案。
2.甲、乙两地相距105公里,A、B两辆汽车分别从甲、乙两地同时相向出发并连续往返于两地,从甲地出发的A汽车的速度为45 公里/小时,从乙地出发的B汽车的速度为60公里/小时。
问A汽车第二次从甲地出发后与B 汽车相遇时,B 汽车共行驶了多少公里?A.280公里B.300公里C.310公里D.315公里【解析】 B。
因为A、B两车的速度之和是45+60=105公里/小时,第一次相遇用105÷105=1小时。
根据屡次相遇的结论可以知道屡次相遇的时间是第一次相遇时间的整数倍,那么屡次相遇的时间一定是整数小时。
因此,A、B的每一次相遇所走的路程应该都是整小时的,即B所走的时间也应该是整小时的,所求B所走的路程是S=60×整数小时,所以结果是60的整数倍。
数量关系解题技巧及题库

数量关系解题技巧与题库一、数量关系的解题方法1.心算胜于笔算。
2.先易后难。
3.运用速算方法。
二、数量关系的实例(一)数字推理规律举例1.容易的规律(1)自然数数列:4,5,6,7,()A.8 B.6 C.10 D.11(2)奇数数列:各个数都是奇数(单数),不能被2整除之数。
1,3,5,7,()A.11B.9C.13 D.15(3)偶数数列,即各个数都是偶数(双数),能被2整除之数。
2,4,6,8,()A.12B.10C.11 D.13(4)等差数列:相邻数之间的差值相等。
1,4,7,10,()A.11 B.13C.16 D.12(5)等比数列:相邻数之间的比值相等。
2,4,8,16,()A.21B.28C.32D.36(6)加法数列:1,0,1,1,2,(),5A.4 B.3C.5 D.7(7)减法数列:5,3,2,1,(),0A.1B.-1C.-2D.-3(8)乘法数列:1,2,2,4,8,()A.12B.15C.30D.32(9)除法数列:8,4,2,2,1,()A.3B.4 C.5 D.2(10)平方数列:数列中的各数为一个数列的平方。
1,4,9,16,()A.23B.24C.25D.26(11)立方数列:数列中的各数为一个数列的立方。
1,8,27,64,()A.100 B.115C.120D.125(12)质数系列:只能被本身和1整除的整数,也叫素数。
2,3,5,7,()A.8 B.9C.10D.11(13)题中出现的大数数列:3,7,47,2207,()A.4414B.6621C.8828D.4870847(14)纯数字数列:9,98,987,9876,()A.9875B.98765C.98764D.98763(15)分数数列:1/9,1/11,1/13,1/15,()A.1/12B.1/14C.1/17D.1/16(16)隔项自然数列:6,9,7,10,8,11,()A.12,9B.9,12C.12,12D.13,14(17)分数立方数列:1,1/8,1/27,1/64,()A.1/123B.1/124C.1/125D.1/1262.较难的规律(1)二级等差数列:2,3,5,8,()A.8B.9C.15 D.12(2)等差数列变式:3,4,6,9,(),18A.11 B.13C.12D.18(3)二级等比数列:1,3,18,216,()A.1023B.1892C.243D.5184(4)等比数列的变式:3,5,9,17,()A.23 B.33C.43D.25(5)暗的平方数列:2,3,10,15,26,35,()A.40 B.50 C.55D.60(6)暗的立方数列:3,10,29,66,()A.123 B.124 C.126D.127(7)质数的变式:20,22,25,30,37,()A.40 B.42C.48D.50(8)双重数列:分为单数项与双数项(或奇数项与偶数项)。
2023年国考行测数量关系别放弃,教你3招秒杀绝技

国考行测数量关系别放弃,教你3招秒杀绝技行测考试中,最费时费劲的题目当属数量关系,小伙伴们普遍反映虽然这类题看着不难,但是想要得出正确答案,需要消耗大量的时间。
即使最终,题目都做对了,但是用掉的时间,会使原本就题量大、题型多的行测更加“紧急”!第一个秒杀技巧一一和值法应用环境:假如题目中消失,“共”、“总共”等字眼的话,这个技巧就派上了用场了,详细怎么用呢,举个栗子说明:其次个秒杀技巧一一整除法应用环境:①只要题目中消失,“整除”、“平均”、“每”等字眼的话,就可以用的哦!②题目中消失数据:倍数、分数、百分数、比例数时也是可以用整除的。
详细怎么用呢,举2个栗子说明。
先来看第一个栗子:再来看第2个栗子:第三个秒杀技巧一一比例倍数特性应用环境:当题目中消失“百分数”、“分数”,或是题目中信息给了某两个量的比例倍数关系时,我们可以尝试使用比例倍数特性这个技巧来解答,这个和整除法其次个应用环境有些类似。
最终再举个栗子说明:【经典真题】已知甲、乙两人共有260本书,其中甲的书有13%是专业书,乙的书有12. 5% 是专业书,问甲有多少本^专业书?0A. 75B. 87C. 174D. 67【解析】正确答案为B。
看到百分号,首先要想到能否用比例倍数特性法来解题。
从题目中“甲的书有13%是专业书”就能推算出甲的非专业书有87% 所以甲非专业的只能有87或174本,这样就排解了AD选项。
那么究竟选B还是C呢,我们假设甲的非专业书是87本,则专业书就是13本,乙有专业书160X12. 5%=20本。
假设甲的非专业书为174本,则甲的非专业书就是26本,乙有专业书60X12.5%=7.5 本,非整数(书不行能是小数),排解C选项。
总结:以后我们在看到题目中有百分数,比例的时候,首先就要考虑用比例倍数特性法求解哦,1分钟内差不多就能得到正确答案!还要更多省时高效的数量解题方法?或者其他模块秒会的应试技巧吗?那肯定不能错过我的考前限定课程【压轴点睛课】啦,行测+申论考场必会的应试技巧大全,让你轻轻松松多拿10分!点击图片进入课程。
数量关系快速解题小技巧

数量关系快速解题小技巧数量关系快速解题小技巧:1.奇偶性。
对于奇偶性来说,考生们都不陌生,能被2整除的为偶数,不能被2整除的为奇数,同时对于奇偶数的一些运算来说,有:奇数+奇数=偶数;偶数+偶数=偶数; 奇数+偶数=奇数;(减法运算一样)奇数奇数=奇数;偶数偶数=偶数;奇数偶数=偶数【例1】某国家对居民收入实行下列税率方案:每人每月不超过3000美元的部分按照1%税率征收,超过3000美元不超过6000美元的部分按照X%税率征收,超过6000美元的部分按Y%税率征收(X、Y为整数)。
假设该国某居民月收入为6500美元,支付了120美元所得税,则Y为多少?A.6B.3C.5D.4【解析】选A。
30001%+3000x%+500y%=120,那么6x+y=18,x、y 都是整数,6x也一定为偶数,可以得到y 为偶数,排除B、C;由于x、y 为整数,y=6 满足条件,选择A。
2.质合性。
质数和合数是在中学时就学过的知识点,一个整数除了能被自己和1整除外,还能被其他数整除,则其为合数,否则为质数。
对于质合数来说,主要应用于质因数的分解,质因数分解的意思是每个合数都可以写成几个质数相乘的形式,把一个合数分解成若干个质因数乘积的形式,叫做分解质因数。
通过分解质因数可以很快速地求出一个合数的正约数个数,具体有以下关系:【例2】学校准备了1152 块正方形彩板,用它们拼成一个长方形,有多少种不同的拼法?A.52B.36C.28D.12【解析】答案选D。
无论是正方形还是长方形,用的都是这1152 块彩板,1152 块彩板的总面积是不变的,因为总面积不变,将其变成长方形,只是长宽改变。
由于面积等于长乘宽,所以此时长和宽就是面积的约数,有多少个长方形就有多少对长和宽,也就是求正约数的个数。
1152=2732 ,约数为 83=24 ,所以拼法有12 种。
3.公约数和公倍数。
公约数和公倍数为几个数共同的约数或者是共同的倍数,在考试中,主要研究的是最大公约数和最小公倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二十三种数量关系解题套路
1.两次相遇公式:单岸型S=(3S1+S2)/2两岸型S=3S1-S2
例题:两艘渡轮在同一时刻垂直驶离 H 河的甲、乙两岸相向而行,一艘从甲岸驶向乙岸,另一艘从乙岸开往甲岸,它们在距离较近的甲岸 720 米处相遇。
到达预定地点后,每艘船都要停留 10 分钟,以便让乘客上船下船,然后返航。
这两艘船在距离乙岸 400 米处又重新相遇。
问:该河的宽度是多少?
A. 1120 米
B. 1280 米
C. 1520 米
D. 1760 米
典型两次相遇问题,这题属于两岸型(距离较近的甲岸 720 米处相遇、距离乙岸400 米处又重新相遇)代入公式3*720-400=1760选D
如果第一次相遇距离甲岸X米,第二次相遇距离甲岸Y米,这就属于单岸型了,也就是说属于哪类型取决于参照的是一边岸还是两边岸
2.漂流瓶公式: T=(2t逆*t顺)/ (t逆-t顺)
例题:AB两城由一条河流相连,轮船匀速前进,A――B,从A 城到B城需行3天时间,而从B城到A城需行4天,从A城放一个无动力的木筏,它漂到B城需多少天?
A、3天
B、21天
C、24天
D、木筏无法自己漂到B城解:公式代入直接求得24
3.沿途数车问题公式:发车时间间隔T=(2t1*t2)/ (t1+t2 )车速/人速=(t1+t2)/ (t2-t1)
例题:小红沿某路公共汽车路线以不变速度骑车去学校,该路公共汽车也以不变速度不停地运行,没隔6分钟就有辆公共汽车从后面超过她,每隔10分钟就遇到迎面开来的一辆公共汽车,公共汽车的速度是小红骑车速度的()倍?
A. 3
B.4
C. 5
D.6
解:车速/人速=(10+6)/(10-6)=4 选B
4.往返运动问题公式:V均=(2v1*v2)/(v1+v2)
例题:一辆汽车从A地到B地的速度为每小时30千米,返回时速度为每小时20千米,则它的平均速度为多少千米/小时?()A.24 B.24.5 C.25 D.25.5
解:代入公式得2*30*20/(30+20)=24选A
5.电梯问题:能看到级数=(人速+电梯速度)*顺行运动所需时间(顺)
能看到级数=(人速-电梯速度)*逆行运动所需时间(逆)
6.什锦糖问题公式:均价A=n /{(1/a1)+(1/a2)+(1/a3)+(1/an)}
例题:商店购进甲、乙、丙三种不同的糖,所有费用相等,已知甲、乙、丙三种糖
每千克费用分别为 4.4 元,6 元,6.6 元,如果把这三种糖混在一起成为什锦
糖,那么这种什锦糖每千克成本多少元?
A.4.8 元 B.5 元 C.5.3 元 D.5.5 元
7.十字交叉法:A/B=(r-b)/(a-r)
例:某班男生比女生人数多80%,一次考试后,全班平均成级为75 分,而女生的平均分比男生的平均分高20% ,则此班女生的平均分是:
析:男生平均分X,女生1.2X
1.2X 75-X1
75=
X 1.2X-75 1.8
得X=70 女生为84
8.N人传接球M次公式:次数=(N-1)的M次方/N 最接近的整数为末次传他人次数,第
二接近的整数为末次传给自己的次数
例题:四人进行篮球传接球练习,要求每人接球后再传给别人。
开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式()。
A. 60种
B. 65种
C. 70种
D. 75种
公式解题: (4-1)的5次方 / 4=60.75最接近的是61为最后传到别人次数,第二接近的是60为最后传给自己的次数
9.一根绳连续对折N次,从中剪M刀,则被剪成(2的N次方*M+1)段
10.方阵问题:方阵人数=(最外层人数/4+1)的2次方 N排N 列最外层有4N-4人
例:某校的学生刚好排成一个方阵,最外层的人数是96人,问这个学校共有学生?
析:最外层每边的人数是96/4+1=25,则共有学生25*25=625 11.过河问题:M个人过河,船能载N个人。
需要A个人划船,共需过河(M-A)/ (N-A)次
例题 (广东05)有37名红军战士渡河,现在只有一条小船,每次只能载5人,需要几次才能渡完?()
A.7
B. 8
C.9
D.10
解:(37-1)/(5-1)=9
12.星期日期问题:闰年(被4整除)的2月有29日,平年(不能被4整除)的2月有28
日,记口诀:一年就是1,润日再加1;一月就是2,多少再补算
例:2002年 9月1号是星期日2008年9月1号是星期几?
因为从2002到2008一共有6年,其中有4个平年,2个闰年,求星期,则:
4X1+2X2=8,此即在星期日的基础上加8,即加1,第二天。
例:2004年2月28日是星期六,那么2008年2月28日是星期几?
4+1=5,即是过5天,为星期四。
(08年2 月29日没到)13.复利计算公式:本息=本金*{(1+利率)的N次方},N为相差年数
例题:某人将10万远存入银行,银行利息2%/年,2年后他从银行取钱,需缴纳利息税,税率为20%,则税后他能实际提取出的本金合计约为多少万元?()
A.10.32
B.10.44
C.10.50D10.61
两年利息为(1+2%)的平方*10-10=0.404税后的利息为0.404*(1-20%)约等于0.323,则提取出的本金合计约为10.32万元14.牛吃草问题:草场原有草量=(牛数-每天长草量)*天数
例题:有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?
A、16
B、20
C、24
D、28
解:(10-X)*8=(8-X)*12 求得X=4(10-4)*8=(6-4)*Y 求得答案Y=24公式熟练以后可以不设方程直接求出来
15.植树问题:线型棵数=总长/间隔+1环型棵数=总长/间隔楼间棵数=总长/间隔-1
例题:一块三角地带,在每个边上植树,三个边分别长156M 186M 234M,树与树之间距离为6M,三个角上必须栽一棵树,共需多少树?
A 93
B 95
C 96
D 99
16:比赛场次问题:淘汰赛仅需决冠亚军比赛场次=N-1淘汰赛
需决前四名场次=N
单循环赛场次为组合N人中取2双循环赛场次为排列N人中排2
1. 100名男女运动员参加乒乓球单打淘汰赛,要产生男女冠军各一名,则要安排单打赛多少场?()
A. 95
B. 97
C. 98
D. 99
【解析】答案为C。
在此完全不必考虑男女运动员各自的人数,只需考虑把除男女冠军以外的人淘汰掉就可以了,因此比赛场次是100-2=98(场)。
2.某机关打算在系统内举办篮球比赛,采用单循环赛制,根据时间安排,只能进行21场比赛,请问最多能有几个代表队参赛?()
A. 6
B. 7
C. 12
D. 14
【解析】答案为B。
根据公式,采用单循环赛的比赛场次=参赛选手数×(参赛选手数-1 )/2,因此在21场比赛的限制下,参赛代表队最多只能是7队。
3.某次比赛共有32名选手参加,先被平均分成8组,以单循环的方式进行小组赛;每组前2名队员再进行淘汰赛,直到决出冠军。
请问,共需安排几场比赛?() A. 48 B.
63 C. 64 D. 65
【解析】答案为B。
根据公式,第一阶段中,32人被平均分成8组,每组4个人,则每组单循环赛产生前2名需要进行的比赛场
次是:4×(4-1)÷2=6(场),8组共48场;第二阶段中,有2×8=16人进行淘汰赛,决出冠军,则需要比赛的场次就是:参赛选手的人数-1,即15场。
最后,总的比赛场次是48+15=63(场)。
4.某学校承办系统篮球比赛,有12个队报名参加,比赛采用混合制,即第一阶段采用分2组进行单循环比赛,每组前3名进入第二阶段;第二阶段采用淘汰赛,决出前三名。
如果一天只能进行2场比赛,每6场需要休息一天,请问全部比赛共需几天才能完成?()
A. 23
B. 24
C. 41
D. 42
【解析】答案为A。
根据公式,第一阶段12个队分成2组,每组6个人,则每组单循环赛产生前2名需要进行的比赛场次是:6×(6-1)÷2=15(场),2组共30场;第二阶段中,有2
×3=6人进行淘汰赛,决出前三名,则需要比赛的场次就是:参赛选手的人数,即6场,最后,总的比赛场次是30+6=36(场)。
又,“一天只能进行2场比赛”,则36场需要18天;“每6场需要休息一天”,则36场需要休息36÷6-1=5(天),所以全部比赛完成共需18+5=23(天)。