江苏省无锡市天一中2018_2019学年高三数学11月月考试卷(含解析)
岭东区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

岭东区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x+2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( )A .0B .0或C .或D .0或2. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是()A .60°B .45°C .90°D .120°3. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( )A .(﹣1,2]B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)4. 抛物线y=﹣8x 2的准线方程是( )A .y=B .y=2C .x=D .y=﹣2 5. 双曲线=1(m ∈Z )的离心率为()A .B .2C .D .36. 已知x >1,则函数的最小值为()A .4B .3C .2D .17. 已知a ,b 是实数,则“a 2b >ab 2”是“<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件8. 分别是的中线,若,且与的夹角为,则=( ),AD BE ABC ∆1AD BE ==AD u u u r BE u u u r 120oAB AC ⋅u u u r u u u r (A ) ( B ) (C ) (D )134923899. 某学校10位同学组成的志愿者组织分别由李老师和张老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲冋学收到李老师或张老师所发活动通知信息的概率为( )A .B .C .D .10.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x的图象是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .①B .②C .③D .④11.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为()A .6B .9C .12D .1812.以下四个命题中,真命题的是( )A .,(0,)x π∃∈sin tan x x=B .“对任意的,”的否定是“存在,x R ∈210x x ++>0x R ∈20010x x ++<C .,函数都不是偶函数R θ∀∈()sin(2)f x x θ=+D .中,“”是“”的充要条件ABC ∆sin sin cos cos A B A B +=+2C π=【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.二、填空题13.计算:×5﹣1= .14.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜率的取值范围是 .15.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .16.已知是定义在上函数,是的导数,给出结论如下:()f x R ()f x '()f x ①若,且,则不等式的解集为;()()0f x f x '+>(0)1f =()xf x e -<(0,)+∞②若,则;()()0f x f x '->(2015)(2014)f ef >③若,则;()2()0xf x f x '+>1(2)4(2),n n f f n N +*<∈④若,且,则函数有极小值;()()0f x f x x'+>(0)f e =()xf x 0⑤若,且,则函数在上递增.()()xe xf x f x x'+=(1)f e =()f x (0,)+∞其中所有正确结论的序号是.17.若函数的定义域为,则函数的定义域是 .()f x []1,2-(32)f x -18.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.三、解答题19.(本小题满分12分)设曲线:在点处的切线与轴交与点,函数.C ln (0)y a x a =≠00(,ln )T x a x x 0((),0)A f x 2()1xg x x=+(1)求,并求函数在上的极值;0()f x ()f x (0,)+∞(2)设在区间上,方程的实数解为,的实数解为,比较与的大小.(0,1)()f x k =1x ()g x k =2x 1x 2x 20.已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为F 1,F 2,且|F 1F 2|=2,点(1,)在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线l 与椭圆C 相交于A ,B 两点,且△AF 2B 的面积为,求以F 2为圆心且与直线l 相切的圆的方程. 21.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,计算得x i =80,y i =20,x i y i =184,x i 2=720.(1)求家庭的月储蓄对月收入的回归方程;(2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.22.已知函数.()21ln ,2f x x ax x a R =-+∈(1)令,讨论的单调区间;()()()1g x f x ax =--()g x(2)若,正实数满足,证明.2a =-12,x x ()()12120f x f x x x ++=12x x +≥23.已知等差数列满足:=2,且,成等比数列。
方正县第一中学2018-2019学年高三上学期11月月考数学试卷含答案

方正县第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是( )A. B. C.D.2. 给出下列函数: ①f (x )=xsinx ; ②f (x )=e x +x ; ③f (x )=ln(﹣x );∃a >0,使f (x )dx=0的函数是( ) A .①②B .①③C .②③D .①②③3. 函数y=2sin 2x+sin2x 的最小正周期( ) A.B.C .πD .2π4. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( ) A .4B .5C .6D .95. 《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A.钱 B.钱 C.钱 D.钱班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________6. 已知F 1,F 2分别是双曲线C :﹣=1(a >0,b >0)的左右两个焦点,若在双曲线C 上存在点P 使∠F 1PF 2=90°,且满足2∠PF 1F 2=∠PF 2F 1,那么双曲线C 的离心率为( )A .+1B .2C .D .7. 已知定义在R 上的函数f (x )满足f (x )=,且f (x )=f (x+2),g (x )=,则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( ) A .12 B .11C .10D .98. 在△ABC 中,,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形9. 一个圆的圆心为椭圆的右焦点,且该圆过椭圆的中心交椭圆于P ,直线PF 1(F 1为椭圆的左焦点)是该圆的切线,则椭圆的离心率为( )A .B .C .D .10.给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 11.已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个12.已知a ,b 是实数,则“a 2b >ab 2”是“<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件二、填空题13.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .14.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( ) A .1 B .±1 C 2 D .2±【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.15.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)16.设集合A={﹣3,0,1},B={t 2﹣t+1}.若A ∪B=A ,则t= .17.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则的值为 .18.用描述法表示图中阴影部分的点(含边界)的坐标的集合为 .三、解答题19.(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,千克每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.20.已知函数()x f x e x a =-+,21()x g x x a e=++,a R ∈. (1)求函数()f x 的单调区间;(2)若存在[]0,2x ∈,使得()()f x g x <成立,求的取值范围; (3)设1x ,2x 是函数()f x 的两个不同零点,求证:121x x e +<.21.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问 卷调查,得到了如下的22⨯(1(2)在上述抽取的6人中选2人,求恰有一名女性的概率.(3)为了研究心肺疾病是否与性别有关,请计算出统计量2K ,判断心肺疾病与性别是否有关?(参考公式:))()()(()(2d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=)22.已知S n 为等差数列{a n }的前n 项和,且a 4=7,S 4=16. (1)求数列{a n }的通项公式; (2)设b n =,求数列{b n }的前n 项和T n .23.(本小题满分12分)已知椭圆C 的离心率为2,A 、B 分别为左、右顶点, 2F 为其右焦点,P 是椭圆C 上异于A 、B 的 动点,且PA PB 的最小值为-2. (1)求椭圆C 的标准方程;(2)若过左焦点1F 的直线交椭圆C 于M N 、两点,求22F M F N 的取值范围.24.在三棱柱ABC ﹣A 1B 1C 1中,侧面ABB 1A 1为矩形,AB=2,AA 1=2,D 是AA 1的中点,BD 与AB 1交于点O ,且CO ⊥ABB 1A 1平面. (1)证明:BC ⊥AB 1;(2)若OC=OA ,求直线CD 与平面ABC 所成角的正弦值.方正县第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:根据函数与导数的关系:可知,当f′(x)≥0时,函数f(x)单调递增;当f′(x)<0时,函数f(x)单调递减结合函数y=f(x)的图象可知,当x<0时,函数f(x)单调递减,则f′(x)<0,排除选项A,C当x>0时,函数f(x)先单调递增,则f′(x)≥0,排除选项B故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题2.【答案】B【解析】解:对于①,f(x)=xsinx,∵(sinx﹣xcosx)′=xsinx,∴xsinxdx=(sinx﹣xcosx)=2sina﹣2acosa,令2sina﹣2acosa=0,∴sina=acosa,又cosa≠0,∴tana=a;画出函数y=tanx与y=x的部分图象,如图所示;在(0,)内,两函数的图象有交点,即存在a>0,使f(x)dx=0成立,①满足条件;对于②,f(x)=e x+x,(e x+x)dx=(e x+x2)=e a﹣e﹣a;令e a﹣e﹣a=0,解得a=0,不满足条件;对于③,f(x)=ln(﹣x)是定义域R上的奇函数,且积分的上下限互为相反数,所以定积分值为0,满足条件;综上,∃a>0,使f(x)dx=0的函数是①③.故选:B.【点评】本题主要考查了定积分运算性质的应用问题,当被积函数为奇函数且积分区间对称时,积分值为0,是综合性题目.3.【答案】C【解析】解:函数y=2sin2x+sin2x=2×+sin2x=sin(2x﹣)+1,则函数的最小正周期为=π,故选:C.【点评】本题主要考查三角恒等变换,函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为,属于基础题.4.【答案】B【解析】解:①x=0时,y=0,1,2,∴x﹣y=0,﹣1,﹣2;②x=1时,y=0,1,2,∴x﹣y=1,0,﹣1;③x=2时,y=0,1,2,∴x﹣y=2,1,0;∴B={0,﹣1,﹣2,1,2},共5个元素.故选:B.5.【答案】B【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,则a﹣2d=a﹣2×=.故选:B.6.【答案】A【解析】解:如图,∵∠F1PF2=90°,且满足2∠PF1F2=∠PF2F1,∴∠F1PF2=90°,∠PF1F2=30°,∠PF2F1=60°,设|PF|=x,则|PF1|=,|F1F2|=2x,2∴2a=,2c=2x,∴双曲线C的离心率e==.故选:A.【点评】本题考查双曲线的离心率的求法,是中档题,解题时要认真审题,注意双曲线的性质的合理运用.7.【答案】B【解析】解:∵f(x)=f(x+2),∴函数f(x)为周期为2的周期函数,函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)对称,函数f(x)与g(x)在[﹣3,7]上的交点也关于(2,3)对称,设A,B,C,D的横坐标分别为a,b,c,d,则a+d=4,b+c=4,由图象知另一交点横坐标为3,故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11,即函数y=f(x)﹣g(x)在[﹣3,7]上的所有零点之和为11.故选:B.【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.8.【答案】A【解析】解:∵,又∵cosC=,∴=,整理可得:b2=c2,∴解得:b=c.即三角形一定为等腰三角形.故选:A.9.【答案】D【解析】解:设F2为椭圆的右焦点由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,所以点P是切点,所以PF2=c并且PF1⊥PF2.又因为F1F2=2c,所以∠PF1F2=30°,所以.根据椭圆的定义可得|PF1|+|PF2|=2a,所以|PF2|=2a﹣c.所以2a﹣c=,所以e=.故选D.【点评】解决此类问题的关键是熟练掌握直线与圆的相切问题,以即椭圆的定义.10.【答案】B【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.11.【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为M∩N,又由M={x|﹣2≤x﹣1≤2}得﹣1≤x≤3,即M={x|﹣1≤x≤3},在此范围内的奇数有1和3.所以集合M∩N={1,3}共有2个元素,故选B.12.【答案】C【解析】解:由a2b>ab2得ab(a﹣b)>0,若a﹣b>0,即a>b,则ab>0,则<成立,若a﹣b<0,即a<b,则ab<0,则a<0,b>0,则<成立,若<则,即ab(a﹣b)>0,即a2b>ab2成立,即“a2b>ab2”是“<”的充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.二、填空题13.【答案】【解析】解:法1:取A1C1的中点D,连接DM,则DM∥C1B1,在在直三棱柱中,∠ACB=90°,∴DM⊥平面AA1C1C,则∠MAD是AM与平面AA1C1C所的成角,则DM=,AD===,则tan∠MAD=.法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,则∵AC=BC=1,侧棱AA=,M为A1B1的中点,1∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量设AM与平面AA1C1C所成角为θ,则sinθ=||=则tanθ=故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.14.【答案】A【解析】15.【答案】10cm【解析】解:作出圆柱的侧面展开图如图所示,设A关于茶杯口的对称点为A′,则A′A=4cm,BC=6cm,∴A′C=8cm,∴A′B==10cm.故答案为:10.【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决.16.【答案】0或1.【解析】解:由A∪B=A知B⊆A,∴t2﹣t+1=﹣3①t2﹣t+4=0,①无解或t2﹣t+1=0②,②无解或t2﹣t+1=1,t2﹣t=0,解得t=0或t=1.故答案为0或1.【点评】本题考查集合运算及基本关系,掌握好概念是基础.正确的转化和计算是关键.17.【答案】.【解析】解:已知数列1,a 1,a 2,9是等差数列,∴a 1+a 2 =1+9=10.数列1,b 1,b 2,b 3,9是等比数列,∴ =1×9,再由题意可得b 2=1×q 2>0 (q 为等比数列的公比),∴b 2=3,则=,故答案为.【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题.18.【答案】 {(x ,y )|xy >0,且﹣1≤x ≤2,﹣≤y ≤1} .【解析】解:图中的阴影部分的点设为(x ,y )则{x ,y )|﹣1≤x ≤0,﹣≤y ≤0或0≤x ≤2,0≤y ≤1}={(x ,y )|xy >0且﹣1≤x ≤2,﹣≤y ≤1}故答案为:{(x ,y )|xy >0,且﹣1≤x ≤2,﹣≤y ≤1}.三、解答题19.【答案】(本小题满分12分)解:本题考查频率分布直方图,以及根据频率分布直方图估计中位数与平均数. (Ⅰ)由(0.0050.0150.020.025)101a ++++⨯=得0.035a = (3分)每天销售量的中位数为0.15701074.30.35+⨯=千克 (6分) (Ⅱ)若当天的销售量为[50,60),则超市获利554202180⨯-⨯=元;若当天的销售量为[60,70),则超市获利654102240⨯-⨯=元; 若当天的销售量为[70,100),则超市获利754300⨯=元, (10分) ∴获利的平均值为0.151800.22400.65300270⨯+⨯+⨯=元. (12分)20.【答案】(1)()f x 的单调递增区间为(0,)+∞,单调递减区间为(,0)-∞;(2)1a >或0a <;(3)证明见解析. 【解析】试题解析: (1)'()1xf x e =-.令'()0f x >,得0x >,则()f x 的单调递增区间为(0,)+∞;] 令'()0f x <,得0x <,则()f x 的单调递减区间为(,0)-∞. (2)记()()()F x f x g x =-,则21()2xx F x e x a a e=--+-, 1'()2x xF x e e =+-. ∵112220x x x x e e e e+-≥⋅-=,∴'()0F x ≥, ∴函数()F x 为(上的增函数, ∴当[]0,2x ∈时,()F x 的最小值为2(0)F a a =-.∵存在[]0,2x ∈,使得()()f x g x <成立,∴()F x 的最小值小于0,即20a a -<,解得1a >或0a <.1(3)由(1)知,0x =是函数()f x 的极小值点,也是最小值点,即最小值为(0)1f a =+, 则只有1a <-时,函数()f x 由两个零点,不妨设12x x <, 易知10x <,20x >,∴1222()()()()f x f x f x f x -=--2222()()xx e x a e x a -=-+-++2222x x e e x -=--,令()2x x h x e e x -=--(0x ≥),考点:导数与函数的单调性;转化与化归思想. 21.【答案】【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.22.【答案】【解析】解:(1)设等差数列{a n}的公差为d,依题意得…(2分)解得:a1=1,d=2a n=2n﹣1…(2)由①得…(7分)∴…(11分)∴…(12分)【点评】本题考查等差数列的通项公式的求法及数列的求和,突出考查裂项法求和的应用,属于中档题.23.【答案】(1)22142x y+=;(2)22[2,7)F M F N∈-.【解析】试题解析:(1)根据题意知2c a =,即2212c a =,∴22212a b a -=,则222a b =, 设(,)P x y ,∵(,)(,)PA PB a x y a x y =-----,2222222221()222a x x a y x a x a =-+=-+-=-,∵a x a -≤≤,∴当0x =时,2min ()22a PA PB =-=-, ∴24a =,则22b =.∴椭圆C 的方程为22142x y +=. 1111]设11(,)M x y ,22(,)N x y ,则212212x x k+=-+,21224(1)12k x x k -=+,∵211(2,)F M x y =-,222()F N x y =,∴222121212)2(F M F N x x x x k x x =+++2221212(1))22k x x x x k =+++++22222224(1)42(1)2(1)221212k k k k k k k --=++-++++ 29712k =-+.∵2121k +≥,∴210112k<≤+. ∴297[2,7)12k-∈-+. 综上知,22[2,7)F M F N ∈-.考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.24.【答案】【解析】(I )证明:由题意,因为ABB 1A 1是矩形,D 为AA 1中点,AB=2,AA 1=2,AD=,所以在直角三角形ABB 1中,tan ∠AB 1B==,在直角三角形ABD 中,tan ∠ABD==,所以∠AB 1B=∠ABD ,又∠BAB 1+∠AB 1B=90°,∠BAB 1+∠ABD=90°, 所以在直角三角形ABO 中,故∠BOA=90°, 即BD ⊥AB 1,又因为CO ⊥侧面ABB 1A 1,AB 1⊂侧面ABB 1A 1, 所以CO ⊥AB 1 所以,AB 1⊥面BCD , 因为BC ⊂面BCD , 所以BC ⊥AB 1.(Ⅱ)解:如图,分别以OD ,OB 1,OC 所在的直线为x ,y ,z 轴,以O 为原点,建立空间直角坐标系,则A (0,﹣,0),B (﹣,0,0),C (0,0,),B 1(0,,0),D (,0,0),又因为=2,所以所以=(﹣,,0),=(0,,),=(,,),=(,0,﹣),设平面ABC的法向量为=(x,y,z),则根据可得=(1,,﹣)是平面ABC的一个法向量,设直线CD与平面ABC所成角为α,则sinα=,所以直线CD与平面ABC所成角的正弦值为.…【点评】本题考查了直线与平面垂直的性质,考查线面角,考查向量方法的运用,属于中档题.。
江苏省无锡市市北高级中学2019届高三上学期10月月考数学(理科)试卷

无锡市市北高级中学2018—2019学年第一学期高三年级数学学科阶段性测试检测卷(理科)命题人:孙 红 审题人:徐敏蓉 校对人:孙 红时 间:120分钟 分 值: 160 分 日 期:2018.10一、填空题:本大题共14小题,每小题5分,共70分。
1. 已知集合}22{},1{2++==≤=x x y y B x x A ,则B A =___________2. 由命题“02,2≤++∈∃m x x R x ”是假命题,求得实数m 的取值范围是),(+∞a ,则实数a 的值是_____3. 函数)32lg()(x x x f -=的定义域为____________4. 函数])2,1[(log 2)(2∈+=x x x f x 的值域为____________5. “6πα=”是“1sin 2α=”的 条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)6. 已知函数⎪⎩⎪⎨⎧>-≤=-0),1(0,)21()(1x x f x x f x ,则)3log 1(2+f =____________7. 已知函数⎩⎨⎧>+≤+=0,0,)(22x bx ax x x x x f 为奇函数,则b a +=___________ 8. 已知函数],[,2)(2b a x x x x f ∈-=的值域为]3,1[-,则a b -的取值范围是__________9. 已知定义在R 上的偶函数)(x f 在),0[+∞上是增函数,且1)2(=f ,若1)(≤+a x f 对]1,1[-∈x 恒成立,则实数 a 的取值范围是____________10. 已知直线y = k x 与曲线y = 2e x 相切,则实数k =11. 已知f (x ) 是定义在R 上的奇函数,当0 ≤ x ≤ 1时,f (x ) = x 2,当x > 1时,f (x +1) = f (x ) + f (1).若直线y = k x 与函数y = f (x ) 的图象恰有5个不同的公共点,则实数k 的值为12. 若函数f (x ) = x 3- ax 2 ( a > 0 )在区间(320,+∞)上是单调函数,则使方程f (x ) = 1000有整数解的实数a 的个数是13. 设f (x ) 是定义在R 上的可导函数,且满足f (x ) + xf’ (x ) > 0,则不等式f(1+x )>1-x f (12-x )的解集为14. .设a > 0,函数f (x ) =xa x 2+,g (x ) = x -ln x ,若对任意的x 1,x 2∈[1,e ],都有f (x 1) ≥ g (x 2)成立,则实数a 的取值范围为_______二、解答题:本大题共6题,15、16、17每题14分,18、19、20每题16分,共90分。
萧山市二中2018-2019学年高三上学期11月月考数学试卷含答案

萧山市二中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 2. 下面各组函数中为相同函数的是( )A .f (x )=,g (x )=x ﹣1B .f (x )=,g (x )=C .f (x )=ln e x 与g (x )=e lnxD .f (x )=(x ﹣1)0与g (x )=3. 下列式子表示正确的是( )A 、{}00,2,3⊆B 、{}{}22,3∈C 、{}1,2φ∈D 、{}0φ⊆ 4. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( ) A .(¬p )∨q B .p ∨q C .p ∧q D .(¬p )∧(¬q )5. 在△ABC 中,若A=2B ,则a 等于( ) A .2bsinAB .2bcosAC .2bsinBD .2bcosB6. 特称命题“∃x ∈R ,使x 2+1<0”的否定可以写成( ) A .若x ∉R ,则x 2+1≥0B .∃x ∉R ,x 2+1≥0C .∀x ∈R ,x 2+1<0D .∀x ∈R ,x 2+1≥0 7. 已知AC ⊥BC ,AC=BC ,D满足=t+(1﹣t),若∠ACD=60°,则t 的值为( )A.B.﹣C.﹣1D.8. 下列各组函数为同一函数的是( ) A .f (x )=1;g (x )= B .f (x )=x ﹣2;g (x )= C .f (x )=|x|;g (x )=D .f (x )=•;g (x )= 9. 已知表示数列的前项和,若对任意的满足,且,则( )A .B .C .D .10.在三角形中,若,则的大小为( )A .B .C .D .11.设数集M={x|m ≤x ≤m+},N={x|n﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( ) A. B.C.D.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________12.若偶函数f (x )在(﹣∞,0)内单调递减,则不等式f (﹣1)<f (lg x )的解集是( )A .(0,10)B .(,10)C .(,+∞)D .(0,)∪(10,+∞)二、填空题13.如图为长方体积木块堆成的几何体的三视图,此几何体共由 块木块堆成.14.已知(2x ﹣)n展开式的二项式系数之和为64,则其展开式中常数项是 .15.曲线y=x 2和直线x=0,x=1,y= 所围成的图形的面积为 . 16.某几何体的三视图如图所示,则该几何体的体积为17.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .18.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________. 三、解答题19.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名55Ⅰ2×295%的把握认为“歌迷”与性别有关?“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌213.841 6.635附:K2=.20.求函数f(x)=﹣4x+4在[0,3]上的最大值与最小值.21.如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线.22.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为.(Ⅰ)求甲队分别以4:2,4:3获胜的概率;(Ⅱ)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.23.设函数f(x)=lnx+,k∈R.(Ⅰ)若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,求k值;(Ⅱ)若对任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范围;(Ⅲ)已知函数f(x)在x=e处取得极小值,不等式f(x)<的解集为P,若M={x|e≤x≤3},且M∩P≠∅,求实数m的取值范围.24.已知{a n}为等比数列,a1=1,a6=243.S n为等差数列{b n}的前n项和,b1=3,S5=35.(1)求{a n}和{B n}的通项公式;(2)设T n=a1b1+a2b2+…+a n b n,求T n.萧山市二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】D 【解析】试题分析:在ABC ∆中,22tan sin tan sin A B B A =,化简得22sin sin sin sin cos cos A BB A A B=,解得 sin sin sin cos sin cos cos cos B AA AB B A B =⇒=,即si n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,故选D .考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2A B π+=是试题的一个难点,属于中档试题.2. 【答案】D【解析】解:对于A :f (x )=|x ﹣1|,g (x )=x ﹣1,表达式不同,不是相同函数;对于B :f (x )的定义域是:{x|x ≥1或x ≤﹣1},g (x )的定义域是{x}x ≥1},定义域不同,不是相同函数;对于C :f (x )的定义域是R ,g (x )的定义域是{x|x >0},定义域不同,不是相同函数; 对于D :f (x )=1,g (x )=1,定义域都是{x|x ≠1},是相同函数;故选:D .【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题. 3. 【答案】D 【解析】试题分析:空集是任意集合的子集。
江苏省无锡市天一中2018-2019学年高三11月月考数学试卷

㈠ 䦸 吠和
㈠䦸 吠 t 䦸 ㈮ t 存在相同的极值点,
而
在
㈠
䦸㈮处有极大值,
吠
所以
䦸㈮ 吠
㈠
,所以
ㄼ
㈠ ㄼ,故答案为 3.
【点睛】
本题主要考查利用导数判断函数的单调性以及函数的极值,属于中档题.求函数 极值的步骤: (1) 确定函数的定义域;(2) 求导数 ;(3) 解方程 ㈠ h㤰求出函数定义域内的所有根;(4) 列 表检查 在 ㈠ h 的根 h左右两侧值的符号,如果左正右负(左增右减),那么 在 h处取 极大值,如果左负右正(左减右增),那么 在 h处取极小值. (5)如果只有一个极值点,则在 该处即是极值也是最值.
10.
3
【解析】试题分析:由 tanxtany 2 可得 sinxsiny 2 .又因为 sinxsiny 1 所以 cosxcosy 1 .
cosxcosy
3
6
又因为 cos x y cosxcosy sinxsiny 1 .又因为 0 y x 所以 0 x y .所以
㈠ 吠 t 是偶函数,则实数 ㈠______.
吠
6.已知 t h,函数
㈠ 䦸 吠和
㈠䦸 吠 t 䦸 ㈮ t 存在相同的极值点,则
㈠________.
7.已知函数 ㈠ 吠sin t
t hh.若 ㄼ ㈠ h㤰 吠 ㈠ 吠,则实数 的最小值为______.
8.已知函数 ㈠ sin
h㤰 与函数
㈠ ㈮ tan 的图象交于 㤰〳㤰 三点,则 〳 的面
㤰
h 有零点,且所有零点的和不 th
14.设函数 h ㈠ 䦸 h 䦸 䦸 则 的取值范围是____.
t 吠 t ㈮( h).若存在 h 䦸 ㈮ , ㈮ ,使 hh h,
岭东区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

岭东区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )是定义在R 上的偶函数,且对任意的x ∈R ,都有f (x+2)=f (x ).当0≤x ≤1时,f (x )=x 2.若直线y=x+a 与函数y=f (x )的图象在[0,2]内恰有两个不同的公共点,则实数a 的值是( ) A .0B .0或C.或D .0或2. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AB ,BB 1的中点,则异面直线EF 和BC 1所成的角是( )A .60°B .45°C .90°D .120°3. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( ) A .(﹣1,2]B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)4. 抛物线y=﹣8x 2的准线方程是( ) A .y=B .y=2C .x=D .y=﹣25.双曲线=1(m ∈Z )的离心率为( ) A.B .2C.D .36. 已知x >1,则函数的最小值为( )A .4B .3C .2D .17. 已知a ,b 是实数,则“a 2b >ab 2”是“<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件8. ,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( ) (A )13 ( B ) 49 (C ) 23 (D ) 899. 某学校10位同学组成的志愿者组织分别由李老师和张老师负责.每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立、随机地发给4位同学,且所发信息都能收到.则甲冋学收到李老师或张老师所发活动通知信息的概率为( ) A.B.C.D.10.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x 的图象是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .①B .②C .③D .④11.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为( )A .6B .9C .12D .1812.以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.二、填空题13.计算:×5﹣1= .14.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜率的取值范围是 .15.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .16.已知()f x 是定义在R 上函数,()f x '是()f x 的导数,给出结论如下: ①若()()0f x f x '+>,且(0)1f =,则不等式()x f x e -<的解集为(0,)+∞; ②若()()0f x f x '->,则(2015)(2014)f ef >; ③若()2()0xf x f x '+>,则1(2)4(2),n n f f n N +*<∈;④若()()0f x f x x'+>,且(0)f e =,则函数()xf x 有极小值0; ⑤若()()xe xf x f x x'+=,且(1)f e =,则函数()f x 在(0,)+∞上递增.其中所有正确结论的序号是 .17.若函数()f x 的定义域为[]1,2-,则函数(32)f x -的定义域是 .18.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.三、解答题19.(本小题满分12分)设曲线C :ln (0)y a x a =≠在点00(,ln )T x a x 处的切线与x 轴交与点0((),0)A f x ,函数2()1xg x x=+. (1)求0()f x ,并求函数()f x 在(0,)+∞上的极值;(2)设在区间(0,1)上,方程()f x k =的实数解为1x ,()g x k =的实数解为2x ,比较1x 与2x 的大小.20.已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为F 1,F 2,且|F 1F 2|=2,点(1,)在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线l 与椭圆C 相交于A ,B 两点,且△AF 2B 的面积为,求以F 2为圆心且与直线l 相切的圆的方程.21.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,计算得x i =80,y i =20,x i y i =184,x i 2=720.(1)求家庭的月储蓄对月收入的回归方程; (2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.22.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明1212x x +≥.23.已知等差数列满足:=2,且,成等比数列。
松江区一中2018-2019学年高三上学期11月月考数学试卷含答案

松江区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知菱形ABCD 的边长为3,∠B=60°,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( )A .15πB .C .πD .6π2. 满足下列条件的函数中,为偶函数的是( ))(x f )(x f A.B.C. D.()||xf e x =2()x xf e e =2(ln )ln f x x =1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.3. 曲线y=e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( )A . e 2B .2e 2C .e 2D . e 24. 如果点P 在平面区域220,210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q 在曲线22(2)1x y ++=上,那么||PQ 的最小值为()A1-B1C. 1- D1-5. 点P 是棱长为1的正方体ABCD ﹣A 1B 1C 1D 1的底面A 1B 1C 1D 1上一点,则的取值范围是()A .[﹣1,﹣]B .[﹣,﹣]C .[﹣1,0]D .[﹣,0]6. 已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是( )A .6B .0C .2D .27. 如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( )A .4B .5C .D.8. 函数y=2sin 2x+sin2x 的最小正周期( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .C .πD .2π9. 若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( )A .a >B .﹣<a <1C .a <﹣1D .a >﹣110.过直线3x ﹣2y+3=0与x+y ﹣4=0的交点,与直线2x+y ﹣1=0平行的直线方程为( )A .2x+y ﹣5=0B .2x ﹣y+1=0C .x+2y ﹣7=0D .x ﹣2y+5=011.已知点A (﹣2,0),点M (x ,y )为平面区域上的一个动点,则|AM|的最小值是()A .5B .3C .2D .12.已知tanx=,则sin 2(+x )=( )A .B .C .D .二、填空题13.已知实数x ,y 满足约束条,则z=的最小值为 . 14.抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF|=4,则点M 的横坐标x= .15.在中,角的对边分别为,若,的面积,ABC ∆A B C 、、a b c 、、1cos 2c B a b ⋅=+ABC ∆S =则边的最小值为_______.c 【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.16.在直角梯形分别为的中点,,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===,AB AC 点在以为圆心,为半径的圆弧上变动(如图所示).若,其中,P A AD DE AP ED AF λμ=+u u u v u u u v u u u v,R λμ∈则的取值范围是___________.2λμ-17.已知、、分别是三内角的对应的三边,若,则a b c ABC ∆A B C 、、C a A c cos sin -=的取值范围是___________.3cos()4A B π-+【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.18.(sinx+1)dx 的值为 .三、解答题19.设函数f (x )=ae x (x+1)(其中e=2.71828…),g (x )=x 2+bx+2,已知它们在x=0处有相同的切线.(Ⅰ)求函数f (x ),g (x )的解析式;(Ⅱ)求函数f (x )在[t ,t+1](t >﹣3)上的最小值;(Ⅲ)若对∀x ≥﹣2,kf (x )≥g (x )恒成立,求实数k 的取值范围. 20.设函数f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x+2)=﹣f (x ),当x ∈[0,2]时,f (x )=2x ﹣x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)求f (0)+f (1)+f (2)+…+f (2015)的值. 21.已知函数f(x)=log2(m+)(m∈R,且m>0).(1)求函数f(x)的定义域;(2)若函数f(x)在(4,+∞)上单调递增,求m的取值范围.22.已知函数f(x)=xlnx,求函数f(x)的最小值.23.(本小题满分12分)设f(x)=-x2+ax+a2ln x(a≠0).(1)讨论f(x)的单调性;(2)是否存在a>0,使f(x)∈[e-1,e2]对于x∈[1,e]时恒成立,若存在求出a的值,若不存在说明理由.24.(理)设函数f(x)=(x+1)ln(x+1).(1)求f(x)的单调区间;(2)若对所有的x≥0,均有f(x)≥ax成立,求实数a的取值范围.松江区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A D.D A D A解析:解:由作出可D C B A题号1112答案D D 二、填空题13. .14. 3 .15.116.[]1,1-17.18. 2 .三、解答题19.20.21.22.23.24.。
2018-2019学年江苏省无锡市八年级(上)期末数学试卷解析版

2018-2019学年江苏省无锡市八年级(上)期末数学试卷一、选择题1.(3分)的值是()A.4B.2C.±4D.±22.(3分)若2x﹣5没有平方根,则x的取值范围为()A.x B.x C.x D.x3.(3分)把29500精确到1000的近似数是()A.2.95×103B.2.95×104C.2.9×104D.3.0×1044.(3分)下列图案中的轴对称图形是()A.B.C.D.5.(3分)等腰三角形的两边长分别为5和11,则这个三角形的周长为()A.16B.27C.16或27D.21或276.(3分)以下各组数为边长的三角形,其中构成直角三角形的一组是()A.4、5、6B.3、5、6C.D.2,7.(3分)在平面直角坐标系中,点(﹣3,4)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)下列函数中,y是x的正比例函数的是()A.y=﹣B.y=﹣2x﹣2C.y=2(x﹣2)D.y=9.(3分)给出下列4个命题:①两边及其中一边上的中线对应相等的两个三角形全等;②两边及其中一边上的高对应相等的两个三角形全等;③两边及一角对应相等的两个三角形全等;④有两角及其中一角的角平分线对应相等的两个三角形全等.其中正确的个数有()A.1个B.2个C.3个D.4个10.(3分)如图,在四边形ABCD中,对角线AC⊥BD,垂足为点O,且∠OAB=45°,OC=2OA=8,∠OCB=∠ODA,则四边形ABCD的面积为()A.32B.36C.42D.48二、填空题11.(3分)27的立方根为.12.(3分)若某个正数的两个平方根是a﹣3与a+5,则a=.13.(3分)如果等腰三角形的一个外角为80°,那么它的底角为度.14.(3分)如果正比例函数y=3x的图象沿y轴方向向下平移2个单位,则所得图象所对应的函数表达式是.15.(3分)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105°,则∠ADC=°.16.(3分)如图,已知一次函数y1=x+b与一次函数y2=mx﹣n的图象相交于点P(﹣2,1),则关于不等式x+b ≥mx﹣n的解集为.17.(3分)如图,在平面直角坐标系中,以A(2,0),B(0,t)为顶点作等腰直角△ABC(其中∠ABC=90°,且点C落在第一象限内),则点C关于y轴的对称点C’的坐标为.(用t的代数式表示)18.(3分)在平面直角坐标系中,坐标原点O到一次函数y=kx﹣2k+1图象的距离的最大值为.三、计算题19.(8分)(1)计算﹣()﹣1+20090(2)求(x+1)2﹣49=0中x的值20.(8分)如图,点B、F、C、E在同一直线上,且BF=CE,∠B=∠E,AC,DF相交于点O,且OF=OC,求证:(1)△ABC≌△DEF;(2)OA=OD.21.(6分)如图,已知△ABC(AC<AB<BC),请用无刻度的直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹);(1)在AB边上寻找一点M,使得点M到AC、BC的距离相等;(2)在BC边上寻找一点N,使得NA+NB=BC.22.(8分)如图,点B、C、D在一直线上,△ABC和△ADE都是等边三角形(1)请找出图中的全等三角形,并说明理由;(2)求证:EF∥AC.23.(8分)如图,在平面直角坐标系中,△ABC的顶点分别为A(﹣8,0)、B(6,0)、C(0,6),点D是OC中点,连接BD并延长交AC于点E,求四边形AODE的面积.24.(8分)某农户以1500元/亩的单价承包了15亩地种植板栗,每亩种植80株优质板栗嫁接苗,购买嫁接苗,购买价格为5元/株,且每亩地的管理费用为800元,一年下来喜获丰收平均每亩板栗产量为600kg,已知当地板栗的批发和;零售价格分别如下表所示:通过市场调研发现,批发与零售的总销量只能达到总产量的70%,其中零售量不高于总销售量的40%,经多方协调当地食品加工厂承诺以7元/kg的价格收购该农户余下的板栗,设板栗全部售出后的总利润为y元,其中零售xkg.(1)求y与x之间的函数关系;(2)求该农户所收获的最大利润.(总利润=总销售额﹣总承包费用﹣购买板栗苗的费用﹣总管理费用)25.(10分)如图,四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)求证:AE⊥BD;(2)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.26.(10分)如图,已知一次函数y=﹣x+b的图象与x轴交于A(﹣6,0)与y轴相交于点B,动点P从A出发,沿x轴向x轴的正方向运动.(1)求b的值,并求出△P AB为等腰三角形时点P的坐标;(2)在点P出发的同时,动点Q也从点A出发,以每秒个单位的速度,沿射线AB运动,运动时间为t(s)①求点Q的坐标;(用含t的表达式表示)②若点P的运动速度为每秒k个单位,请直接写出当△APQ为等腰三角形时k的值.2018-2019学年江苏省无锡市八年级(上)期末数学试卷参考答案与试题解析一、选择题1.【解答】解:∵42=16,∴16的算术平方根是4,即=4,故选:A.2.【解答】解:由题意知2x﹣5<0,解得x<,故选:D.3.【解答】解:把29500精确到1000的近似数是3.0×104.故选:D.4.【解答】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、是轴对称图形,本选项正确;D、不是轴对称图形,本选项错误.故选:C.5.【解答】解:①11是腰长时,三角形的三边分别为11、11、5,能组成三角形,周长=11+11+5=27;②11是底边时,三角形的三边分别为11、5、5,∵5+5=10<11,∴不能组成三角形,综上所述,三角形的周长为27.故选:B.6.【解答】解:A、52+42≠62,故不是直角三角形,故不正确;B、52+32≠62,故不是直角三角形,故不正确;C、()2+()2=()2,故是直角三角形,故正确;D、22+()2≠()2,故不是直角三角形,故不正确.故选:C.7.【解答】解:点(﹣3,4)所在的象限是第二象限,故选:B.8.【解答】解:A、该函数是正比例函数,故本选项正确.B、该函数是一次函数,故本选项错误.C、该函数是一次函数,故本选项错误.D、该函数是反比例函数,故本选项错误.故选:A.9.【解答】解:①两边及其中一边上的中线对应相等的两个三角形全等,正确;②两边及其中一边上的高对应相等的两个三角形不一定全等,错误;③两边及一角对应相等的两个三角形全等,如SSA不能判定全等,错误;④有两角及其中一角的角平分线对应相等的两个三角形全等,正确;故选:B.10.【解答】解:在OC上截取OE=OD,连接BE,如图所示:∵OC=2OA=8,∴OA=4,∵AC⊥BD,∠OAB=45°,∴∠AOD=∠BOE=90°,△OAB是等腰直角三角形,∴OB=OA=4,∴AC=OA+OC=12,在△AOD和△BOE中,,∴△AOD≌△BOE(SAS),∴∠ODA=∠OEB,∵∠OCB=∠ODA,∵∠OEB=∠OCB+∠EBC,∴∠OCB=∠ECB,∴BE=CE,设BE=CE=x,则OE=8﹣x,在Rt△OBE中,由勾股定理得:42+(8﹣x)2=x2,解得:x=5,∴CE=5,OD=OE=3,∴BD=OB+OD=4+3=7,∵AC⊥BD,∴四边形ABCD的面积=AC×BD=×12×7=42;故选:C.二、填空题11.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.12.【解答】解:由题意知a﹣3+a+5=0,解得:a=﹣1,故答案为:﹣1.13.【解答】解:∵等腰三角形的一个外角为80°,∴相邻角为180°﹣80°=100°,∵三角形的底角不能为钝角,∴100°角为顶角,∴底角为:(180°﹣100°)÷2=40°.故答案为:40.14.【解答】解:将函数y=3x的图象沿y轴向下平移2个单位长度后,所得图象对应的函数关系式为:y=3x﹣2.故答案为:y=3x﹣2.15.【解答】解:∵AC=AD=DB,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=105°,∴∠DAC=105°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+105°﹣=180°,解得:α=50°.故答案为:50.16.【解答】解:∵一次函数y1=x+b与一次函数y2=mx﹣n的图象相交于点P(﹣2,1),∴不等式x+b≥mx﹣n的解集是x≥﹣2.故答案为:x≥﹣2.17.【解答】解:过C作CE⊥y轴于E,并作C关于y轴的对称点C',∵A(2,0),B(0,t),∴OA=2,OB=t,∵△ABC是等腰直角三角形,∴AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠CBE+∠BCE=90°,∴∠ABO=∠BCE,∵∠AOB=∠BEC,∴△AOB≌△BEC(AAS),∴AO=BE=2,OB=CE=t,∴C(t,t+2),∴C'(﹣t,t+2),故答案为:(﹣t,t+2).18.【解答】解:y=kx﹣2k+1=k(x﹣2)+1,即该一次函数经过定点(2,1),设该定点为P,则P(2,1),当直线OP与直线y=kx﹣2k+1垂直时,坐标原点O到一次函数y=kx﹣2k+1的距离最大,如下图所示:最大距离为:=,故答案为:.三、计算题19.【解答】解:(1)原式=﹣2﹣2+1=﹣3;(2)(x+1)2﹣49=0则x+1=±7,解得:x=6或﹣8.20.【解答】证明:(1)∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵OF=OC,∴∠OCF=∠OFC,在△ABC与△DEF中,∴△ABC≌△DEF(ASA);(2)∵△ABC≌△DEF,∴AC=DF,∵OF=OC,∴AC﹣OC=DF﹣OF,即OA=OD.21.【解答】解:(1)如图所示:(2)如图所示:22.【解答】解:(1)△ACD≌△ABE,理由如下:∵△ABC,△ADE为等边三角形,∴AB=AC,AE=AD,∠BAC=∠DAE=60°,∴∠BAC+∠BAD=∠DAE+∠BAD,即∠CAD=∠BAE,在△ACD与△ABE中,∴△ACD≌△ABE(SAS),(2)∵△ACD≌△ABE,∴∠ABE=∠C=60°,∴∠ABE=∠BAC,∴EB∥AC.23.【解答】解:∵D是OC中点,C(0,6),∴D(0,3),设直线AC的解析式为:y=kx+b,∵A(﹣8,0)、C(0,6),∴,∴,∴直线AC的解析式为:y=x+6,直线BD的解析式为:y=mx+n,∵B(6,0)、D(0,2),∴,∴,∴直线BD的解析式为:y=﹣x+3;解得,,∴E(﹣,),∴S四边形AODE=S△ABE﹣S△OBD=×14×﹣×6×3=.24.【解答】解:(1)由题意得y=14x+10(600×15×70%﹣x)+7×600×15×30%﹣(1500+800+80×5)×15整理得y=4x+41400故y与x之间的函数关系式为y=4x+41400(2)∵零售量不高于总销售量的40%∴x≤600×15×70%×40%即:x≤2520又∵4>0,∴对于y=4x+41400而言,y随着x的增大而增大,∴当x取最大值2520时,y得最大值为51480答:该农户所收获的最大利润为51480元.25.【解答】解:(1)如图,设AC与BD的交点为点M,BD与AE的交点为点N,∵旋转∴AC=BC,∠DBC=∠CAE又∵∠ABC=45°,∴∠ABC=∠BAC=45°,∴∠ACB=90°,∵∠DBC+∠BMC=90°∴∠AMN+∠CAE=90°∴∠AND=90°∴AE⊥BD,(2)如图,连接DE,∵旋转∴CD=CE=3,BD=AE,∠DCE=∠ACB=90°∴DE==3,∠CDE=45°∵∠ADC=45°∴∠ADE=90°∴EA==∴BD=26.【解答】解:(1)把A(﹣6,0)代入y=﹣x+b得,b=﹣2,∴B(0,﹣2),AO=6,OB=2,AB===2,∵△P AB为等腰三角形,∴当AP=AB时,AP=2,∴P(2﹣6,0);当BP=BA时,OP=OA=6,∴P(6,0);当P A=PB时,设OP=x,则P A=PB=6﹣x,在Rt△OPB中,∵OP2+OB2=PB2,∴x2+22=(6﹣x)2,解得:x=,∴P(﹣,0);综上所述,当△P AB为等腰三角形时点P的坐标为(2﹣6,0)或(6,0)或(﹣,0);(2)①∵点Q在直线y=﹣x+b上,∴设Q(a,﹣a﹣2),作QH⊥x轴于H,则QH=a+2,AH=6+a,∴AQ==(a+2),∵AQ=t,∴t=a+2,∴a=3t﹣6,∴Q(3t﹣6,﹣t);②由题意得,AQ=t,AP=kt,∵△APQ为等腰三角形,∴当AP=AQ时,t=kt,∴k=,当AQ=PQ时,即AH=AP,∴3t=kt,∴k=6;当P A=PQ时,在Rt△PQH中,∵HP2+HQ2=PQ2,∴(3t﹣kt)2+t2=(kt)2,∴k=,综上所述,当△APQ为等腰三角形时k的值为或6或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年江苏省无锡市天一中学高三11月月考数学试题注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、填空题1.设集合,则_______.2.命题:“使得”的否定为__________.3.函数的定义域为_________.4.曲线在处的切线的斜率为_________.5.若函数是偶函数,则实数______.6.已知,函数和存在相同的极值点,则________.7.已知函数.若,则实数的最小值为______.8.已知函数与函数的图象交于三点,则的面积为________.9.已知f (x )是定义在R 上的偶函数,且在区间(−,0)上单调递增.若实数a 满足f(2|a-1|)>f (),则a 的取值范围是______.10.已知0y x π<<<,且tan tan 2x y =, 1sin sin 3x y =,则x y -=______. 11.在平行四边形ABCD 中,AC AD AC BD ⋅=⋅3=,则线段AC 的长为 .12.已知,,且,则的最大值为______.13.设是自然对数的底数,函数有零点,且所有零点的和不大于6,则的取值范围为______.14.设函数().若存在,使,则的取值范围是____.二、解答题15.已知,.(1)求的值;(2)设函数,,求函数的单调增区间. 16.如图,在中,已知是边上的一点,,,求:(1)的长;(2)的面积.此卷只装订不密封班级 姓名 准考证号 考场号 座位号17.在平面直角坐标系中,已知向量,设向量,其中.(1)若,,求的值;(2)若,求实数的最大值,并求取最大值时的值.18.对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.(Ⅰ)已知二次函数,试判断是否为“局部奇函数”?并说明理由;(Ⅱ)若是定义在区间上的“局部奇函数”,求实数的取值范围;(Ⅲ)若为定义域上的“局部奇函数”,求实数的取值范围.19.如图,、是海岸线、上的两个码头,为海中一小岛,在水上旅游线上.测得,,到海岸线、的距离分别为,.(1)求水上旅游线的长;(2)海中,且处的某试验产生的强水波圆,生成小时时的半径为.若与此同时,一艘游轮以小时的速度自码头开往码头,试研究强水波是否波及游轮的航行?20.已知函数,.(1)求曲线在点处的切线方程;(2)证明:当时,曲线恒在曲线的下方;(3)当时,不等式恒成立,求实数的取值范围.22018-2019学年江苏省无锡市天一中学高三11月月考数学试题数学答案参考答案1.【解析】【分析】直接利用集合并集的定义求解即可.【详解】因为集合,所以,故答案为.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合.2.【解析】【分析】根据特称命题的否定是全称命题,既要改写量词,又要否定结论,可得原命题的否定形式.【详解】因为特称命题的否定是全称命题,既要改写量词,又要否定结论,故命题“ ”的否定是,故答案为.【点睛】本题主要考查特称命题的否定,属于简单题.全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.3.【解析】【分析】直接由根式内部的代数式大于等于0 ,分式的分母不等于0 ,列不等式求解即可得结果.【详解】要使函数有意义,则解得,函数的定义域为,故答案为.【点睛】本题主要考查具体函数的定义域、不等式的解法,属于中档题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数的定义域为,则函数的定义域由不等式求出.4.1【解析】【分析】求出原函数的导函数,可得到曲线在处的导数值,根据导数的几何意义可得结果.【详解】因为曲线在处的切线的斜率就是曲线在处的导数值,由得,,即曲线在处的切线的斜率为1,故答案为1.【点睛】本题考查了利角导数研究曲线上某点处的切线斜率,曲线在某点处的导数值,即为曲线上以该点为切点的切线的斜率,是中档题.5.1【解析】【分析】由函数是偶函数,利用求得,再验证即可得结果.【详解】是偶函数,,即,解得,当时,是偶函数,合题意,故答案为1.【点睛】本题主要考查函数的奇偶性,属于中档题. 已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.6.3【解析】【分析】(1)求出函数的导数,可得极值点,通过与有相同的极值点,列方程求的值.【详解】,则,令,得或,可得在上递增;可得在递减,极大值点为,极小值点为,因为函数和存在相同的极值点,而在处有极大值,所以,所以,故答案为3.【点睛】本题主要考查利用导数判断函数的单调性以及函数的极值,属于中档题.求函数极值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值.7.【解析】试题分析:由题意得,实数的最小值为考点:三角函数周期8.【解析】联立方程与可得,解之得,所以,因到轴的距离为,所以的面积为,应填答案。
9.【解析】试题分析:由题意在上单调递减,又是偶函数,则不等式可化为,则,,解得.【考点】利用函数性质解不等式【名师点睛】利用数形结合解决不等式问题时,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:(1)借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效.(2)借助函数图象的性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需要注意的问题是准确把握代数式的几何意义实现由“数”向“形”的转化.10.3π【解析】试题分析:由tan tan 2x y =可得sin sin 2cos cos x yx y =.又因为1sin sin 3x y =所以1cos cos 6x y =.又因为()1cos cos cos sin sin 2x y x y x y -=+=.又因为0y x π<<<所以0x y π<-<.所以3x y π-=.本小题关键是角的和差的余弦公式的正逆方向的应用.考点:1.余弦和差公式的应用.2.解三角方程. 11【解析】试题分析:由AC AD AC BD ⋅=⋅得()0AC AD BD ⋅-=,即0AC AB ⋅=,所以AC AB ⊥,于是AC CD ⊥,又22()AC AD AC AC CD AC AC CD AC ⋅=⋅+=+⋅=,即23AC =,所以AC ;考点:1.向量的数量积; 12.【解析】 【分析】利用同角三角函数的关系以及两角和的正弦公式化简可得,由此得,利用基本不等式可得结果.【详解】,,, 可得,,,,,故答案为-4.【点睛】本题主要考查同角三角函数的关系以及两角和的正弦公式、两角和的正切公式以及利用基本不等式求最值,属于难题.求最值问题往往先将所求问题转化为函数问题,然后根据:配方法、换元法、不等式法、三角函数法、图象法、函数单调性法求解,,利用基本不等式求最值,注意应用基本不等式的条件是“一正二定三相等”.13.【解析】【分析】对分四种情况讨论,分别判断函数的单调性与最值,根据单调性、最值,判断函数是否有零点,若函数有零点,判断所有零点的和是否不大于6,综合各种讨论结果,即可得结论.【详解】①,时,在单调递减,且在有一个小于0的零点;时,在单调递增,,在有一个小于1的零点,因此满足条件.②(1)时,在单调递减,在上没有零点.又,故在上也没有零点,因此不满足题意. (2)时,在上单调递减,在上单调递增,在上没有零点.又,故在上也没有零点,因此不满足题意.(3)时,在上没有零点,在上只有零点2,满足条件.(4)时,在上没有零点,在上有两个不相等的零点,且和为,故满足题意的范围是.综上所述,的取值范围为,故答案为.【点睛】本题主要考查利用导数研究函数的单调性与零点以及分类讨论思想的应用.属于难题.分类讨论思想解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决含参数问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点. 充分利用分类讨论思想方法能够使问题条理清晰,进而顺利解答,希望同学们能够熟练掌握并应用与解题当中.14.【解析】【分析】存在, 使,等价于,化简的解析式,判断的单调性,讨论的单调区间与区间的关系,求出在上的最小值,令最小值小于或等于零解出即可.【详解】存在, 使,,当时,,在上单调递减;当时,,在上单调递减,在上单调递增;当时,,在上单调递增,(1) 若,即时,在上单调递增,,解得;(2)若,即时,在上单调递减,在上单调递增,,解得,综上,的取值范围是,故答案为.【点睛】本题主要考查不等式有解问题以及利用导数研究函数的单调性、求函数最值,考查了分类讨论思想的应用,属于难题.不等式有解问题不能只局限于判别式是否为正,不但可以利用一元二次方程根的分布解题,还可以转化为有解(即可)或转化为有解(即可).15.(1);(2),【解析】【分析】(1)由,两边平方可得,结合,可得,即;(2)由(1)知,,利用二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用正弦函数的单调性解不等式,可得到函数的递增区间.【详解】(1)由,得,即,所以.因为,所以,所以,即.(2)由(1)知,,所以.令,得,所以函数的单调增区间是,.【点睛】本题主要考查三角函数的单调性、二倍角的正弦公式、二倍角的余弦公式以及正弦函数的单调性,属于中档题.函数的单调区间的求法:(1) 代换法:①若,把看作是一个整体,由求得函数的减区间,求得增区间;②若,则利用诱导公式先将的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2) 图象法:画出三角函数图象,利用图象求函数的单调区间.16.(1)5;(2).【解析】【分析】(1)在中,, ,由余弦定理得,解得;(2)在中,由正弦定理得,解得,利用三角形面积公式可得结果.【详解】(1)在中,由余弦定理得,解得.(2)在中,由正弦定理得,,解得,所以.【点睛】本题主要考查正弦定理、三角形面积公式以及余弦定理的应用,属于中档题. 对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.17.(1);(2);【解析】试题分析:(1)向量数量积问题可以先求向量的坐标,再利用坐标运算;或者先符号运算进行化简,再代入坐标;(2)由向量共线得到与的关系式,用表示出,再利用导数求该函数的最大值,为了便于运算,可以求的最小值;试题解析:(1)(方法1)当,时,,(),则.(方法2)依题意,,则.(2)依题意,,,因为x y,所以,整理得,,令,则.令,得或,又,故.列表:极小值故当时,,此时实数取最大值.考点:1.向量数量积的坐标公式;2.向量共线的坐标公式;3利用导数求函数的最值;18.(1)是“局部奇函数”,理由见解析;(2);(3)【解析】试题分析:(Ⅰ)判断方程是否有解;(Ⅱ)在方程有解时,通过分离参数求取值范围;(Ⅲ)在不便于分离参数时,通二次函数的图象判断一元二次方程根的分布.试题解析:为“局部奇函数”等价于关于的方程有解.(Ⅰ)当时,方程即有解,所以为“局部奇函数”. 3分(Ⅱ)当时,可化为,因为的定义域为,所以方程在上有解. 5分令,则.设,则,当时,,故在上为减函数,当时,,故在上为增函数,. 7分所以时,.所以,即. 9分(Ⅲ)当时,可化为.设,则,从而在有解即可保证为“局部奇函数”. 11分令,1° 当,在有解,由,即,解得; 13分2° 当时,在有解等价于解得. 15分(说明:也可转化为大根大于等于2求解)综上,所求实数m 的取值范围为. 16分考点:函数的值域、方程解的存在性的判定.19.(1);(2)强水波不会波及游轮的航行.【解析】【分析】(1)以点为坐标原点,直线为轴,建立直角坐标系,直线的方程为,,由点到直线距离公式得求得直线的方程为,可得交点,结合由两点间距离公式可得的长;(2) 设试验产生的强水波圆,生成小时,游轮在线段上的点处,令,求得,,利用导数证明,即恒成立,从而可得结果.【详解】(1)以点为坐标原点,直线为轴,建立直角坐标系如图所示.则由题设得:,直线的方程为,,由,及得,直线的方程为,即,由得即,,即水上旅游线的长为.(2)设试验产生的强水波圆,生成小时,游轮在线段上的点处,则,,,令,则,,,,,,由得或(舍去),时,,即恒成立,亦即强水波不会波及游轮的航行. 【点睛】本题主要考查阅读能力、数学建模能力和化归思想以及直线方程、点到直线距离公式以及利用导数研究函数的单调性求函数的最值,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.20.(1);(2)证明见解析;(3).【解析】【分析】(1)求出,求出的值可得切点坐标,求出的值,可得切线斜率,利用点斜式可得曲线在点处的切线方程;(2)要使得当时,曲线恒在曲线的下方,即需证,不妨设, 则,利用导数证明取得最大值即可得结果;(3)由题意可知,可得不等式可转化为,构造函数,分类讨论,利用导数研究函数的单调性,可证明的最大值小于零,从而可得结论.【详解】(1),,故切线方程是. (2)要使得当时,曲线恒在曲线的下方,即需证, 不妨设, 则,,令,恒成立,^在单调递减,v又时,;当时,,在上单调递增,在上单调递减, 即当时,取得最大值,当时,,即,当时,曲线恒在曲线的下方,(3)由题意可知,不等式可转化为,构造函数,,在二次函数中,开口向下,对称轴,且过定点,解得,得(舍去),.①当时,即 (舍去)或,此时当时,;时,;当时,取得最大值,记为,由得,,而,当时,,即在上递减,当时,,即在上递增,在处取得最小值,只有符合条件,此时解得,不合条件,舍去;②当时,解得,当时,在时取得最大值,即当时,恒成立,原不等式恒成立;③当时,解得,当时,,在时取得最大值,记为,由(2)可知的图象与的图象相同,当时,,原不等式恒成立;综上所述,实数的取值范围是.【点睛】本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.。