2017年秋季新版北师大版七年级数学上学期1.4、从三个方向看物体的形状同步练习5

合集下载

北师大版七年级数学上册1.4从三个方向看物体的形状课件

北师大版七年级数学上册1.4从三个方向看物体的形状课件

(3) 从上面看
探究新知
练一练 下图是由小立方体搭成的几何体,请说出右边的三
幅图从哪个方向看到的? 经历从不同方向观察物体的活动过程,初步体会从不同方向观察物体可能看到不同的图形,发展空间观念.
从 结论:(1)从正面、左面、上面三个不同的方向看物体,看到的都是平面图形,这样可将立体图形转化为平面图形;
下面左图是两个长方体堆成的物体,则从正面看到的平面图形是(
)
如下图是由几个小立方块所搭几何体,从上面看的平面图形如下图,小正方形中的数字表示在该位置的小立方块的个数,从正面看这
个几何体的平面图形是(
)
若是一个横放的圆柱,三视图又该怎样呢?
探究新知 素养考点
画从三个方向看几何体得到的形状图
例 (教材P18习题1.6第3题)一个几何体由几个大小相同的小立 方块搭成,从上面观察这个几何体,看到的形状如图,其中小 正方形中的数字表示在该位置的小立方块的个数.请画出从正 面、左面看到的这个几何体的形状图.
A.
B.
C.
D.
探究新知 知识点 2 画出从三个方向看到的几何体的形状图 画出从正面、左面和上面看正方体得到什么图形?
探究新知
从正面看 从左面看
从上面看 结论:(1)从正面、左面、上面三个不同的方向看物体,看到 的都是平面图形,这样可将立体图形转化为平面图形;(2)物 体摆放的方式不同,看到的图形也不同;(3)不要忘记所看 到的面与面的交线或顶点等.
A.三棱柱
B.三棱锥
C.圆柱 D.圆锥
从正面看
从左面看
从上面看
课堂检测 基础巩固题
4.从三个方向看一个几何体的平面图形如图所示,则这个几 何体是( C )
从正面看 从左面看 从上面看

北师大版七年级上册数学 1.4 从三个方向看物体的形状优质教案

北师大版七年级上册数学 1.4 从三个方向看物体的形状优质教案

1.4 从三个方向看物体的形状【教学目标】1.经历从不同方向观察物体的活动过程,发展空间观念;能在与他人交流的过程中,合理清晰地表达自己的思维过程.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的图形.3.能识别简单物体的三视图,会画立方体及其简单组合体的三视图.【基础知识精讲】1.主视图、左视图、俯视图的定义从不同方向观察同一物体,从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫做俯视图.2.几种几何体的三视图(1)正方体:三视图都是正方形.图1—27(2)球:三视图都是圆.图1—28提醒:在所有几何体中,只有正方体与球这两种几何体的三视图是相同的.(3)圆柱体:图1—29(4)圆锥体:图1—30圆锥的主视图、左视图都是三角形,而俯视图的图中有一个点表示圆锥的顶点,因为从上往下看圆锥时先看到圆锥的顶点,再看到底面的圆.3.如何画三视图当用若干个小正方体搭成新的几何体,如何画这个新的几何体的三视图?(1)由照片画三视图.由照片可以清楚地看到每个小正方体的位置,这样画三视图比较直观.画三视图,都要注意从这个方向看时几何体有几列,每列有几个正方体(即有几层),根据看到的列数、层数,画出相应的图.注意:主视图与左视图中每列的正方形都是从下往上排,底层整齐,不能出现悬空.而俯视图则有可能出现中空的现象.如右图:从正面看,2列,每列一层;从左面看,2列,每列一层;从上面看,2列,左列2层,右列一层.则三视图是:图1—31注意:照片中的几何体为了使大家看清前后情况,因此照片中的物体一般朝左偏的位置是正面.(2)由俯视图画主视图、左视图.解法一:根据俯视图摆出几何体,按照(1)的方法画主视图、左视图.解法二:直接由俯视图确定主视图、左视图的列数、层数,并画出图.①主视图与俯视图列数相同,俯视图中每列的方框内的最大数字即为主视图本列的层数.②左视图的列数与俯视图的行数相同,俯视图每一横行的方框内的最大数字,就是这一横行逆时针转90°所成的左视图中的列的层数.如:俯视图俯视图2列,则主视图也有两列,左列中的三个方框中最大的是3,右列是1,所以主视图左列三层,右列一层;俯视图三行,则左视图有三列,俯视图从上至下三行最大数字分别为1,2,3,则左视图三列从左至右分别有1,2,3层.画图如下.(3)其他几何体的三视图:从某方向看时,这个几何体最大边缘的形状及能够看到的顶点及棱.【教学方法指导】[例1]根据每组三视图,判断几何体形状:(1)先看什么比较明显呢?图1—33(2)图1—34点拨:(1)中俯视图是六边形,说明是柱或是锥,而主视图、左视图都是矩形,说明是柱即六棱柱.(2)中由主视图、左视图是三角形说明是锥体,而底面是四边形,说明不是圆锥,而是棱锥,是四棱锥.俯视图中的点是锥点,四条线段是锥的四条棱.解答:(1)六棱柱(2)四棱锥[例2]用长∶宽∶高=3∶1∶1的两个长方体如图1—35摆放,画出三视图.图1—35点拨:只要把较长的长方体看作由三个正方体排起来的即可,主视图左部分三份,右部分一份,都只有一层;左视图两列,左列1份,右列两份(挡住一份);俯视图是两个长3份的长方形交叉放.三视图如下:[例3]用小立方体搭成一个几何体,使它的主视图和俯视图如图所示.搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?图1—37点拨:①由于主视图每列的层数即是俯视图中该列的最大数字,因此,用的方块数最多的情况是每个方框都用该列的最大数字.即如图1—36所示;此种情况共用小立方体17块.图1—36图1—37②而搭建这样的几何体,每列只要有一个最大数字即可满足条件,其他方框内的数字可减少到最少的1,即如图1—37所示;这样的摆法只需立方体11块.解:摆这样的几何体,最多用17块立方体,最少用11块立方体.【拓展训练】某几何体左视图是长方形,说出这个几何体的两种可能性.点拨:对于棱柱,长方体的左视图可以是长方形;而圆柱,也可以符合条件.说明:考虑这类问题,可先从柱、锥、球开始,再往下细分,逐步排除不可能的,缩小思考范围.。

北师大版七年级数学上学期同步教学设计:1.4 从三个方向看物体的形状

北师大版七年级数学上学期同步教学设计:1.4 从三个方向看物体的形状

第四节从三个方向看物体的形状(1课时)教学目标知识与技能1.在观察的过程中初步体会从不同方向观察物体可能看到的不同图形.2.能识别简单物体的三视图.过程与方法1.经历从不同方向观察物体的活动过程,发展空间观念,积累数学活动经验.2.能在与他人交流的过程中,合理清晰地表达自己的思维过程.情感、态度与价值观有意识地培养学生学习数学的积极的情感,激发学生对空画与图形学习的好奇心,使学生初步形成与他人合作交流的意识.重点难点重点1.经历从不同方向观察物体和与他人合作交流,发展空间观念.2.初步体会从不同方向观察同一物体可能看到的不同的图形.3.能识别简单的三视图.难点识别简单的三视图.教学流程教学设计一、图片观察,思考角度教师:看投影片,请指出下列各幅图分别是哪位同学看到的?【例1】桌上放着一个茶壶,四位同学从各自的方向进行观察.请指出下面四幅图分别是哪位同学看到的.生:第一幅图是乙看到的,第二幅图是丁看到的,第三幅图是丙看到的,第四幅图是甲看到的.师:完全正确!同学们应用生活经验解决了问题.二、合作探究,问题深化师:看下面的图片,想一想,哪幅图是小华看到的,哪幅图是小彬看到的?小王:第(3)幅图是小华看到的,第(5)幅图是小彬看到的.师:回答得真不错!如果想同时看到杯子和乒乓球,那么他们应该站在什么位置?小鹏:从上面看,从正面看,稍微斜一点看.师:刚才我们做了、看了,现在你能不能举一些生活中从不同角度观察同一对象的实例呢?小华:从不同的方向看一个人,看到的五官不一定相同.小琳:美术课,老师叫我们去写生,从不同方向画同一个物体或景色.小萍:达芬奇画鸡蛋,他从不同的方向看,画出来的鸡蛋不一定相同.师:太精彩了!三、三视图师:今天,所有同学表现得都棒极了,说的答案都很有道理.在数学上,我们把从观察者的角度,正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.接下来,我们来看正方体的三视图.小华:三个大小一样的正方形.师:你还能不能举一个几何体,它的三视图都为同一个图形呢?生:球体.师:摆出两个正方体,变化图形,三个,四个,五个.(生上黑板画,略.)师:为了巩固一下刚才所学的知识,同学们有没有信心考考自己?生:有.师:桌上放着一个圆柱和一个长方体.请说出下面的三幅图分别是从哪个方向看到的.小鹏:它们分别是左视图、俯视图、主视图.师:这些视图的线段之间有关系吗?与长方体比较.小张:主视图的长、俯视图的长相等,就是长方体的长;主视图的宽、左视图的宽相等,就是长方体的高:俯视图的宽、左视图的长相等,就是长方体的宽.师:你的回答太精彩了,语言流利,条理清晰.掌声响起!师:同学们掌握得还不错.这节课你学到了什么?你有何收获?小超:我学到了从不同方向看同一个物体,可能看到不同的结果.小艳:我还学到了什么叫主视图、左视图、俯视图.小明:我还学到了正方体、长方体、圆锥的三视图.师:说得很好!你学习了从不同方向看,对你做人有何启示?小超:我觉得,不仅看物体是如此,看每个人、每件事也是如此,要全面观察.师:太好了!你真聪明,想了这么多,而且很有道理.老师也有同感,从不同角度观察一件事或一个人,所得的结果也不一样.我作为一个老师,也会全面地评价每一个学生.同时也希望同学们今后看物、看人、看事要多角度、多方向分析观察,这样我们就会发现许多美好的闪光的东西,从而感受生活是多么的美好.三、作业设计从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.板书设计。

2017-2018学年北师大版七年级数学上册教案:1.4 从三个方向看物体的形状

2017-2018学年北师大版七年级数学上册教案:1.4 从三个方向看物体的形状

1.4 从三个方向看物体形状一、学生状况分析学生刚从小学升到中学,形象思维较弱,抽象水平较低。

从不同方向看,也正是立足于此,主要是引导学生从不同角度观察几何体,因而多为直观操作、感受,当然也需要进行一定抽象,如将从某个角度正视结果抽象成形状图,、由数(从上面看形状图及其相应位置立方体数量)悟形(立体图形)、由形(立体图形)悟形(形状图),因而具有一定抽象要求,但这样抽象水平相对较低,学生应该已经具备这样认知基础了。

二、教学任务分析在学生了解生活中立体图形,立体图形展开与折叠及截一个几何体等内容之后,安排本节内容《从不同方向看》,力图拓宽学生思维,丰富学生对图形世界认识。

本节教学任务是:首先初步体会从不同方向观察同一物体可能看到不同结果,能画出简单三种形状图;然后经历由搭建模型、观察模型、画出三种形状图,到脱离模型、由数(从上面看形状图及其相应位置立方体数量)悟形(立体图形)、由形(立体图形)悟形(形状图)、搭模验证等过程。

本节教学任务目实际上是为了较好地发展学生空间想象能力、空间观念,而为了实现这个目标,需要让学生进行适当说理,相对清晰地表达自己思维,发展学生表达能力和推理能力,同时,初一阶段第一章,还兼具着提高学生学习兴趣任务。

为此,确定以下教学目标:1、知识技能:能识别简单物体三种形状图,会画立方体及其简单组合三种形状图,能根据三种形状图描述基本几何体或实物原形,会根据某几何体某二种形状图,找出满足条件小正方块数量。

2、过程目标:A 经历“从不同方向观察物体”活动过程,发展学生空间概念和合理想象;B 在观察过程中,初步体会从不同方向观察同一物体得到结果是不一样;C 通过观察和动手操作,经历和体验组合体及从上面看形状图中数字变化导致三种形状图变化过程,培养实验操作能力,进一步发展空间观念。

3、情感目标:培养学生重视实践、善于观察、主动探索、勇于发现、合作交流品质。

重点:会画立方体及其简单组合三种形状图。

北师大版七年级数学上1.4.从三个方向看物体的形状

北师大版七年级数学上1.4.从三个方向看物体的形状

初中数学试卷1.4.从三个方向看物体的形状1.从上面看图1,图中的粮仓得到的图形是( )图1 A B C D 2.一个几何体的从三个方向看到的如图l、2、3所示,那么这个几何体是( )图1 正面看图2 左面看图3 上面看A.正方体 B.圆柱体 C.圆锥 D.球体3.图l、2、3是某物体的三视图,那么这个物体是( )图1正面看图2左面看图3上面看A.圆锥 B.棱柱 C.三圆锥 D.三棱柱4.一个圆锥如图1放置,那么这个圆锥的上面看是()图1ABCD5.球体的三视图是( )A.三个圆B.三个圆且其中一个圆包括圆心C.两个圆和一个半圆D.以上都有可能6.如图1,是一个由五个小立方体组成的立体图形,则它的正面看是( )图1ABCD7.用小立方体搭成的立体图形如图l所示,则其上面看及小立方体个数的正确表示为( )图1ABCD8.如果一个几何体的正面看是长方形,那么这个几何体可能是( )A.三棱柱B.长方体 C.圆柱D.以上三种都有可能9.图l、2给出了一个由小立方体组成的几何体的正面看,左面看,其中小正方形中的数字表示该位置上小立方体的个数,则它的上面看不能画成( )图1图2ABCD10.图1、2、3是由一些相同的小正方体构成的几何体的三视图:正面看左面看上面看图1 图2 图3这些相同的小正方体的个数是( )A.4个 B.5个 C.6个 D.7个11.画出图中的三视图.12.图中是由几个小立方体所搭成的几何体的上面看,小正方形中的数字表示在该位置小立方体的个数,请你画出相应几何体的正面看和左面看.思维能力拓展13.两个物体的摆放位置如图l所示.图2、3、4、5是四名同学画的这两个物体的视图,回答下列问题:图1图2图3图4图5(1)图2、3、4、5中哪一个是错误的?(2)在图2、3、4、5中找出正面看、左面看上面看.14.有一个正方体,在它的各个面上分别标有数字l、2、3、4、5、6.甲、乙、丙三位同学从三个不同角度去观察此正方体,观察结果如图l、2、3所示,那么这个正方体各个面上的数字对面各是什么数字?甲乙丙图1图2图315.如图,是一个由小正方体搭成的几何体的上面看,小正方形中的数字表示该位置的小正方块的个数.请你画出它的正面看与上面看.答案:1. D2. B.3. D.4. D5. A.6. A7. A8. D.9. A10. B.11.如图主视图左视图俯视图12. 如图主视图左视图13. 图3;图2是正面看、图4是左面看、图5是上面看.14. 1对面的数字5 ;2对面的数字4 ;3对面的数字6 ;15.主视图左视图。

北师大版七年级数学上册 同步练习 全套含答案详解

北师大版七年级数学上册 同步练习 全套含答案详解

北师大版七年级数学上册同步练习目录2017年秋北师大七年级上《1.1生活中的立体图形》同步练习含答案2017年秋北师大七年级上《1.2展开与折叠》同步练习含答案解析2017年秋北师大七年级上《1.4从三个方向看物体的形状》同步练习含答案解析2017年秋北师大七年级上《2.1有理数》同步练习含答案解析2017年秋北师大七年级上《2.2数轴》同步练习含答案解析2017年秋北师大七年级上《2.3绝对值》同步练习含答案解析2017年秋北师大七年级上《2.4有理数的加法》同步练习含答案解析2017年秋北师大七年级上《2.5有理数的减法》同步练习含答案解析2017年秋北师大七年级上《2.6有理数的加减混合运算》同步练习含答案解析2017年秋北师大七年级上《2.7有理数的乘法》同步练习含答案解析2017年秋北师大七年级上《2.8有理数的除法》同步练习含答案解析2017年秋北师大七年级上《2.9有理数的乘方》同步练习含答案解析2017年秋北师大七年级上《2.10科学记数法》同步练习含答案解析2017年秋北师大七年级上《2.11有理数的混合运算》同步练习含答案解析2017年秋北师大七年级上《3.1字母表示数》同步练习含答案解析2017年秋北师大七年级上《3.2代数式》同步练习含答案解析2017年秋北师大七年级上《3.3整式》同步练习含答案解析2017年秋北师大七年级上《3.4整式的加减》同步练习含答案解析2017年秋北师大七年级上《3.5探索与表达规律》同步练习含答案解析2017年秋北师大七年级上《4.1线段、射线、直线》同步练习含答案解析2017年秋北师大七年级上《4.2比较线段的长短》同步练习含答案解析2017年秋北师大七年级上《4.3角》同步练习含答案解析2017年秋北师大七年级上《4.4角的比较》同步练习含答案解析2017年秋北师大七年级上《4.5多边形和圆的初步认识》同步练习含答案解析2017年秋北师大七年级上《5.1认识一元一次方程》同步练习含答案解析2017年秋北师大七年级上《5.2求解一元一次方程》同步练习含答案解析2017年秋北师大七年级上《5.3应用一元一次方程——水箱变高了》同步练习含答案解析2017年秋北师大七年级上《5.4应用一元一次方程——打折销售》同步练习含答案解析2017年秋北师大七年级上《5.5应用一元一次方程——希望工程义演》同步练习含答案解析2017年秋北师大七年级上《5.6应用一元一次方程——能追上小明吗》同步练习含答案解析1生活中的立体图基础巩固1.(题型二)如图1-1-1,属于棱柱的有( )图1-1-1A.2个 B.3个 C.4个 D.5个2.(知识点3)雨滴从空中落下、流星从空中划过,这些现象都给我们以_____的形象;汽车的雨刷摆动、将教室前的投影幕展开,这些现象给我们以_____的形象;硬币在桌面上快速旋转、向玻璃杯中注水水面的上升,这些现象给我们以______的形象.3.(题型一)将下列物体的名称与相应的几何体用线连接起来.螺丝帽塔尖字典足球蜡烛魔方长方体正方体圆锥球圆柱棱柱4.(题型三)如图1-1-2的几何体,分别由哪个平面图形绕某条直线旋转一周得到?请画出相应的平面图形.图1-1-2能力提升5.(题型四)观察下列多面体,把下表补充完整,并回答问题.(1)根据上表中的规律推断,十四棱柱共有___个面,共有___个顶点,共有____条棱.(2)若某个棱柱由30个面构成,则这个棱柱为____棱柱.(3)若一个棱柱的底面多边形的边数为n,则它有____个侧面,共有___个面,共有____个顶点,共有_____条棱.(4)观察表中的结果,你能发现a,b,c之间有什么关系吗?请写出关系式.答案1.B解析:正方体、长方体、三棱柱是棱柱,共3个.故选B.2.点动成线线动成面面动成体解析:观察现象,我们可以从中发现它们运动的形象.3.解:4.解:如图D1-1-1.图D1-1-1能力提升5. 解:填表如下:(1)16 28 42.(2)二十八.(3)n n+2 2n3n.(4)a+c-b=2.2展开与折叠基础巩固1.(知识点1)下列选项能折叠成正方体的是()2.(知识点1)将图1-2-1的表面带有图案的正方体沿某些棱展开后,得到的图形是()图1-2-13.(题型四)图1-2-2是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体包装盒的容积是(包装材料厚度不计)()图1-2-2A.40×40×70 B.70×70×80C.80×80×80 D.40×70×804.(题型三)若过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图1-2-3的几何体,则其表面展开图正确的为()图1-2-35.(题型一)若要使图1-2-4中的平面展开图折叠成正方体后,相对面上两个数之和为6,则x=___,y=____.图1-2-4能力提升6.(题型二)已知下列各图形都由5个大小相同的正方形组成,则其中沿正方形的边不能折成无盖小方盒的是()7.(题型四)如图1-2-5,李明用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,王华看来看去总觉得所拼图形似乎存在问题.图1-2-5(1)请你帮李明分析一下拼图是否存在问题.若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2 cm,长方形的长为3 cm,宽为2 cm,请直接写出修正后所折叠而成的长方体的容积为_____ cm3.答案基础巩固1.D解析:根据正方体表面展开图的特点可知选D.2.C解析:此题只要想象出其空间立体图形与平面展开图的对应关系,就容易得出三个表面带有图案的图形的位置特征.故选C.3.D解析:先根据所给的图形折成长方体,再根据长方体的容积公式即可得出长方体包装盒的容积为40×70×80.故选D.4.B解析:选项A,C,D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点相符合.故选B.5. 53 解析:这是一个正方体的表面展开图,共有六个面,其中面“1”与面“x”相对,面“3”与面“y”相对,则1+x=6,3+y=6,解得x=5,y=3.能力提升6.B解析:因为选项A,D各添加一个小正方形后,均符合“一四一”型;选项C添加一个小正方形后符合“一三二”型或“二二二”型,而选项B无论怎样添加,都不符合正方体表面展开图的特征.故选B.7.解:(1)拼图存在问题,如图D1-2-1.图D1-2-1(2)12.折叠而成的长方体的容积为3×2×2=12(cm3).4 从三个方向看物体的形状基础巩固1.(题型一)图1-4-1是由6个相同的小正方体搭成的几何体,那么从上面看这个几何体得到的图形是()图1-4-12.(知识点1)如图1-4-2(1)是放置的一个水管三叉接头,若从正面看这个接头时,看到的图形如图1-4-2(2),则从上面看这个接头时,看到的图形是()图1-4-23.(题型二)由若干个相同的小正方体组合而成的一个几何体从不同方向看到的图形如图1-4-3,则组成这个几何体的小正方体的个数是()图1-4-3A.3 B.4 C.5 D.64.(知识点1)从正面、上面、左面看一个球时,看到的图形都是______.如果一个几何体从正面、上面、左面看时,看到的图形都是圆,那么这个几何体可能是______.5.(题型一)图1-4-4是一个工件的示意图,请你画出从正面、左面、上面看这个工件时所得到的图形.能力提升6.(题型三)把一个圆锥和一个正方体放在水平桌面上,当分别从正面和左面看这两个几何体时,看到的图形如图1-4-5,请问,当你从上面看这两个几何体时,看到的图形是什么?把你看到的图形画出来.图1-4-57.(题型四)某学校设计了如图1-4-6的一个雕塑,取名“阶梯”,现在工人师傅打算用油漆喷刷所有的暴露面.经测量,已知每个小正方体的棱长为0.5 m,请你帮助工人师傅算一下,需喷刷油漆的总面积是多少?图1-4-6答案基础巩固1.A解析:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形,第三层左边有1个正方形.故选A.2.A解析:根据接头的实物图和从正面看到的图形可知,从上面看这个接头时,得到的图形为一个圆和一个长方形相接在一起,且圆在左边,长方形在右边.故选A.3.C 解析:综合三个方向看到的图形,我们可以得出,这个几何体的底层有3+1=4(个)小正方体,第二层有1个小正方体,因此搭成这个几何体所用的小正方体的个数是4+1=5.故选C.4.圆球5.解:从正面、左面、上面看这个工件时所得到的图形如图D1-4-1.图D1-4-1能力提升6.解:从上面看这两个几何体时所看到的图形如图D1-4-2.图D1-4-27.解:从三个方向看物体得到的形状图如图D1-4-3,则从正面与从左面看到的形状图的面积都是0.5×0.5×6=1.5(m2),从上面看到的形状图的面积是0.5×0.5×5=1.25(m2).图D1-4-3因为暴露的面是从前、后、左、右、上看到的面,从左面看到的形状图和从右面看到的形状图的面积是一样的,从前面看到的形状图和从后面看到的形状图的面积是一样的,所以需喷刷油漆的总面积为1.5×4+1.25=7.25(m2).第二章有理数及其运算1 有理数基础巩固1.(题型一)[广东广州中考]中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元,那么-80元表示()A.支出20元 B.收入20元C.支出80元 D.收入80元2.(题型二)下列说法错误的是()A.负整数和负分数统称为负有理数B.正整数、0、负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数3.(知识点3)在-3.5,227,0,π2,0.616 116 111 6…(相邻两个6之间1的个数逐次加1)中,有理数的个数为()A.1 B.2 C.3 D.44.(题型一)下列选项,具有相反意义的量是()A.增加20个与减少30个B.6个老师和7个学生C.走了100米和跑了100米D.向东行30米和向北行30米5.(题型一)吐鲁番盆地低于海平面155 m,记作-155 m,福州鼓山绝顶峰高于海平面919 m,记作_____m.6.(题型二)在有理数中,是整数而不是正数的是,是负数而不是分数的是______ .7.(知识点2)某栏目有一竞猜游戏:两人搭档,一人用语言描述,一人回答,要求描述者不能说出答案中的字或数.如果现在给的数是0,那么你给搭档描述的是_______.8.(题型二)把有理数-3,2 017,0,37,-237填入它所属的集合内(如图2-1-1).图2-1-1能力提升9.(题型一)一名足球守门员练习折返跑,从守门员守门的位置出发,向前记作正数,返回记作负数,他的记录(单位:m)如下:+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了守门的位置?(2)守门员离开守门的位置最远是多少?10.(题型三)将一串有理数按下列规律排列,解答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A,B,C,D中的什么位置?(3)第2 018个数是正数还是负数?排在对应于A,B,C,D中的什么位置?-1 4→-5 8→-9 A→B↓↑↓↑↓↑↓2→-3 6 -7 10 …C→D7222 答案 基础巩固1.C 解析:若收入为正,则支出为负,所以-80元表示支出80元.故选C.2.C 解析:负整数和负分数统称为负有理数,故A 正确,不符合题意;整数分为正整数、负整数和0,故B 正确,不符合题意;正有理数、负有理数和0组成全体有理数,故C 错误,符合题意;3.14是小数,也是分数,故D 正确,不符合题意.故选C.3.C 解析:有理数有-3.5,,0,共3个.虽然是分数形式,但π是一个无限不循环小数,不是有理数,0.616 116 111 6…(相邻两个6之间1的个数逐次加1)虽然有规律,但是不存在循环节,故也是无限不循环小数,不是有理数.所以有理数一共有3个.故选C. 4.A 解析:增加20个与减少30个是具有相反意义的量.故选A. 5.+919 解析:若低于海平面记作负数,则高于海平面应记作正数,所以高于海平面919 m 记作+919 m.6.负整数和0负整数7.既不是正数也不是负数的数(答案不唯一) 8.如图D2-1-1.图D2-1-1能力提升9.解:(1)守门员回到了守门的位置.守门员的运动情况为:前进5 m ,后退3 m ,前进10 m ,后退8 m ,后退6 m ,前进12 m ,后退10 m ,共前进了27 m ,后退了27 m.因为前进的总路程与后退的总路程相等,所以守门员回到了守门的位置.(2)几次运动后,守门员的位置相对于最初的位置分别为:前5 m ,前2 m ,前12 m ,前4 m ,后2 m ,前10 m ,0 m ,所以守门员离开守门的位置最远是12 m. 10.解:(1)在A 处的数是正数. (2)负数排在B 和D 的位置.(3)第2 018个数是正数,排在对应于C 的位置.第二章有理数及其运算2 数轴基础巩固1.(题型一)在数轴上表示-2,0,6.3,15的点中,在原点右边的点有()A. 0个B. 1个C. 2个D. 3个2.(题型三)在数轴上表示-3和2 017的点之间的距离是()A.2 017 B.2 014C.2 020 D.-2 0203.(题型二)写出两个比-4.2大的负整数:_____.4.(题型四)如图2-2-1,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是;数轴上到原点的距离等于2的点所表示的数是______.图2-2-15.(1)(题型一)把数-4.4, 5,-1.5,3,2.2,0.5,4.1,-3在数轴上表示出来;(2)(题型一)指出如图2-2-2的数轴上A,B,C,D,O各点分别表示什么数.图2-2-2(3)(题型二)用“>”连接下列各数:32,-5,0,3.6,-3,-12,-112.能力提升6.(题型五)李林准备利用星期天休息时间到老板、经理、处长和科长的家登门拜访,王敏告诉他:“老板的家在工厂的正东方向,距离工厂8 000 m;经理的家在老板家的正西方向,距离老板家1 000 m;处长的家在经理家的正东方向,距离经理家5 000 m;科长的家在处长家的正东方向,距离处长家3 000 m.”(1)利用数轴确定四家的位置.(2)从工厂出发,走哪条路线才能使往返路程最短?7.(题型六)点A从数轴上表示+2的点开始移动,第一次先向左移动1个单位长度,再向右移动2个单位长度;从第一次移动后的位置开始,第二次先向左移动3个单位长度,再向右移动4个单位长度;从第二次移动后的位置开始,第三次先向左移动5个单位长度,再向右移动6个单位长度;……依此规律,解答下列各题.(1)第一次移动后这个点在数轴上表示的数为____;(2)第二次移动后这个点在数轴上表示的数为____;(3)第五次移动后这个点在数轴上表示的数为____;(4)第n次移动后这个点在数轴上表示的数为____;(5)如果第m次移动后这个点在数轴上表示的数为56,求m的值.答案基础巩固1.C解析:在原点右边的点所对应的数是6.3,15,共2个.故选C.2.C解析:从数轴上可以看出,表示-3的点到原点的距离为3个单位长度,表示2 017的点到原点的距离为2 017个单位长度,且两点分布在原点两侧,所以距离为2 020.故选C.3.-4,-3(答案不唯一)4. 2 - 2和25.解:(1)各数在数轴上的位置如图D2-2-1.图D2-2-1(2)点A表示的数为-2.5,点B表示的数为-0.5,点O表示的数为0,点C表示的数为2,点D表示的数为2.5.(3)将各数用数轴上的点表示,如图D2-2-2.图D2-2-2根据“在数轴上右边的点表示的数总比左边的点表示的数大”可得3.6>32>0>-12>-112>-3>-5.能力提升6.解:(1)规定一个单位长度代表1 000 m,向东为正方向,如图D2-2-3.图D2-2-3(2)李林从工厂出发,按照路线:经理家老板家处长家科长家,然后返回工厂,这样往返路程最短.(答案不唯一)7.解:(1)3.(2)4.(3)7.(4)n+2.(5)由(4)可知,m+2=56,解得m=54.第二章有理数及其运算3 绝对值基础巩固1.(题型一)|-2|的相反数是()A.-2 B.2 C.- 3 D.32.(知识点2)若|x|=-x,则x一定是()A.负数B.负数或零C.零D.正数3.(题型三)将有理数-|0.67|,-(-0.68),23,|-0.67|,0.67·,0.66用“<”连接起来为 .4.(题型三)把-3.5,|-2|,-1.5,|0|,|-3.5|在数轴上表示出来,并按从小到大的顺序排列出来.5.(题型一)化简下列各式,并解答问题:①-(-2);②+(-1/8);③-\[-(-4)\];④-\[-(+3.5)\];⑤-{-\[-(-5)\]};⑥-{-\[-(+5)\]}.问:(1)当+5前面有2 018个负号时,化简后结果是多少?(2)当-5前面有2 019个负号时,化简后的结果是多少?你能总结出什么规律?能力提升6.(题型四)出租车司机李伟一天下午的营运全是在南北走向的光明大街上进行的,假定向南为正,向北为负,他这天下午的行车记录(单位:km)如下:+15,-3,+14,-11,+10,+4,-26.(1)李伟在送第几位乘客时行驶的路程最远?最远有多远?(2)若该出租车的耗油量为0.1 L/km,则这天下午该出租车共耗油多少升?7.(题型五)认真阅读下面的材料,解答有关问题:材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5-3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5-(-3)|,所以|5+3|表示5,-3在数轴上对应的两点之间的距离;|5|=|5-0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,如果点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离可以表示为|a-b|.(1)如果点A,B,C在数轴上分别表示有理数x,-2,1,那么点A到点B的距离与点A到点C的距离之和可表示为什么?(用含绝对值的式子表示)(2)利用数轴探究:①找出满足|x-3|+|x+1|=6的x的所有值;②设|x-3|+|x+1|=p,当x取不小于-1且不大于3的数时,p的值是不变的,而且是p的最小值,这个最小值是;当x在范围内取值时,|x|+|x-2|取得最小值,最小值是.答案基础巩固1.A解析:|-2|=2,所以|-2|的相反数是-2.故选A.2.B解析:根据绝对值的定义,可知x一定是负数或零.故选B.3. -|0.67|<0.66<23<|-0.67|<0.67•<-(-0.68)解析:因为-|0.67|=-0.67,|-0.67|=0.67,-(-0.68)=0.68,23=0.6•,所以-|0.67|<0.66<23<|-0.67|<0.67•<-(-0.68).4.解:将各数在数轴上表示如图D2-3-1.图D2-3-1按从小到大的顺序排列出来为:-3.5<-1.5<|0|<|-2|<|-3.5|.5.解:①-(-2)=2;②+-81=-81; ③-[-(-4)]=-4;④-[-(+3.5)]=3.5; ⑤-{-[-(-5)]}=5;⑥-{-[-(+5)]}=-5.(1)当+5前面有2 018个负号时,化简后的结果是+5. (2)当-5前面有2 019个负号时,化简后的结果是+5.总结规律:一个数的前面有奇数个负号,化简后的结果等于它的相反数,有偶数个负号,化简后的结果等于它本身. 能力提升6.解:(1)小李在送最后一名乘客时行驶的路程最远,是 26 km. (2)总耗油量为0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L ). 即这天下午该出租车共耗油8.3 L.7.解:(1)点A 到点B 的距离与点A 到点C 的距离之和可表示为|x +2|+|x -1|. (2)①满足|x -3|+|x +1|=6的x 的所有值是-2,4.② 4不小于0且不大于22.第二章 有理数及其运算4 有理数的加法基础巩固1.(题型一)有理数-5与20的和与它们的绝对值之和分别为( ) A.15,15 B.25,15 C.25,25 D.15,252.(题型二)李老师的存储卡中有5 500元,取出1 800元,又存入1 500元,又取出2 200元,这时存储卡中的钱为( ) A.11 000元 B.0元 C.3 000元 D.2 500元3.(题型一)若m ,n 分别表示一个有理数,且m ,n 互为相反数,则|m +(-2)+n |= .4.(考点一)计算下列各题:(1) 354215+-+-++-+-9+7777()(4)()(); (2) 15115++-+0.125+-82(4.5)(). 5.(题型二)某检修小组乘汽车沿南北走向的公路检修输电线路,约定向南为正,向北为负,某天从M 地出发到收工时所走路程依次为(单位:km ):+10,-4,+2,-5,-2,+8,+5. (1)该检修小组收工时在M 地什么方向,距M 地多远?(2)若该汽车在行驶过程中,每千米耗油0.09升,则该汽车从M 地出发到收工时共耗油多少升? 能力提升6.(题型三)如果两个数互为相反数,那么这两个数的和为0.例如,若x 和y 互为相反数,则必有x +y =0.(1)已知|a |+a =0,求a 的取值范围.(2)已知|a -1|+(a -1)=0,求a 的取值范围. 7.(考点一)阅读下面解题过程: 计算: 解:原式== =0+ = 上面的计算,是先把带分数拆分为整数部分和小数部分后再计算,可使运算简便,这种简便运算的方法叫作拆项法.请你仿照上面的方法计算:521-2018+-+4035+-1632()(2017)().5231-5+9)17(3)6342-++-(52(5)()(9)()6331(17)(3)().42⎡⎤⎡⎤-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤+++-+-⎢⎥⎣⎦[](5)(9)(3)175213(-+-+-+6324-+-+-+⎡⎤+⎢⎥⎣⎦)()()1-14()1-1.4答案 基础巩固1.D 解析:(-5)+20=15,|-5|+|20|=5+20=25.故选D.2.C 解析:根据题意,得5 500+(-1 800)+1 500+(-2 200)=3 000(元),故此时存储卡还有3 000元.故选C.3. 2 解析:因为m ,n 互为相反数,所以m +n =0,则|m +(-2)+n |= |(m +n )+(-2)|=|0+(-2)|=2.4.解:(1)15+(-73)+(-4)+75+(-74)+(-9)+72 =(75+72)+[(-73)+(-74)] + [15+(-4)+(-9)]=1+(-1)+2 =2.(2)10+815+(-4.5)+0.125+(-21) =10+815+(-4.5)+81+(-0.5)=10+(815+81)+[(-4.5)+(-0.5)]=10+2+(-5) =7.5.解:(1)(+10)+(-4)+(+2)+(-5)+(-2)+(+8)+(+5) =10-4+2-5-2+8+5 =14.答:该检修小组收工时在M 地的南边,距M 地14 km.(2)|+10|+|-4|+|+2|+|-5|+|-2|+|+8|+|+5|=36(km ),36×0.09=3.24(L ). 答:汽车从M 地出发到收工时共耗油3.24 L. 能力提升6.解:(1)因为|a |≥0,|a |+a =0,所以a ≤0.(2)因为|a -1|≥0,|a -1|+(a -1)=0,所以a -1≤0.解得a ≤1.7.解:原式=[(-2 018)+(-65)]+[(- 2 017)+(-32)]+4 035+[(-1)+(-21)] =[(-2 018)+(-2 017)+4 035+(-1)]+[(-65)+(-32)+(-21)]=(-1)+(-2)=-3.第二章有理数及其运算5 有理数的减法基础巩固1.(题型一)有理数a,b在数轴上的对应点的位置如图2-5-1,则()A.a+b<0 B.a+b>0 C.a-b=0 D.a-b<图2-5-12.(题型一)李明的练习册上有这样一道题:计算|(-3)+▉|,其中“▉”是被墨水污染而看不到的一个数,他翻看了后边的答案得知该题的计算结果为6,那么“▉”表示的数应该是 .3.(考点一)计算:(1)-2-(+10);(2)0-(-3.6);(3)(-30)-(-6)-(+6)-(-15);(4)232-3--2--1-+1.75 343()()()().4.(题型二)已知某种植物成活的主要条件是该地四季的温差不得超过20 ℃.若不考虑其他因素,在下表的四个地区中,哪个地区适合大面积的栽培这种植物?请说明理由.地区夏季最高温/℃冬季最低温/℃A地区41 -5 B地区38 20 C地区27 -17 D地区-2 -42能力提升5.(题型一)若a,b,c是有理数,|a|=3,|b|=10,|c|=5,且a,b异号,b,c同号,求a-b-(-c)的值.6.(题型一)已知M,N都为数轴上的点,当M,N分别表示下列各数时:①+3和+6;②-3和+6;③3和-6;④-3和-6.(1)请你分别求点M,N之间的距离.(2)根据(1)的求解过程,你能从中得出求数轴上任意两点间的距离的规律吗?试试看.答案 基础巩固1.B 解析:由数轴,得a >0,b <0,且|a |>|b |,所以a +b >0,a -b >0.故选B.2.-3或9 解析:因为|(-3)+▉|=6,所以(-3)+▉=6或(-3)+▉=-6. 当(-3)+▉=6时,▉=6-(-3)=6+(+3)=9;当(-3)+▉=-6时,▉=-6-(-3)=(-6)+(+3)=-3. 3.解:(1)-2-(+10)=-2+(-10)=-12. (2)0-(-3.6)=0+3.6=3.6.(3)(-30)-(-6)-(+6)-(-15)=(-30)+(+6)+(-6)+(+15)=-30+0+15=-15.(4)(-332)-(-243)-(-132)-(+1.75) =-332+243+132+(-143)=(-332+132)+ [(+243)+(-143)]=-2+1 =-1.4.解:B 地区.理由如下:A 地区的四季温差是41-(-5)=46(℃);B 地区的四季温差是38-20=18(℃);C 地区的四季温差是27-(-17)=44(℃);D 地区的四季温差是-2-(-42)=40(℃). 因为B 地区的四季温差不超过20 ℃,所以B 地区适合大面积的栽培这种植物. 能力提升5.解:因为|a |=3,所以a =3或a =-3. 因为|b |=10,所以b =10或b =-10. 因为|c |=5,所以c =5或c =-5. 又因为a ,b 异号,b ,c 同号,所以a=-3,b=10,c=5或a=3,b=-10,c=-5.当a=-3,b=10,c=5时,a-b-(-c)=-3-10-(-5)=-8 ;当a=3,b=-10,c=-5时,a-b-(-c)=3-(-10)- 5=8.所以a-b-(-c)的值为8或-8.6.解:把-6,-3,+3,+6分别用数轴上的点表示出来,如图D2-5-1.图D2-5-1(1)①点M,N之间的距离为|6|-|3|=6-3=3.②点M,N之间的距离为|6|+|-3|=6+3=9.③点M,N之间的距离为|-6|+|3|=6+3=9.④点M,N之间的距离为|-6|-|-3|=6-3=3.(2)能.在(1)中,①可以写成|6|-|3|=|6-3|=3;②可以写成|6|+|-3|=|6-(-3)|=9;③可以写成|-6|+|3|=|-6-3|=9;④可以写成|-6|-|-3|=|-6-(-3)|=3,所以点M,N之间的距离为这两个点所表示的数的差的绝对值.故求数轴上任意两点间的距离可以转化为求这两点在数轴上所表示的数的差的绝对值.第二章 有理数及其运算 6有理数的加减混合运算基础巩固1.(题型一)不改变原式的值,将6-(+3)-(-7)+(-2)写成省略加号的和的形式是( ) A.-6-3+7-2 B.6-3-7-2 C.6-3+7-2 D.6+3-7-22.(题型二)某天股票B 的开盘价为10元,上午11:00下跌了1.8元,下午收盘时上涨了1元,则该股票这天的收盘价为( )A .-0.8元B .12.8元C .9.2元D .7.2元 3.(题型三)已知|a +2|+|b -1|=0,则(a +b )-(b -a )-a =______. 4.(题型一)计算:(1) (-23)-(-38)-(+12)+(+7);(2)16-(+2.8)+(-65)+1.8; (3)-0.5-(-341)+2.75-(+521);(4)|+3118|-|-1127|-|+1119|+|-59|.5.(题型二)为了宣传节约用水的意义,李丽记录了金地庄园小区6月份1~6日每天的用水量,并根据记录结果制成折线统计图,如图2-6-1.请你求出该小区6天的平均用水量是多少吨.图2-6-1能力提升6.(题型一)数学活动课上,王老师给同学们出了一道题,规定一种新运算“☆”,对于任意有理数a 和b ,a ☆b =a -b +1,请你根据新运算,计算[2☆(-3)]☆(-2)的值.7.(题型四)(1)有1,2,3,…,11,12共12个数,请在每两个数之间添上“+”或“-”,使它们的和为0;(2)若有1,2,3,…,2 015,2 016共2 016个数字,请在每两个数之间添上“+”或“-”,使它们的和为0;(3)根据(1)(2)的规律,试判断能否在1,2,3,…,2 016,2 017共2 017个数的每两个数之间添上“+”或“-”,使它们的和为0.若能,请说明添加的方法;若不能,请说明理由.答案1.C 解析:原式=6+(-3)+(+7)+(-2)=6-3+7-2.故选C.2.C 解析:由题意可得,该股票这天的收盘价为10-1.8+1=9.2(元).故选C.3. -2 解析:因为|a +2|+|b -1|=0,所以a +2=0,b -1=0,即a =-2,b =1,则原式=a +b -b +a -a =a =-2.4.解:(1)原式=-23+38-12+7=(-23-12)+(38+7) =-35+45 =10. (2)原式=61-2.8-65+1.8=(61-65)+(-2.8+1.8)=-32 -1=-132. (3)原式=-0.5+3.25+2.75-5.5=(-0.5-5.5)+(3.25+2.75)=-6+6=0. (4)原式=3118-1027-1119+59=3118-1119-(—1027-59)=2-109=1101.5.解:若选3日的用水量为标准,则这6天的用水量分别为-2吨,+2吨,0吨,+5吨,-4吨,-1吨.所以这6天的平均用水量为[(-2)+(+2)+0+(+5)+(-4)+(-1)]÷6+32=(-2+2+0+5-4-1)÷6+32=32(吨). 答:该小区6天的平均用水量是32吨. 能力提升6.解:根据新运算法则,得[2☆(-3)]☆(-2)=[2-(-3)+1]☆(-2)=6☆(-2)=6-(-2)+1=6+2+1=9. 7.解:(1)答案不唯一,如1+12-2-11+3+10-4-9+5+8-6-7=0.(2)答案不唯一,如1+2 016-2-2 015+3+2 014-4-2 013+…+1 007+1 010-1 008-1 009=0. (3)不能.理由如下: 因为(1)与(2)是偶数个数,它们的第一个数与最后一个数的和,第二个数与倒数第二个数的和,……中间位置两个数的和都分别相等,在适当的位置添加“+”或“-”其和可以为0,而1,2,3,…,2 016,2 017共2 017个数,中间的数2 009是无法抵消的,所以根据(1)(2)的规律,不能在1,2,3,…,2 016,2 017共2 017个数的每两个数之间添上“+”或“-”,使它们的和为0.第二章 有理数及其运算7有理数的乘法基础巩固1.(知识点1)从-4,5,-3,2中任取两个数相乘,所得积最大的是( ) A.-20 B.12C.10D.-82.(知识点1、题型一)下列计算正确的是( )A .(-5)×(-4)×(-2)×(-2)=5×4×2×2=80B .(-12)×(31-41-1)=-4+3+1=0C .(-9)×5×(-4)×0=9×5×4=180D .(-2)×5-2×(-1)-(-2)×2=(-2)×(5+1-2)=-8 3.(知识点2)如果□×(-52)=1,那么“□”内应填的数是( ) A.25B.52C.-52D.-254.(题型二)绝对值小于4的所有整数的积是____.5.(题型二)有理数a ,b ,c ,d 在数轴上对应的点的位置如图2-7-1,则abc ____0,abcd ____0.(填“>”或“<”)图2-7-16.(题型二)若|a |=5,b =-2,且ab >0,则a +b =_____.7.(题型一)用简便方法计算:(1)(-231-321+12524)×(-76); (2)(-5)×(-372)+(-7)×(-372)+(-12)×372.8.(题型二)在数轴上,点A 到原点的距离为3,点B 到原点的距离为5,如果点A 表示的有理数为a ,点B 表示的有理数为b ,求a 与b 的乘积. 能力提升9.(题型三)某数学小组的10位同学站成一列玩报数游戏,规则:从前面第一位同学开始,每位同学依次报自己序号的倒数的2倍加1,第1位同学报(12+1),第2位同学报(22+1),第3位同学报(23+1),……这样得到的10个数的积为______.10.(题型一)阅读下面材料:(1+21)×(1-31)=23×32=1, (1+21)×(1+41)×(1-31)×(1-51)=23×45×32×54 =23×32×45×54=1×1=1.根据以上信息,求出下式的结果.(1+21)×(1+41)×(1+61)×…×(1+201)×(1-31)×(1-51)×(1-71)×(1-91)×…×(1-211).答案 基础巩固1.B 解析:(-4)×5=-20,(-4)×(-3)=12,(-4)×2=-8,5×(-3)=-15,5×2=10,-3×2=-6.故选B.2.A 解析:A.(-5)×(-4)×(-2)×(-2)=5×4×2×2=80,故正确;B.(-12)×(31-41-1)=-4+3+12=11,故错误;C.(-9)×5×(-4)×0=0,故错误;D.-2×5-2×(-1)-(-2)×2=-2×(5-1-2)=-4,故错误.故选A.3.D 解析:互为倒数的两个数的积为1,反之,如果两个数的积为1,那么这两个数互为倒数.所以“□”内应填的数为-25.故选D. 4. 0 解析:绝对值小于4的整数有3,2,1,0,-1,-2,-3,因为因数中有一个数为0,所以它们的积为0.5.>> 解析: 观察数轴可知,a <0,b <0,c >0,d >0,故abc >0,abcd >0.6. -7 解析:因为|a |=5,所以a =5或a =-5.又因为ab >0,b =-2,所以a =-5,所以a +b =(-5)+(-2)=-7.7.解:(1)原式=(-37-27+2549)×(-76) =(-37)×(-76)+(-27)×(-76)+2549×(-76)=2+3-2542=3258.(2)原式=5×372+7×372-12×372=372×(5+7-12)=372×0=0.8.解:由题意知,a =3或a =-3,b =5或b =-5.当点A 与点B 位于原点的同侧时,a ,b 的符号相同,则ab =3×5=15或ab =(-3)×(-5)=15; 当点A 与点B 位于原点的异侧时,a ,b 的符号相反,则ab =3×(-5)=-15或ab =(-3)×5=-15.综上所述,a 与b 的乘积为15或-15.。

初中数学北师大版七年级上册《1.4从三个方向看物体的形状》课件

初中数学北师大版七年级上册《1.4从三个方向看物体的形状》课件

课后作业
习题:1、2、3、4.
1.4
谢谢大家
数学北师大版 七年级上
A.4个 B.5个 C.6个 D.7个
课堂练习
2.画出右边这个几何 体的三个形状图.
从正面看
从左面看
从上面看
拓展提高
1、如图是从上面看到的几个小立方体块所搭几何体的图形, 小正方形中的数字表示在该位置小立块的个数,请画出从正 面和左面看到的这个几何体的图形.
从正面看
从左面看
拓展提高
2、下图是一个立体图形从三个方向看到的图形,请写出这个立体图形的名 称,并计算这个立体图形的体积(结果保留π).
新知讲授
做一做
从上面看
从左面看
从正面看
从正面看
从左面看
从上面看
新知讲授
做一做
从正面看
从左面看
从上面看
新知讲授
做一做
从正面看
从左面看
从上面看
新知讲授
三视图: 从正面看到的图——主视图; 从左面看到的图——左视图; 从上面看到的图——俯视图. 画物体的三视图时,要注意位置: 主视图:看列,取最高层。 左视图:看行,取最高层。 俯视图:看根基,画根基。
解:该立体图形为圆柱. ∵圆柱的底面半径r=5, 高h=10, ∴圆柱的体积V=πr2h
=π×52×10=250π. 答:立体图形的体积为250π.
从正面看 从上面看
从左面看
拓展总结
几何体

视察


判断

从正面看 从左面看 从上面看
拓展总结
归纳:
13 21
看列,取大数,左右相对应 左画两个,右画三个
一个几何体由几个大小相同的小立方块搭成。从上面视察这个几

2017年秋北师大版数学七年级上册教案1.4从三个方向看物体的形状1

2017年秋北师大版数学七年级上册教案1.4从三个方向看物体的形状1
2017年秋北师大版数学七年级上册教案1.4从三个方向看物体的形状1
一、教学内容
本节课选自2017年秋北师大版数学七年级上册第一章第四节“从三个方向看物体的形状1”。教学内容主要包括:
1.掌握三视图(主视图、左视图、俯视图)的基本概念和特点;
2.学会从三个不同方向观察物体,并绘制出物体的三视图;
3.能够通过物体的三视图推断出物体的实际形状;
4.培养学生的数学建模素养,使学生能够运用所学知识解决实际问题,提高数学应用意识;
5.培养学生的团队合作意识,通过小组讨论、交流,提高沟通能力和协作能力。
三、教学难点与重点
1.教学重点
-理解并掌握三视图(主视图、左视图、俯视图)的概念及其作用;
-学会从三个不同方向观察物体,并能准确地绘制出物体的三视图;
-难点突破策略:
1.使用实物模型或3D图示,帮助学生直观地理解三视图与物体之间的关系;
2.通过小组合作,让学生互相讨论和纠正,提高对三视图的认识和绘制能力;
3.设计不同难度的练习题,逐步提升学生的空间想象和推理能力;
4.教师进行个别指导,针对学生的具体问题进行解答和指导,帮助学生克服难点。
四、教学流程
在总结回顾环节,我对今天的教学内容进行了简要梳理,学生们也反馈了他们的学习收获。我认识到,对于空间想象力较弱的学生,需要设计更多有针对性的练习,帮助他们逐步提高空间想象和推理能力。
1.加强对学生的个别辅导,关注他们的学习困难,针对性地解决问题;
2.丰富课堂活动,提高学生的参与度,培养他们的团队合作意识和自信心;
小组讨论环节,学生们围绕三视图在实际生活中的应用展开思考,提出了很多有创意的观点。这让我意识到,学生的潜力是巨大的,只要给他们足够的启发和空间,他们就能发挥出惊人的想象力。但同时,我也发现部分学生在讨论中显得有些拘谨,这可能是因为他们对知识的掌握还不够自信。因此,在今后的教学中,我要更加注重培养学生的自信心,鼓励他们大胆表达自己的观点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《从三个方向看物体的形状》
一、选择题(本大题共10小题,共30.0分)
1.如图,其主视图是()
A. B. C. D.无法确定
2.如图,桌子上放着一个长方体的茶叶盒和一个圆柱形的水杯,则它的俯视图是()
A. B. C. D.
3.如图所示,下列几何体的左视图不可能是矩形的是()
A. B. C. D.
4.下列几何体中,主视图相同的是()
A.①②
B.①④
C.①③
D.②④
5.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()
A. B. C. D.
6.如图所示的几何体的左视图是()
A. B. C. D.
7.如图是由5个相同的正方体组成的立体图形,它的主视图是()
A. B. C. D.
8.如图,一个圆柱体和一个长方体组成的几何体,则其主视图是()
A. B. C. D.
9.如图所示的立体图形的主视图是()
A. B. C. D.
10.发展工业是强国之梦的重要举措,如图所示零件的左视图是()
A. B. C. D.
二、填空题(本大题共6小题,共18.0分)
11.任意放置以下几何体:正方体、圆柱、圆锥、球体,则三视图都完全相同的几何体是______ .
12.在画如图所示的几何体的三视图时,我们可以把它看成 ______ 体和 ______ 体的组合体.
13.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为 ______ .
第12题第13题第14题第15题14.如图是一个由若干个正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是: ______ (多填或错填得0分,少填酌情给分).
15.如图是由五个大小相同的正方体搭成的几何体,从 ______ 面看所得到的性状图的面积最小.
三、解答题
16.由小立方体搭成的几何体如图所示,画出下列几何体的三种视图.
17.画出下面图形的三视图.
18.由一些大小相同的小正方体搭成的几何体的从上面看到的图形,如图所示,其中正方形中的数字表示该位置上的小正方体的个数,请画出该几何体从正面与左面看到的图
形.
19.在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体,如图所示.
(1)这个几何体由 ______ 个小正方体组成,请画出这个几何体的三视图;
(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有 ______ 个正方体只有一个面是黄色,有 ______ 个正方体只有两个面是黄色,有 ______ 个正方体只有三个面是黄色;
(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体.这时如果要重新给这个几何体表面喷上红漆,需要喷漆的面积比原几何体增加还是减少了?增加或减少了多少cm2?
《从三个方向看物体的形状》练习参考答案
一、选择题:
1. B
解:主视图是从正面看到的图形,从正面看是长方形,
故选B
2. C
解:从上边看是一个正方形、一个圆,
故选:C.
3.B
解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,三棱柱的左视图是矩形,正方体的左视图是正方形,
故选:B.
4. C
解:①此几何体的主视图是矩形;
②此几何体的主视图是等腰三角形;
③此几何体的主视图是矩形;
④此几何体的主视图是圆形;
主视图相同的是①③,
故选:C.
5. C
解:A、主视图是第一层三个小正方形,第二层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,故A错误;
B、主视图是第一层两个小正方形,第二层中间一个小正方形,第三层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故B错误;
C、主视图是第一层两个小正方形,第二层左边一个小正方形,左视图是第一层两个小正方形,第二层左边一个小正方形,故C正确;
D、主视图是第一层两个小正方形,第二层右边一个小正方形,左视图是第一层一个小正方形,第二层左边一个小正方形,故D错误;
故选:C.
6.C
解:从左边看是一个正方形,正方形的左上角是一个小正方形,
故选:C.
7. C
解:从正面看第一层是三个小正方形,第二层中间一个小正方形,
故选:C.
8.A
解:从正面看下边是一个矩形,矩形的上边是一个较窄的小矩形,
故选:A.
9. B
解:此立体图形从正面看所得到的图形为矩形,里面有一条竖线,
故选:B.
10.C
解:从左边看是一个矩形平均分成2个,
故选:C.
二、填空题:
11.解:正方体主视图、俯视图、左视图都是正方形;
圆柱主视图和左视图是矩形,俯视图是圆;
圆锥主视图和左视图是等腰三角形,俯视图是圆;
球体主视图、俯视图、左视图都是圆;
因此三视图都完全相同的几何体是正方体和球体.
故答案为:正方体和球体.
12. 解:观察图形可知,在画如图所示的几何体的三视图时,我们可以把它看成圆锥体和圆柱体的组合体.
故答案为:圆锥;圆柱.
13. 解:设圆柱的高为h,底面直径为d,
则dh=48,
解得d=,
所以侧面积为:π•d•h=π××h=48π.
故答案为48π.
14. 解:综合左视图跟主视图,从正面看,第一行第1列有3个正方体,第一行第2列有1个或第二行第2列有一个或都有一个.第二行第1列有2个正方体.
故答案为:①②③.
15. 解:从正面看第一层是三个小正方形,第二层左边一个小正方形,共四个小正方形;从上面看第一层左边一个小正方形,第二层是三个小正方形,共四个小正方形;
从左面看第一层两个小正方形,第二层左边一个小正方形,共三个小正方形,
故答案为:左.
三、解答题:
16.解:如图所示:
17.解:如图所示:
18.解:如图所示:
19.解:(1)10,
主视图左视图俯视图;
(2)只有一个面是黄色的应该是第一列正方体中最底层中间那个,共1个;有2个面是黄色的应是第一列最底层最后面那个和第二列最后面那个,共2个;只有三个面是黄色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个,共3个;
(3)最多增加四个小正方形,主视图是9个小正方形,6+6+9=21,21×2=42,
增加了36-32=4,4×100=400(cm2).。

相关文档
最新文档