运输问题-数学模型及其解法
运输问题模型

。
目标可以减少,说明当前
解不是最优解
闭回路法调整
选x22进基,找到闭回路
x12 5-
x14 1 +
x22 +
x24 5-
X22最多增加5
x12 5-5 x22 + 5
x14 1 +5 x24 5-5
X22进基,x12和x24经过调整同时变成 零。但是要注意只有一个变量出基。
例如:令x12出基
B1
B2
B3
B4
产量
A1 A2 A3 销量
× 2
3 1
× 8
3 ,0
×
9
10
×
3
4
4
4
2
8
4,0
79 2 5,2 5 7,3 6
B1
B2
B3
B4
产量
A1 A2 A3 销量
×
×
2
9
10
7
3
×
×
2
1
3
4
2
×
4
8
4
2
5
3 ,0
8
4,0 6,4
9 5,2,0 7,3
B1
B2
B3
B4
产量
A1 A2 A3 销量
7
-1
2
5
1
3
4
2
7
3
4
3
8
4
2
5
3 ,0
8,5 4,0 6,4,0
9,5 5,2,0 7,3,0
重新计算检验数
A1 u1=0
A2 u2=-5
A3 u3=-5 销量
B1
初二数学运输问题

初二数学运输问题
摘要:
一、初二数学运输问题简介
1.运输问题的背景和实际意义
2.初二数学运输问题的基本内容
二、运输问题的基本模型和解决方法
1.基本模型:产销平衡模型
2.基本解决方法:线性规划
三、初二数学运输问题在生活中的应用
1.货物运输调度
2.交通路线规划
3.资源分配优化
四、初二数学运输问题的拓展思考
1.运输问题的变形和扩展
2.运输问题与其他数学领域的关联
正文:
初二数学运输问题涉及到货物运输、交通路线规划等实际问题,通过数学方法对其进行建模和求解,具有重要的实际意义。
运输问题属于线性规划的一个子领域,主要研究如何在满足一定约束条件的前提下,使得目标函数达到最优值。
运输问题的基本模型是产销平衡模型,即在多个产地和销地之间进行货物
运输,要求满足供需平衡和运输容量约束。
解决运输问题的基本方法是线性规划,将问题转化为求解线性方程组,通过计算得到最优解。
在生活中,初二数学运输问题有着广泛的应用。
例如,在货物运输调度中,通过运输问题的求解,可以有效地安排运输车辆的行驶路线和货物装载方案,提高运输效率。
在交通路线规划中,运输问题可以帮助我们找到最佳的道路使用方案,减少交通拥堵。
此外,运输问题还可以应用于资源分配优化等方面。
初二数学运输问题作为线性规划的一个实际应用,可以帮助学生更好地理解线性规划的基本思想和方法。
通过对运输问题的拓展思考,学生可以尝试解决一些变形和扩展的运输问题,进一步锻炼自己的数学思维能力。
运筹学运输问题

当出现检验数<0,证明原初始方案或改 进方案还不是最优→如何进行基变量的 调入调出?
给检验数<0的非基变量赋值,越大 越好。但要考虑产销平衡问题。
11
8、运输问题的校验方法2 —位势法
利用行位势和列位势两类数据,将检验数与 单位运价联系起来
12
检 验 数 方 程
13
λ
= c – u – v ij ij i j
A、位势法求检验数的步骤
第一步:根据最小元素法或Vogel法确定的初始运量表做 一表格,将基变量(或运量)数据替换成与之对应的单位 运价;(或对单位运价表进行修改,只保留与基变量对应的运价信
息)
第二步:在右侧增加一列,下侧增加一行,用于填写位势 数据。右侧表示行位势ui(i=1,2...m),下侧表示列位 势vj(j=1,2...n); 第三步:对于基变量对应的单位运价处,ui+vj=cij。随便 确定任一个位势,即可求解全部行和列位势; 第四步:在非基变量对应的空格处,计算检验数λij=cij(ui+vj)。并将检验数填入检验数表中; 第五步:判断检验数λij是否大于0,如是,则表示较优。 如不是,则需要调整基变量。 第六步:基变量的调整采用闭回路法进行。
收点 发点 9
B1
4
B2
1
B3
11
B4 -1
10 5
发量
偶 点 0 减 , 2 奇 点 加 5
A1
14 ③奇点 9 18 1 A2 x x 1 9 11 6 8 0 A3 1 3 x 14 ②偶点 12 2
11 21 22 31
x 3 2
x 6 7
5
13
偶点④
9
3运输问题及其解法

m
n
m
(3.1-4)
将后 n 个约束相加,得
∑∑ xij = ∑ b j ,
j =1 i =1 j =1 m n
m
n
(3.1-5)
因为,
(3.1-4)式与(3.1-5)式是相同的.由此可见,这 m + n 个约束 ∑ ai = ∑ b j ,所以,
i =1 j =1
不是独立的.我们可以证明:当所有的 ai , b j 都大于零时,任何 m + n − 1 个约束都是相互独立 的.即,系数矩阵 A 的秩 r ( A) = m + n − 1 ,事实上,
位(称为需求量), 设 cij (i = 1, 2,L , m, j = 1, 2,L , n) 为由产地 Ai 运往销地 B j 的单位运费, xij 为从 Ai 调往 B j 的物资数量,试问如何调运,求能使总运费最小. 为了清楚起见,通常将上述数据列在一张表上,该表称为运输表(见表3.1-1).
初看起来,最小元素法十分合理,但是,有时按某一最小单位运价优先安排物品调运时, 却可能导致不得不采用运费很高的其他供销点对,从而使整个运输费用增加.对每一个供应地 或销售地, 均可由它到各销售地或到各供应地的单位运价中找出最小单位运价和次小单位运价, 并称这两个单位运价之差为该供应地或销售地的罚数.若罚数的值不大,当不能按最小单位运 价安排运输时造成的运费损失不大;反之,如果罚数的值很大,不按最小运价组织运输就会造 成很大损失,故应尽量按最小单位运价安排运输,元素差额法就是基于这种考虑提出来的. 现结合上例说明这种方法: 首先计算运输表中每一行和每一列的次小单位运价和最小单位运价之间的差值,并分别称 之为行罚数和列罚数;将算出的行罚数填入位于运输表右侧行罚数栏的左边第一列的相应格子 中,列罚数填人位于运输表下边列罚数栏的第一行的相应格子中. A1 行中的次小和最小单位运 价分别为8和6,故其行罚数为2, B1 列中次小单位运价和最小单位运价分别为9和8,故其列罚 数为1,如此进行,可计算出 A1 , A2 , A3 的行罚数分别为2,2和4, B1 , B2 , B3 , B4 列的列罚数分别 为1,3,3,2.在这些罚数中最大者为4(在表4.2 - 6中用小圆圈标出),它位于 A3 行,由于在
运筹学第3章:运输问题-数学模型及其解法

整数规划模型
01
整数规划模型是线性规划模型 的扩展,它要求所有变量都是 整数。
02
整数规划模型适用于解决离散 变量问题,例如车辆路径问题 、排班问题等。
03
在运输问题中,整数规划模型 可以用于解决车辆调度、装载 等问题,以确保运输过程中的 成本和时间效益达到最优。
混合整数规划模型
混合整数规划模型是整数规划和线性规划的结合,它同时包含整数变量和 连续变量。
运筹学第3章:运输问题-数学模 型及其解法
目录
• 引言 • 运输问题的数学模型 • 运输问题的解法 • 运输问题的应用案例 • 结论
01 引言
运输问题的定义与重要性
定义
运输问题是一种线性规划问题,主要 解决如何将一定数量的资源(如货物 、人员等)从起始地点运送到目标地 点,以最小化总运输成本。
总结词
资源分配优化是运输问题在资源管理 领域的应用,主要解决如何将有限的 资源合理地分配到各个部门或项目, 以最大化整体效益。
详细描述
资源分配优化需要考虑资源的数量、 质量、成本等多个因素,通过建立运 输问题的数学模型,可以找到最优的 资源分配方案,提高资源利用效率, 最大化整体效益。
05 结论
运输问题的发展趋势与挑战
生产计划优化
总结词
生产计划优化是运输问题在生产领域的应用,主要解决如何合理安排生产计划, 满足市场需求的同时降低生产成本。
详细描述
生产计划优化需要考虑原材料的采购、产品的生产、成品的销售等多个环节,通 过建立运输问题的数学模型,可以找到最优的生产计划和调度方案,提高生产效 率,降低生产成本。
资源分配优化
发展趋势
随着物流行业的快速发展,运输问题变得越来越复杂,需要更高级的数学模型和算法来 解决。同时,随着大数据和人工智能技术的应用,运输问题的解决方案将更加智能化和
运筹学运输问题-图文

销地 B1
B2
...
Bn
产量
产地
A1
X11 X12
...
X1n
a1
A2
X21 X22
...
X2n
a2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Am
Xm1 Xm2
...
Xmn
am
销量
b1
b2
...
bn
则运输问题的数学模型如下:
产销平衡表
销地 B1
B2
...
Bn
产量
产地
A1
a1
A2
a2
.
.
.
.
.
.
Am
am
销量
b1
b2
...
bn
单位运价表
销地
B1
B2
...
Bn
产地
A1
c11
c12
...
c1n
A2
c21
c22
...
c2n
.
.
.
.
.
.
.
.
.
.
.
.
Am
cm1
cm2
...
cmn
❖ 若总产量等于总销量(产销平衡),试确定总运费最省 的调运方案。
Table14 检验数表
销地
B1
B2
B3
B4
产地
A1
运筹学运输问题解析

2. 典型的运输问题:
cij
a1 a2 …
am
A1
A2 … Am
B1
b1
B2
…
b2 … bn
Bn
求最小运费的运输方案
销地 产地 A1
B1
c11 c21
B2
c12 c22
…
Bn
c1n c2n
产量
a1
A2
… Am
a2
…
cm1 b1 b2
cm2 …
cmn bn
am
销量
销地 产地
B1
B2
…
Bn
产量
A1
ij
j =1, 2, …,n
xij 0
产销平衡问题为等式约束。 产销平衡问题中各产地产量之和与各销 售地点的销量之和相等。
二、运输问题数学模型的特点: 1. 运输问题一定有最优解;
2. 运输问题约束条件的系数矩阵:
x11 +x12+x13 x11
x12
xij 0
x21+x22+x23 + x21 +x22 x13 +x23
min Z cij xij
i 1 j 1
2
3
x
j 1
2
3
ij
ai
bj
i=1,2
x
i 1
ij
j =1, 2, 3
xij 0
典型运输问题的数学模型
min Z cij xij
i 1 j 1
m
n
x
x
i 1
n
j 1 m
ij
ai
bj
i=1,2,…,m
运输问题

运输问题1 运输问题提出运输问题是社会经济生活和军事活动中经常出现的优化问题。
在经济建设和国防建设中,经常遇到煤、钢铁、木材、粮食、武器装备等物资的调运问题。
如何制定调运方案,将物资运往指定地点,而且实现运输成本最小,即为运输问题。
运输问题是在1941年美国学者希奇柯克(Hitchcock )在研究生产组织和铁路运输方面的线性规划问题时提出的。
运输问题的提出,不仅可以求出物资的合理调运方案,其他类型的问题也都可以经过变换后转为运输问题来进行求解。
Hitchcock 运输问题如下:在m 个补给仓库处,分别有补给物品12,,,m a a a 个单位,这些物品要分发给n 个消费仓库,各消费仓库的需要量分别为12,,,n b b b 个单位。
从第i 个补给仓库到第j 个消费仓库运输一个单位的物品成本为ij c 元。
假设物品的总补给量等于总需求量,求使总运输成本最小的分配方案。
2 运输问题数学模型运输问题的一般提法: 有m 个生产地12,,,m A A A ,可供应某种物质,其产量分别为12,,,m a a a ,另有n 个销售地12,,,n B B B ,其销售量分别为12,,,n b b b ,从i A 到j B 运输单位物资的运价为ij c 。
问应如何组织调运,使调运方案的总运费最小。
建立数学模型:设从i A 到j B 的发运量为ij x ,则从i A 运出的物质总量应不大于i a ,ij x 应满足:1,1,2,,niji j xa i m =≤=∑ (1)同理运到j B 的物质总量应不大于j b ,ij x 应满足:1,1,2,,mijj i xb j n =≤=∑ (2)总运输成本为:11m nij ij i b Z c x ===∑∑(3)可建立运输问题的一般数学模型如下:11min mnij ij i b Z c x ===∑∑11..,1,2,,,1,2,,0&nij i j mijj i ij ij s t x a i m xb j n x x Z==≤=≤=≥∈∑∑(4)特别地,当11mni j i j a b ===∑∑时,称为产销平衡运输问题,也简称运输问题,其数学模型如下:1111min ..,1,2,,,1,2,,0&mnij iji b nij i j mijj i ij ij Z c x s t x a i m xb j nx x Z=========≥∈∑∑∑∑ (5)但在现实生活中多为产销不平衡运输问题,即产大于销:11m ni j i j a b ==≤∑∑,或销大于产:11mni ji j a b==≥∑∑。