第5章 杆单元和梁单元

合集下载

有限元法基本原理及应用第3章重庆大学龙雪峰

有限元法基本原理及应用第3章重庆大学龙雪峰

有限元原理及应用
第三章 弹性力学有限元法
• 3.单元分析 • 单元分析包括位移模式选择,单元力学分析两个内容。 • 位移模式也称位移函数或插值函数,在有限元位移法中是 以节点位移为基本未知量,再由这些节点位移插值得到单 元内任意一点的位移值。单元的位移模式一般采用多项式, 因为多项式计算简便,并且随着项数的增加,可以逼近任 何一段光滑的函数曲线。 • 单元力学分析 根据所选单元的节点数和单元材料性质, 应用弹性力学几何方程和物理方程得到单元刚度矩阵。由 于连续体离散化后假定力是通过节点在单元间传递的,因 此要利用插值函数把作用在单元上的体积力、面积力和集 中力按静力等效原则移到节点上。
Hale Waihona Puke 有限元原理及应用第三章 弹性力学有限元法
• 5.结果后处理和分析 • 求解线性方程组得到位移矢量后,由几何和物理关系可以 得到应变和应力。 • 由于应变(应力)来自位移的微分可能导致单元间应力不 连续,这会使应力计算误差较大,要在节点附近进行平均 化处理。 • 通过后处理还可得到位移、应变和应力的最大最小值及其 所在位臵以及主应力、主应变或其它定义的等效应力。 • 结果的输出可以应用图表、动画等各种方式。最后还要对 这些结果进行分析以指导工程设计、产品开发等等。
有限元原理及应用第三章弹性力学有限元法?如果挠度与板厚相比不再为小量如金属板当挠度如果挠度与板厚相比不再为小量如金属板当挠度ww与板厚tt的关系在范围内板的中面应变就不能忽略如图的关系在范围内板的中面应变就不能忽略如图35所示面内的两个自由度也要一并考虑所示面内的两个自由度也要一并考虑导致单元的每个节点上a四边形弯曲单元b三角形弯曲单元图34薄板弯曲单元导致单元的每个节点上就要有五个自由度此类单元一般称为薄板单元
有限元原理及应用

船舶结构力学习题答案

船舶结构力学习题答案

船舶结构力学习题答案【篇一:船舶结构力学各章思考题】>(摘自习题)(一)绪论1 什么叫做船体总纵弯曲?船体的总纵强度与局部强度有什么区别与联系?2.船体结构中有哪些受压构件?为什么说船在总弯曲时船体受压的构件(主要是中垂状态时的上层甲板)因受压过度而丧生稳定性后,会大大减低船体抵抗总弯曲的能力?3.何谓骨架的带板?带板的宽度(或面积)与什么因素有关,如何确定?试分析带板宽度对骨架断面几何要素的影响。

4.什么叫做船体结构的计算图形,它是用什么原则来确定的?它与真实结构有什么差别?5.一个完整的船体结构计算图形应包含哪些具体内容?为什么对同一船体结构构件,计算图形不是固定的、一成不变的?(二)单跨梁的弯曲理论1 梁弯曲微分方程式是根据什么基本假定导出的,有什么物理意义,适用范围怎样?2 单跨梁初参数法中的四个参数指什么参数?它们与坐标系统的选择有没有关系?3 为什么当单跨梁两端为自由支持与单跨梁两端为弹性支座支持时,在同样外荷重作用下梁梁断面的弯矩和剪力都相等;而当梁两端是刚性固定与梁两端为弹性固定时,在同样外荷重作用下两梁断面的弯矩和剪力都不同?4 梁的边界条件与梁本身的计算长度、剖面几何要素、跨间荷重有没有关系?为什么? 5 当梁的边界点上作用有集中外力p或几种外弯矩m时,一种处理是把该项外力放在梁端,写进边界条件中去。

另一种处理时把该项外力放在梁上,不写进边界条件。

在求解梁的弯曲要素时,两种处理方法的具体过程有哪些不同?最后结果有没有差别?6 梁的弹性支座与弹性固定端各有什么特点?它们与梁本身所受的外荷重(包括大小、方向及分布范围)有没有关系?为什么梁在横弯曲时,横荷重引起的弯曲要素可以用叠加法求出?(三)力法1 什么叫力法?如何建立力法方程式?2 什么是力法的基本结构和基本未知量?基本结构与原结构有什么异同?力法正则方程式的物理意义是什么?3 当连续梁两端为弹性固定时,如何按变形连续条件建立该处的方程?4 力法可否用来计算不可动节点的复杂钢架?如可以,应如何做?5 用力法计算某些支座有限位移的连续梁或平面刚架时应注意什么问题?6 刚架与板架的受力特征和变形特征有何区别?7 何谓梁的固定系数?它与梁端弹性固定端的柔性系数有何不同?(四)位移法1 试举例说明位移法的基本原理。

杆梁结构有限元分析

杆梁结构有限元分析

3.1 杆梁结构的直接解法
机械分社
(1)平面压杆有限元法的直接法
由节点平衡有: 即有:
U1(1)u1 U1(1)u2 N1
U
u (1)
21
(U
(2 2
)
U
(1) 2
)u2
U
(2 2
)u3
F1
U
(2 3
)
u2
U
(2 3
)
u3
F2
EA1 l1
u1
EA1 l1
u2
N1
EA1 l1
u1
( EA1 l1
3.1 杆梁结构的直接解法
机械分社
杆梁结构是指长度远大于其横截面尺寸的构件组成的杆 件系统,例如机床中的传动轴,厂房刚架与桥梁结构中的梁 杆等,可以用杆单元或梁单元来进行离散化。
空间杆系:平面杆系是指各杆轴线和外力作用线位于一 个平面内,若各杆轴线和外力作用线不在一个平面内。 (1)平面压杆有限元法的直接法
单元刚度矩阵每一列元素表示一组平衡力系,对于平面 问题,每列元素之和为零。
3.1 杆梁结构的直接解法
机械分社
(2)平面梁单元有限元法的直接法 2)节点位移与节点力之间的关系
Ui
Vi
k11
k21
M i U j
k31
k41
V
j
M j
k51
k61
他们在轴和轴的投影之和等于零:
vi
6EI l2
i
12EI l3
vj
6EI l2
j
M
j
6EI l2
vi
2EI l
i
6EI l2
vj
4EI l

结构力学习题及答案

结构力学习题及答案

构造力学习题第2章平面体系的几何组成分析2-1~2-6 试确定图示体系的计算自由度。

题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图2-7~2-15 试对图示体系进展几何组成分析。

假设是具有多余约束的几何不变体系,那么需指明多余约束的数目。

题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图题2-13图题2-14图题2-15图题2-16图题2-17图题2-18图题2-19图题2-20图题2-21图2-11=W2-1 9-W=2-3 3-W=2-4 2-W=2-5 1-W=2-6 4-W=2-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系2-9、2-10、2-15具有一个多余约束的几何不变体系2-11具有六个多余约束的几何不变体系2-13、2-14几何可变体系为2-18、2-19 瞬变体系2-20、2-21具有三个多余约束的几何不变体系第3章静定梁和静定平面刚架的内力分析3-1 试作图示静定梁的内力图。

〔a〕〔b〕(c) (d)习题3-1图3-2 试作图示多跨静定梁的内力图。

〔a〕〔b〕(c)习题3-2图3-3~3-9 试作图示静定刚架的内力图。

习题3-3图习题3-4图习题3-5图习题3-6图习题3-7图习题3-8图习题3-9图3-10 试判断图示静定构造的弯矩图是否正确。

(a)(b)(c)(d)局部习题答案3-1〔a 〕m kN M B ⋅=80〔上侧受拉〕,kN F RQB 60=,kN F L QB 60-=〔b 〕m kN M A ⋅=20〔上侧受拉〕,m kN M B ⋅=40〔上侧受拉〕,kN F RQA 5.32=,kN F L QA 20-=,kN F LQB 5.47-=,kN F R QB 20=(c)4Fl M C =〔下侧受拉〕,θcos 2F F L QC =3-2 (a)0=E M ,m kN M F ⋅-=40〔上侧受拉〕,m kN M B ⋅-=120〔上侧受拉〕〔b 〕m kN M RH ⋅-=15(上侧受拉),m kN M E ⋅=25.11〔下侧受拉〕〔c 〕m kN M G ⋅=29(下侧受拉),m kN M D ⋅-=5.8(上侧受拉),m kN M H ⋅=15(下侧受拉) 3-3 m kN M CB ⋅=10〔左侧受拉〕,m kN M DF ⋅=8〔上侧受拉〕,m kN M DE ⋅=20〔右侧受拉〕 3-4 m kN M BA ⋅=120〔左侧受拉〕3-5 m kN M F ⋅=40〔左侧受拉〕,m kN M DC ⋅=160〔上侧受拉〕,m kN M EB ⋅=80(右侧受拉) 3-6 m kN M BA ⋅=60〔右侧受拉〕,m kN M BD ⋅=45〔上侧受拉〕,kN F QBD 46.28=3-7 m kN M C ⋅=70下〔左侧受拉〕,m kN M DE ⋅=150〔上侧受拉〕,m kN M EB ⋅=70(右侧受拉) 3-8 m kN M CB ⋅=36.0〔上侧受拉〕,m kN M BA ⋅=36.0〔右侧受拉〕 3-9 m kN M AB ⋅=10〔左侧受拉〕,m kN M BC ⋅=10〔上侧受拉〕 3-10 〔a 〕错误 〔b 〕错误 〔c 〕错误 〔d 〕正确第4章 静定平面桁架和组合构造的内力分析4-1 试判别习题4-1图所示桁架中的零杆。

有限元基础题答案

有限元基础题答案

1.像床单那样薄、那样宽的板用梁单元来模型化 ×通常用板单元或壳单元来作模型化2.对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元○3.一般自由度多的模型分析成本高○4.使用尽可能多种类单元的模型是一个好的模型×单元种类的多样性与模型的好坏没有关系5.杆单元是壳单元的一种×6.不能把梁单元、壳单元和实体单元混合在一起作成模型×两者混在一起可做模型化处理7.四边形的壳单元尽可能作成接近正方形形状的单元○8.因为实体单元是3维单元,所以即使有严重的扭曲也没关系×9.将作用有垂直载荷的悬臂梁用多个杆单元作成×杆单元因为不传递弯曲不适用于弯曲分析10.将作用有垂直载荷的两端自由支持的梁用杆单元来模型化×11.三角形单元和四边形单元不能混在一起使用×12.平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化处理的话会得到一样的答案×13.同样形状的话,使用三角形单元和使用四边形单元解是相同的×14.边长为10cm和边长为100cm 的正方形的板,后者的单元数如果是前者的10倍的话,才行×划分的数量不是依形状的大小15.为了校核连续的相同管子剖面内的应力状态,要使用平面应力单元×这种情况使用平面应变单元??16.对热应力问题,1维单元也好2维单元也好,所求的解都搞不清×?17.对于热传导分析必须输入线膨胀系数×对于热传导分析必需的是热传导率18.热应力随结构的约束状态而变化○19.FEM分析变形越大应力就越高× ??20.在线性分析中,即使变形变大,如果可以将这部分单元划分得多一些的话,也会保证解的适当正确×线性分析是以微小变形的范围内为对象的21.为了评价应力集中,在网格划分时应该把整个作成一样的单元尺寸×22.板厚并不一致的情况下,一定要用到实体单元×即使是板单元也可以表现厚度的变化23.单元数相同的话,1阶单元、2阶单元的解都一样×24.为了忠实地尽可能表现结构的形状,必须严格按装配顺序来做模型化处理×模型化的顺序与分析结果无关25.节点的位置依赖于形态,而并不依赖于载荷的位置×为给出节点载荷必须要在载荷点设置节点26.一般应力变化大的地方单元尺寸要划的小才好 ○27.仅用TETRA单元的模型与仅用HEXA单元的模型相比,后者的精度要好○28.相接的单元尺寸大小不要变化太厉害○29.在进行特征值分析时,必须输入质量○30.进行热应力分析时,必须输入线膨胀系数○ (比较17题)31.壳单元表面的应力因为与表面内的应力相比精度会降低所以必须注意×在单元的表面精度是不会变化的 ???32.象船和火箭那样的结构因为漂浮在水(空)中而没被固定住,所以,FEM分析不可以使用×33.约束条件用全固定或许加上铰固定就能表现完全×也有半固定(例如用弹簧约束)???34.一般在特征值分析中一定是采用节点编号连续来编的方法,所得精度要高×连续编号精度并不觉得提高???35.用固有振动分析求应力,应力高的部分必须要加强×用固有振动来求的值物理量不同???36.屈曲模态并不依赖于约束条件×37.自由度有位移自由度和转角自由度○(3个位移成分和3个转角成分)38.一般在FEM中使用的模型称为刚体模型×39.对比铁更硬的部分所做模型化处理的单元称为刚体单元×40.刚体单元和梁单元和板单元组合在一起进行分析是不可以的×41.一般网格划分过度的话,很费分析时间○42.对啤酒罐的压缩强度要用固有振动分析来评价×(用屈曲分析)???43.表示自由度的坐标系有局部坐标系和整体坐标系○44.应力集中的部分是多个载荷所加的部位×应力与周围部分相比要高的部分称为应力集中的部分45.在加上热载的情况下,即使是同一个模型,根据约束条件,所发生的应力有很大的不同○ (约束不同应力不同)46.用有限元法可以对正在动的(移动)物体的结构进行分析○47.对膜(membran)单元也可用面压载荷×(壳)48.可对膜(membran)单元可以用集中载荷○ (47、48)49.施加强迫位移的分析要进行静力分析○????50.一般所给出的载荷的总和与反力的总和相一致○51.即使将不同的局部坐标系下定义好的节点连起来也可定义单元○52.所谓自由度是直接翻译degrees of freedom的○53.所谓实体单元意味着刚体单元的集合×(刚体只有自由度,没有变形)54.杨氏率是纵弹性系数(模量)○55.共鸣现象与固有频率有关○56.杨氏率是评价材龄的基值×杨氏率是表示材料的坚硬程度的常数不是表示年轻与否57.即使是同一种材料,梁单元和板单元也要输入不同的材料性质数值×如果相同的材料,即使单元的种类不同,也要用相同的材料58.泊松比是在纵向加压时发生在纵向的应变和横向的应变的比率○59.用弹性材料可表现塑性化现象×进行塑性分析必须输入塑性材料的特性60.一般线膨胀系数是作为材料常数之一输入○(material properties)61.一般用FEM模型化时,大的结构求得的热变形小×62.约束条件全都没被定义的结构不能分析×63.X、Y、Z全部方向上的位移都是1时称为刚体变形×64.分析结果是对称的模型,使用对称条件可以用较少的单元来进行分析○65.所谓铰约束条件是约束位移自由度而让转角自由度自由○66.强迫位移是一种约束条件○67.即使所有的自由度都约束也会发生变形×(实体内每个节点的所有自由度)68.对于设置了约束的自由度即使输入载荷也发生位移○69.有限单元分析约束条件尽量少则精度好×(静力问题不能没约束还错)70.所谓约束就是消去自由度○71.所谓全约束只要将位移自由度约束住×72.壳单元与实体单元可约束的自由度不同○(壳作面分析)73.线性分析将同样大的载荷加在反向产生位移的绝对值不变○(前提线性分析)74.由分析所得的最大应力受网格划分的影响○75.载荷和应力表示同一件东西×76.主应力并不依赖于基本坐标系○77.在应力分析中,应力小的部位单元尺寸要小,大的部位单元尺寸要大来进行模型化处理×78.实特征值分析是一种求最大应力的手段×(求固有频率)79.具有切口附近的应力集中用FEM不能严密地计算○(不是可以用裂缝单元吗)80.1阶单元是假定单元内的应力都一样的单元×(位移单元一阶插值)81.表现材料的弹性界限是所谓的屈服应力○82.在屈服曲面内材料表现为弹性行为○(仍视为屈服界限内)83.位移能用6个矢量成分来表示○84.转角是一种位移○(广义位移)85.载荷点的位移通常最大×86.线性应力分析也可以得到极大的变形×(位移为一阶插值函数,变形为位移的导数,变形的极大值点是位移的二阶导数值为零的拐点,线性应力无拐点)87.与材料无关的相同变形量产生相同的应力×(材料特性)88.给出同一载荷杨氏率越大则变形也越大×(越小)89.对于静力分析质量是不可缺少的数据×(涉及到重力时才需要)90.实特征值分析中必须定义集中载荷或分布载荷×(固有振动分析没必要的)91.屈曲分析和固有振动分析是类似的特征值问题○(还是弄不懂)92.使用同一模型时,一般特征值分析要比线弹性分析花时间○93.一般求特征值分析所求的模态数多也好少也好,分析时间是一样的×一般求的模态数增加,则分析时间变长??94.在静力分析中,仅施加左右方向的载荷时,不约束上下方向也可以×必须约束住不至于刚体运动(转动)95.卡车通过时,玻璃窗会别别地振动,这是与玻璃的固有频率有关○96.FEM也被用在医学上○97.有限元法、有限体积法、有限差分法、边界元法这中间FEM是有限差分法×98.有限元法基本的是求解联立方程式○99.FEM理论1950年前开始就有了○100.考虑阻尼的特征值问题成了复特征值问题○第1章引言1. 简要论述求解工程问题的一般方法和步骤;图1‑1 工程问题的一般求解步骤2. 简要论述有限元方法求解问题的一般步骤选择单元、划分网格、设置求解参数、求解3. 说明ANSYS中关于单位制的使用问题第2章弹性力学问题有限元分析4. 出一道由单刚组装总刚的问题5. 为什么位移有限元得到的应力结果的精度低于位移结果?在当前计算结果的基础上如何进一步提高应力结果的精度?有限元分析以有限单元数模拟实体,其自由度小于真实实体自由度,因而位移结果较小。

有限元-梁系结构的有限元法

有限元-梁系结构的有限元法

4x l
3x 2 l2
) i
x l
(3x l
2)
j
容易验证 : x 0: u ui v vi i x l: u u j v v j j
(3-1a),(3-1b)或(3-2a),(3-2b)称为平面梁单元的位移插值 函数
二、建立节点位移与节点力关系
1、 轴向节点力
E Fx A
拉压杆问题的回顾
1、杆的基本概念:
杆--轴线为直线的细长构件,沿轴线承受 拉(压)载荷; 杆模型--平面假设将杆简化为一维问题, 可由杆轴线代表; 杆变形特点--只与轴向位移相关;
拉压杆问题的回顾
2、杆有限元的基本概念
节点位移—轴向位移,每节点1个自由度; 节点力—轴力; 结构离散:轴线划分为若干直线段; 单元分析:建立节点力与节点位移关系; 节点平衡:对每一节点,建立相关节点力与 外力的平衡关系,得到一线性方程组; 约束处理:引入已知节点位移,使方程组可解
梁系结构实例
2、平面梁系
1、节点力平衡的需求--单元节点力(在 局部坐标系中)向整体坐标系的变换; 2、单元分析的需求--节点位移(在整体 坐标系中)向局部坐标系的变换; 3、结构对称性的利用(练习,作业3)。
l2 2EI
l
0
Vi
i
u
j
(3-4)
6EI l2
4EI
V
j j
l
(3-4)式是用矩阵表示的梁节点力与节点位移的关系
式(3-4)还可写成:
F
e
K e
e
(3-5)
e
F
——称为局部坐标下的节点力列向量
e ——称为局部坐标下的节点位移列向量
e
K

材料力学智慧树知到答案2024年重庆大学

材料力学重庆大学智慧树知到答案2024年第一章测试1.变形固体的基本假设是()。

A:连续、均匀性假设和线性弹性假设; B:线性弹性假设和小变形假设; C:连续、均匀性假设和各向同性假设; D:各向同性假设、小变形假设和线性弹性假设。

答案:C2.要使构件安全、正常地工作,必须满足()。

A:稳定性要求 B:强度要求、刚度要求、稳定性要求 C:强度要求 D:强度要求和稳定性要求答案:B第二章测试1.应力是指截面上每点处单位面积内的分布内力,即内力集度。

()A:错 B:对答案:B2.构件中不同点处的线应变及切应变一般是不同的,而且线应变与正应力相对应,切应变与切应力相对应。

()A:错 B:对答案:B3.等直杆发生拉(压)变形时,横截面上各点既有正应力,又有切应力。

()A:错 B:对答案:A4.等直杆受力如图,该杆的轴力最大值为()。

A:2kN B:4kN C:5kN D:3kN 答案:D5.等直杆受力如图,其上端截面的轴力为()。

A:F+ql B:-F+ql C:F D:ql答案:B第三章测试1.等直杆受力如图,该杆的扭矩最大值为()。

A:6kN.m B:2kN.m C:4kN.m D:8kN.m答案:C2.等截面圆轴配置四个皮带轮,各轮传递的力偶的力偶矩如图所示。

从抗扭的角度如何改变四个轮之间的相对位置,轴的受力最合理的是()。

A:将B轮与C轮对调 B:将B轮与D轮对调, 然后再将B轮与C轮对调 C:将C轮与D轮对调 D:将B轮与D轮对调答案:C3.内外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ,这时横截面上内圆周上各点的切应力为()。

A:τ B:零C:ατ D:答案:C4.一圆轴用普通碳素钢制成,受扭后发现单位长度扭转角超过了许用值,为提高刚度拟采用的合理措施是()A:用铸铁代替 B:改为优质合金钢 C:减少轴的长度 D:增大轴的直径答案:D5.下述结论中,正确的是()A:若物体内各点的应变均为零, 则物体无位移 B:应变分为线应变和切应变, 其量纲为长度 C:若物体的各部分均无变形, 则物体内各点的应变为零 D:受拉杆件全杆的轴向伸长,标志着杆件内各点的变形程度答案:C第四章测试1.悬臂梁受力如图,以下说法正确的是()。

材料力学第五版课后习题答案

二、轴向拉伸和压缩之马矢奏春创作创作时间:二零二一年六月三十日2-1 试求图示各杆1-1和2-2横截面上的轴力, 并作轴力图.(a)解:;;(b)解:;;(c)解:;. (d)解:.2-2 试求图示等直杆横截面1-1, 2-2和3-3上的轴力, 并作轴力图.若横截面面积, 试求各横截面上的应力.解:2-3 试求图示阶梯状直杆横截面1-1, 2-2和3-3上的轴力, 并作轴力图.若横截面面积, , , 并求各横截面上的应力.解:2-4 图示一混合屋架结构的计算简图.屋架的上弦用钢筋混凝土制成.下面的拉杆和中间竖向撑杆用角钢构成, 其截面均为两个75mm×8mm的等边角钢.已知屋面接受集度为的竖直均布荷载.试求拉杆AE和EG横截面上的应力.解:=1)求内力取I-I分离体得(拉)取节点E为分离体,故(拉)2)求应力75×8等边角钢的面积A=11.5 cm2(拉)(拉)2-5(2-6) 图示拉杆接受轴向拉力, 杆的横截面面积.如以暗示斜截面与横截面的夹角, 试求当, 30, 45, 60, 90时各斜截面上的正应力和切应力, 并用图暗示其方向.解:2-6(2-8) 一木桩柱受力如图所示.柱的横截面为边长200mm的正方形, 资料可认为符合胡克定律, 其弹性模量E=10 GPa.如不计柱的自重, 试求:(1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形.解:(压)(压)2-7(2-9) 一根直径、长的圆截面杆, 接受轴向拉力, 其伸长为.试求杆横截面上的应力与资料的弹性模量E.解:2-8(2-11) 受轴向拉力F作用的箱形薄壁杆如图所示.已知该杆资料的弹性常数为E, , 试求C与D两点间的距离改变量.解:横截面上的线应变相同因此2-9(2-12) 图示结构中, AB为水平放置的刚性杆, 杆1, 2, 3资料相同, 其弹性模量E=210GPa, 已知, , , .试求C点的水平位移和铅垂位移.解:(1)受力图(a), .(2)变形协调图(b)因, 故=(向下)(向下)为保证, 点A移至, 由图中几何关系知;第三章扭转3-1 一传动轴作匀速转动, 转速, 轴上装有五个轮子, 主动轮Ⅱ输入的功率为60kW, 从动轮, Ⅰ, Ⅲ, Ⅳ, Ⅴ依次输出18kW, 12kW,22kW和8kW.试作轴的扭矩图.解:kNkNkNkN3-2(3-3) 圆轴的直径, 转速为.若该轴横截面上的最年夜切应力即是, 试问所传递的功率为多年夜?解:故即又故3-3(3-5) 实心圆轴的直径mm, 长m, 其两端所受外力偶矩, 资料的切变模量.试求:(1)最年夜切应力及两端截面间的相对扭转角;(2)图示截面上A, B, C三点处切应力的数值及方向;(3)C点处的切应变.解:=3-4(3-6) 图示一等直圆杆, 已知, ,, .试求:(1)最年夜切应力;(2)截面A相对截面C的扭转角.解:(1)由已知得扭矩图(a)(2)3-5(3-12) 长度相等的两根受扭圆轴, 一为空心圆轴, 一为实心圆轴, 两者资料相同, 受力情况也一样.实心轴直径为d;空心轴外径为D, 内径为, 且.试求当空心轴与实心轴的最年夜切应力均到达资料的许用切应力), 扭矩T相等时的重量比和刚度比.解:重量比=因为即故故刚度比==3-6(3-15) 图示等直圆杆, 已知外力偶矩,, 许用切应力, 许可单元长度扭转角, 切变模量.试确定该轴的直径d.解:扭矩图如图(a)(1)考虑强度, 最年夜扭矩在BC段, 且(1)(2)考虑变形(2)比力式(1)、(2), 取3-7(3-16) 阶梯形圆杆, AE段为空心, 外径D=140mm, 内径d=100mm;BC段为实心, 直径d=100mm.外力偶矩, , .已知:, , .试校核该轴的强度和刚度.解:扭矩图如图(a)(1)强度=, BC段强度基本满足=故强度满足.(2)刚度BC段:BC段刚度基本满足.AE段:AE段刚度满足, 显然EB段刚度也满足.3-8(3-17) 习题3-1中所示的轴, 资料为钢, 其许用切应力, 切变模量, 许可单元长度扭转角.试按强度及刚度条件选择圆轴的直径.解:由3-1题得:故选用.3-9(3-18) 一直径为d的实心圆杆如图, 在接受扭转力偶矩后, 测得圆杆概况与纵向线成方向上的线应酿成.试导出以, d和暗示的切变模量G的表达式.解:圆杆概况贴应变片处的切应力为圆杆扭转时处于纯剪切状态, 图(a).切应变(1)对角线方向线应变:(2)式(2)代入(1):3-10(3-19) 有一壁厚为25mm、内径为250mm的空心薄壁圆管, 其长度为1m, 作用在轴两端面内的外力偶矩为180.试确定管中的最年夜切应力, 并求管内的应变能.已知资料的切变模量.解:3-11(3-21) 簧杆直径mm的圆柱形密圈螺旋弹簧, 受拉力作用, 弹簧的平均直径为mm, 资料的切变模量.试求:(1)簧杆内的最年夜切应力;(2)为使其伸长量即是6mm所需的弹簧有效圈数.解:,故因为故圈3-12(3-23) 图示矩形截面钢杆接受一对外力偶矩.已知资料的切变模量, 试求:(1)杆内最年夜切应力的年夜小、位置和方向;(2)横截面矩边中点处的切应力;(3)杆的单元长度扭转角.解:, ,由表得MPa第四章弯曲应力4-1(4-1) 试求图示各梁中指定截面上的剪力和弯矩.解:(a)(b)(c)(d)=(e)(f)(g)(h)=4-2(4-2) 试写出下列各梁的剪力方程和弯矩方程, 并作剪力图和弯矩图.解:(a)(b)时时(c)时时(d)(e)时,时,AB段:(f)BC段:(g)AB段内:BC段内:(h)AB段内:BC段内:CD段内:4-3(4-3) 试利用荷载集度、剪力和弯矩间的微分关系作下列各梁的剪力图和弯矩图.4-4(4-4) 试作下列具有中间铰的梁的剪力图和弯矩图.4-5(4-6) 已知简支梁的剪力图如图所示.试作梁的弯矩图和荷载图.已知梁上没有集中力偶作用.返回4-6(4-7) 试根据图示简支梁的弯矩图作出梁的剪力图与荷载图. 4-7(4-15) 试作图示刚架的剪力图、弯矩图和轴力图.4-8(4-18) 圆弧形曲杆受力如图所示.已知曲杆轴线的半径为R, 试写出任意横截面C上剪力、弯矩和轴力的表达式(暗示成角的函数), 并作曲杆的剪力图、弯矩图和轴力图.解:(a)(b)4-9(4-19) 图示吊车梁, 吊车的每个轮子对梁的作用力都是F, 试问:(1)吊车在什么位置时, 梁内的弯矩最年夜?最年夜弯矩即是几多?(2)吊车在什么位置时, 梁的支座反力最年夜?最年夜支反力和最年夜剪力各即是几多?解:梁的弯矩最年夜值发生在某一集中荷载作用处., 得:那时,当M极年夜时:,则, 故,故为梁内发生最年夜弯矩的截面故:=4-10(4-21) 长度为250mm、截面尺寸为的薄钢尺, 由于两端外力偶的作用而弯成中心角为的圆弧.已知弹性模量.试求钢尺横截面上的最年夜正应力.解:由中性层的曲率公式及横截面上最年夜弯曲正应力公式得:由几何关系得:于是钢尺横截面上的最年夜正应力为:第五章梁弯曲时的位移5-1(5-13) 试按迭加原理并利用附录IV求解习题5-4.解:(向下)(向上)(逆)(逆)5-2(5-14) 试按迭加原理并利用附录IV求解习题5-5.解:分析梁的结构形式, 而引起BD段变形的外力则如图(a)所示, 即弯矩与弯矩.由附录(Ⅳ)知, 跨长l的简支梁的梁一端受一集中力偶M作用时, 跨中点挠度为.用到此处再利用迭加原理得截面C的挠度(向上)5-3(5-15) 试按迭加原理并利用附录IV求解习题5-10.解:5-4(5-16) 试按迭加原理并利用附录IV求解习题5-7中的.解:原梁可分解成图5-16a和图5-16d迭加, 而图5-16a又可分解成图5-16b和5-16c.由附录Ⅳ得5-5(5-18) 试按迭加原理求图示梁中间铰C处的挠度, 并描出梁挠曲线的年夜致形状.已知EI为常量.解:(a)由图5-18a-1(b)由图5-18b-1=5-6(5-19) 试按迭加原理求图示平面折杆自由端截面C的铅垂位移和水平位移.已知杆各段的横截面面积均为A, 弯曲刚度均为EI.解:5-7(5-25) 松木桁条的横截面为圆形, 跨长为4m, 两端可视为简支, 全跨上作用有集度为的均布荷载.已知松木的许用应力, 弹性模量.桁条的许可相对挠度为.试求桁条横截面所需的直径.(桁条可视为等直圆木梁计算, 直径以跨中为准.)解:均布荷载简支梁, 其危险截面位于跨中点, 最年夜弯矩为, 根据强度条件有从满足强度条件, 得梁的直径为对圆木直径的均布荷载, 简支梁的最年夜挠度为而相对挠度为由梁的刚度条件有为满足梁的刚度条件, 梁的直径有由上可见, 为保证满足梁的强度条件和刚度条件, 圆木直径需年夜于.5-8(5-26) 图示木梁的右端由钢拉杆支承.已知梁的横截面为边长即是0.20m的正方形, , ;钢拉杆的横截面面积.试求拉杆的伸长及梁中点沿铅垂方向的位移.解:从木梁的静力平衡, 易知钢拉杆受轴向拉力40于是拉杆的伸长为=木梁由于均布荷载发生的跨中挠度为梁中点的铅垂位移即是因拉杆伸长引起梁中点的刚性位移与中点挠度的和, 即第六章简单超静定问题6-1 试作图示等直杆的轴力图.解:取消A真个过剩约束, 以代之, 则(伸长), 在外力作用下杆发生缩短变形.因为固定端不能移动, 故变形协调条件为:故故6-2 图示支架接受荷载各杆由同一资料制成, 其横截面面积分别为, 和.试求各杆的轴力.解:设想在荷载F作用下由于各杆的变形, 节点A移至.此时各杆的变形及如图所示.现求它们之间的几何关系表达式以便建立求内力的弥补方程.即:亦即:将, , 代入, 得:即:亦即:(1)此即弥补方程.与上述变形对应的内力如图所示.根据节点A的平衡条件有:;亦即:(2);,亦即:(3)联解(1)、(2)、(3)三式得:(拉)(拉)(压)6-3 一刚性板由四根支柱支撑, 四根支柱的长度和截面都相同, 如图所示.如果荷载F作用在A点, 试求这四根支柱各受力几多.解:因为2, 4两根支柱对称, 所以, 在F力作用下:变形协调条件:弥补方程:求解上述三个方程得:6-4 刚性杆AB的左端铰支, 两根长度相等、横截面面积相同的钢杆CD和EF使该刚性杆处于水平位置, 如图所示.如已知, 两根钢杆的横截面面积, 试求两杆的轴力和应力.解:,(1)又由变形几何关系得知:,(2)联解式(1), (2), 得,故,6-5(6-7) 横截面为250mm×250mm的短木柱, 用四根40mm×40mm×5mm的等边角钢加固, 并接受压力F, 如图所示.已知角钢的许用应力, 弹性模量;木材的许用应力, 弹性模量.试求短木柱的许可荷载.创作时间:二零二一年六月三十日。

杆梁结构的有限元分析


【典型例题】3.1.2(2) 变截面杆单元的推导
如图3-5所示,有一受轴载荷的线性变截面杆件,两端的截 面积为A1和A2,长度为l,材料的弹性模量为E,试建立描述该 杆件的一个杆单元。
3.1.3 杆单元的坐标变换
1. 平面杆单元的坐标变换
在工程实际中,杆单元可能处于整体坐标系(global coordinate system)中的任意一个位置,如图3-6所示,这需要 将原来在局部坐标系(local coordinate system)中所得到的单元 表达等价地变换到整体坐标系中,这样,不同位置的单元才 有公共的坐标基准,以便对各个单元进行集成(即组装)。图3-6 中的整体坐标系为( ),杆单元的局部坐标系为(ox)。
下面针对图3-2所示的一端固定的拉杆问题,分别讨论 基于直接求解方法以及基于试函数的间接方法的求解过程。
【求解原理】3.1.1(3) 1D问题的直接求解
【求解原理】3.1.1(4) 1D问题的虚功原理求解
先以一个简单的结构静力平衡问题来描述虚功原理的基本思 想,然后再具体求解一端固定的拉杆问题。
【基本变量】3.1.1(1) 1D问题的基本变量 由于该问题是沿x方向的一维问题,因此只有沿x
方向的基本变量,即 定义沿x方向移动为位移: u(x) 定义沿x方向的相对伸长(或缩短)量为应变: εx(x) 定义沿x方向的单位横截面上的受力为应力:
【基本方程】3.1.1(2) 1D问题的基本方程 该问题的三大类基本方程和边界条件如下:
第3章 杆梁结构的有限元分析
3.1 杆件有限元分析的标准化表征与算例
3.1.1 杆件分析的基本力学原理
杆件是最常用的承力构件,它的特点是连接它的 两端一般都是铰接接头,因此,它主要是承受沿轴线 的轴向力,因两个连接的构件在铰接接头处可以转动, 则它不传递和承受弯矩。

材料力学作业习题

第二章 轴向拉伸与压缩1、试求图示各杆1-1和2-2横截面上的轴力,并做轴力图。

(1) (2)2、图示拉杆承受轴向拉力F =10kN ,杆的横截面面积A =100mm 2。

如以α表示斜截面与横截面的夹角,试求当α=10°,30°,45°,60°,90°时各斜截面上的正应力和切应力,并用图表示其方向。

3、一木桩受力如图所示。

柱的横截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa 。

如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力; (3)各段柱的纵向线应变;(4)柱的总变形。

4、(1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变d ε,等于直径方向的线应变d ε。

(2)一根直径为d =10mm 的圆截面杆,在轴向拉力F 作用下,直径减小0.0025mm 。

如材料的弹性摸量E =210GPa ,泊松比ν=0.3,试求轴向拉力F 。

(3)空心圆截面钢杆,外直径D =120mm,内直径d =60mm,材料的泊松比ν=0.3。

当其受轴向拉伸时, 已知纵向线应变ε=0.001,试求其变形后的壁厚δ。

5、图示A和B两点之间原有水平方向的一根直径d=1mm的钢丝,在钢丝的中点C加一竖直荷载F。

已知钢丝产生的线应变为ε=0.0035,其材料的弹性模量E=210GPa,钢丝的自重不计。

试求:(1) 钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2) 钢丝在C点下降的距离∆;(3) 荷载F的值。

6、简易起重设备的计算简图如图所示.一直斜杆AB应用两根63mm×40mm×4mm不等边角钢组[σ=170MPa。

试问在提起重量为P=15kN的重物时,斜杆AB是否满足强度成,钢的许用应力]条件?7、一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。

已知材料的许用应力[σ=170MPa,试选择杆AB,AD的角钢型号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档