1电路模型和电路定律
电路分析基础第一章 电路模型和电路定律

+
–
+
–
+
实际方向
实际方向
+
U >0
U<0
上页
下页
电压参考方向的两种表示方式
(1) 用正负极性表示
+
(2) 用双下标表示
U
A
UAB
B
UAB =UA- UB= -UBA
上页 下页
3. 关联参考方向 元件或支路的u,i 采用相同的参考方向称之为关联 采用相同的参考方向称之为 参考方向,即电流从电压的“+”极流入,从“-” 极流出该元件。反之,称为非关联参考方向。 极流出该元件
P6吸 = U 6 I 3 = (−3) × (−1) = 3W
上页 下页
注
对一完整的电路,发出的功率=吸收的功率
3. 电能(W ,w)
在电压、电流一致参考方向下,在t0到t的时间内 该部分电路吸收的能量为
w(t0 , t ) = ∫ p (τ ) dτ = ∫ u (τ )i (τ ) dτ
t0 t0
电源 Sourse
灯 Lamp
RS US 电路模型
R
Circuit Models 干电池 Battery
上 页 下 页
电路理论中研究的是 理想电路元件构成的电路(模型)。
电路模型,不仅能够反映实际电路及 其器件的基本物理规律,而且能够对 其进行数学描述。这就是电路理论把 电路模型作为分析研究对象的实质所 在。
干电池 Battery 电路理论中,“电路”与“网络”这两个术语可通用。“网络” 的含义较为广泛,可引申至非电情况。
例:手电筒电路
开关 灯泡
10BASE-T wall plate
电路分析基础第01章 电路模型和电路定律

i 元件
+
u
_
电功率可写成
p(t) = u(t) i(t)
当p>0时,元件吸收电能; p<0时,元件实际上是释放电能。
18
在 U、 I 参考方向选择一致的前提下,
若 P = UI 0
a I a R 或 U
I
R
U
b
“吸收功率”
b
I a
若 P = UI 0
+
-
U b
大小 的变化, Uab的变化可能是 _______ 方向 的变化。 或者是 _______
R2
-15V
R2
-
15V
16
b 10V a
6Ω + 3V -
c
b为参考点:
4V
6Ω
Va= -10V Vb=0V Vc=Vb-Ubc
d
a为参考点:
Va=0
Vb=10V
Vc=Vb-Ubc =10-3=7V
=0-3= -3V
Vd=Vc-Ucd
Ubc=Vb-Vc
Vd=3V
= -7V 电位是相对量
17
§1.3 电功率和能量
_
考虑内阻
实际电压源也不允许短路。因其内阻小,若 短路,电流很大,可能烧毁电源。
35
+
u
u
+
us
i
R 0
S
_
O 一个好的电压源要求
小知识
电池容量:电池的容量单位mAh,其含义是“毫安时”,
1毫安时的概念就是以1毫安的电流放电能持续1个小时
例如:某充电电池标有600mAh 表示如果通过电池的电流是600mA的时候, 电池能工作1小时; 当然如果通过电池的电流是100mA的时候,
1 第1章 电路模型和电路定律

电感元件 只具有储 只具有储 存磁能的 存磁能的 电特性
电容元件 只具有储 只具有储 存电能的 存电能的 电特性
理想电压源 输出电压恒 定,输出电 流由它和负 载共同决定
理想电流源 输出电流恒 定,两端电 压由它和负 载共同决定
实际电路与电路模型
S 电 源 负 载 R0 I
+
RL U
电源
+ _US
电路模型(circuit model)
电路模型:由理想电路元件和理想导线互相连接而成。 电路模型:由理想电路元件和理想导线互相连接而成。
实际电路器件品种多,电磁特性多元而复杂, 实际电路器件品种多,电磁特性多元而复杂, 直接画在电路图中困难而繁琐,且不易定量描述。 直接画在电路图中困难而繁琐,且不易定量描述。
p发 = ui
例
U = 5V, I = - 1A 5V,
u
–
P发= UI = 5×(-1) = -5 W 5× p发<0,说明元件实际吸收功率5W <0,说明元件实际吸收功率5W
能量的计算
dw t) ( 两边从根据功率的定义 p(t) = ,两边从-∞到t dt
积分,并考虑w(-∞) = 0,得 积分, 0,
电 电
负 载
–
电
电
电路模型:由理想元件及其组合代表实际电路器件, 电路模型:由理想元件及其组合代表实际电路器件,与 实际电路具有基本相同的电磁性质,称其为电路模型。 实际电路具有基本相同的电磁性质,称其为电路模型。 通常用电路图来表示电路模型
利用电路模型研究问题的特点 1.主要针对由理想电路元件构成的集总参数电路, 1.主要针对由理想电路元件构成的集总参数电路, 主要针对由理想电路元件构成的集总参数电路 其中电磁现象可以用数学方式来精确地分析和计算; 其中电磁现象可以用数学方式来精确地分析和计算; 2.研究与实际电路相对应的电路模型, 2.研究与实际电路相对应的电路模型,实质上就是 研究与实际电路相对应的电路模型 探讨各种实际电路共同遵循的基本规律。 探讨各种实际电路共同遵循的基本规律。 集总参数电路元件的特征 元件中所发生的电磁过程都集中在元件内部进行 其次要因素可以忽略的理想电路元件; 其次要因素可以忽略的理想电路元件;任何时刻从元 件两端流入和流出的电流恒等且由元件端电压值确定。 件两端流入和流出的电流恒等且由元件端电压值确定。
电路模型和电路定律

2020/5/12
4
3.由电路元件构成的实际电路-原理图
2020/5/12
5
4.由电路元件构成的实际电路-安装图
2020/5/12
解:设电流的编号及参考方向如图。
发出功率: p2 u2i2 4(W)
i2 4(A)
a i2 B b - u2 +
负号代表图中电流的实际方向由b向a
2020/5/12
17
练习∶功率的计算
一、计算下面支路的功率、并说明性质。
iA
A
- uA +
iB B - uB +
uA= 1V, iA= -1A
uB= 1V, iB= 1A
如:已知图中电流为2A,方向由a指向b(实际方向),
电压 u1=1V。求元件A的功率及其性质。
解:设电流的编号及参考方向如
a i1
b
图
i1=2A
A
+ u1 -
吸收功率: p u1i1 1 2 2(W )
2020/5/12
16
例2:已知图中电压 u2= -1V,元件B发出的功率 为4W。 求其电流。
3
1)基本表述方式: 对结点列写
结点① :i1+i2+i3=0
i3 ① i2 2
④4
S
② i6 6
结点② :i6 - i2 - i5=0 结点③ :- i6 - i4+i7=0
1
5
i1 i5
i7
2)扩展表述方式:对闭合边界S列写
⑤
1-电路模型和电路定律

的参考点,并用符号“ ”表示。 2.电压:电路中,电场力将单位正电荷从某一点移到 另一点所作的功定义为该两点之间的电压,也称电位差 或电压降,用u或u(t)表示。单位是V(伏特,简称伏)。 同样分直流电压和交流电压。 dwAB W AB uAB uA uB U AB UA UB dq Q 常用的单位有MV、kV、mV、V。 3 3 -3 -6 1MV 10 kV 1kV 10 V 1mV 10 V 1V 10 V
§ 1.4 电阻元件
一. 电阻元件:是从实际电阻器抽象出来的模型,只 反映电阻器对电流呈现阻力的性能。 时变 线性电阻 时不变 1.电阻元件分类 非线性电阻 时变 时不变
线性时 不变电阻
线性时 变电阻
非线性时 不变电阻
非线性 时变电阻
2.线性电阻(线性时不变电阻):元件上电压正比于 电流,该元件称为线性电阻。欧姆定律只适用于线性 电阻。 ① u(t ) Ri(t ) 只适用于线性电阻( R 为常数); ②如电阻上的电压与电流参考方向非关联, 欧姆定律 公式中应冠以负号。公式和参考方向必须 配套使用。u(t ) Ri(t ) 。 ③说明线性电阻是无记忆、双向性的元件。 电导:反映材料的导电能力。电阻、电导是从相反的 两个方面来表征同一材料特性。 u(t ) 1 i (t ) Gu(t ) G ,G称为电导。 R R 电阻R单位:欧(姆) ,符号: 。 电导G单位:西(门子) ,符号: S。
§ 1.3 电功率和能量
一.电功率 【单位:W瓦(特)】
二.电能 【单位:J焦(耳)】 t 交流 : w (t ) p( )d
dw dw dq u p i dq dt dt
dw dw dq p ui dt dq dt
第1章-电路模型和电路定律

1.6 电容元件 (capacitor)
1、电容器
++ ++ ++ ++ +q –--– –--– –q
线性定常电容元件:任何时刻,电容元件极板上的电 荷q与电压 u 成正比。
2、电路符号
C
3. 元件特性 i
与电容有关两个变量: C, q 对于线性电容,有: q =Cu
1.7 电感元件
1 、线性定常电感元件
iL
变量: 电流 i , 磁链
+
u
–
def ψ L
i
L 称为自感系数 L 的单位:亨(利) 符号:H (Henry)
2 、韦安( ~i )特性
0
i
3 、 电压、电流关系:
i
+–
ue –+
i , 右螺旋 e , 右螺旋 u , e 非关联 u , i 关联
交流: iS是确定的时间函数,如 iS=Imsint
(b) 电源两端电压是任意的,由外电路决定。
(3). 伏安特性
i
+
iS
u
_
u
IS
O
i
(a) 若iS= IS ,即直流电源,则其伏安特性为平行于电 压轴的直线,反映电流与 端电压无关。
(b) 若iS为变化的电源,则某一时刻的伏安关系也是 这样 电流为零的电流源,伏安曲线与 u 轴重合, 相当于开路元件
+ u
+ C
C
def
q
u
C 称为电容器的电容
–
–
电容 C 的单位:F (法) (Farad,法拉)
第一章电路模型和电路定律

低频信号发生器
实际电路元件
电感 电阻 电容 互感
1、元件通过其端子与外部连接。 元件通过其端子与外部连接。 元件的特性通过与端子有关的电路物理量来描述; 2、元件的特性通过与端子有关的电路物理量来描述;这些物理量之间的代数关系称为 元件的端子特性(也称元件特性); );采用电流和电压来描述元件特性时也称为元件 元件的端子特性(也称元件特性);采用电流和电压来描述元件特性时也称为元件 的伏安特性。(如线性电阻的欧姆定律) 。(如线性电阻的欧姆定律 的伏安特性。(如线性电阻的欧姆定律) 线性元件:即表征元件特性的代数关系是一个线性关系;否则称为非线性元件。 3、线性元件:即表征元件特性的代数关系是一个线性关系;否则称为非线性元件。 集总(参数)元件:是指有关电、磁场物理现象都有由元件来“集总”表征; 4、集总(参数)元件:是指有关电、磁场物理现象都有由元件来“集总”表征;即元 件外部不存在任何电场与磁场。(严格来说,不可能) 。(严格来说 件外部不存在任何电场与磁场。(严格来说,不可能) 电路常用物理量及符号:电流I 电压U 电荷Q 电功率P 电能W 磁通Φ 5、电路常用物理量及符号:电流I、电压U、电荷Q、电功率P、电能W、磁通Φ、磁通 一般小写字母表示随时间变化的量,大写表示恒定量。 链Ψ。一般小写字母表示随时间变化的量,大写表示恒定量。
i
参考方向 实际方向 B
i>0
i<0
电流和电压的参考方向
参考方向 U 实际方向 参考方向 U 实际方向
+
–
+
–
+
–
–
+
U>0
U<0
电流和电压的关联参考方向
i
+ u
电路 第一章

绪论1. “电路分析”是电类(强电、弱电)专业本科生必修的重要的是电气程专业的主本课程的地位修的一门重要的专业基础课。
是电气工程专业的主干技术基础课程。
通过对本课程的学习,使同学们基本论分析计算电路的掌握电路的基本理论、分析计算电路的基本方法和进行实验的基本技能,为后续课程准备必要的电路知识知识。
前续课程高等数学大学物理等前续课程:高等数学、大学物理等。
后续课程:模拟电子技术、数字电子技术、信号与系统等与系统等。
3.研究的内容●电路理论的研究体系:电路分析(analysis):在给定的激励(excitation)下,求结构已知的电路的响应(response)。
激励给定响应待求?电路已知re电路综合(synthesis):在特定的激励下,为了得到预期的响在特定的激励为得到预期的响应而研究如何构成所需的电路。
激励已知目标给定电路未知re●电路分析(analysis)研究内容:以电路模型为基础,编写描述电路的方程式,通过响应的求解、分析,认识已知电路的功能和特性。
根据所分析电路的不同可分为:1、电阻电路分析;2、动态电路分析;动态电路分析3、正弦稳态电路分析4、二端口网络二端口网络(简单电路)5. 教材及主要参考书1.教材:12006[]邱关源,《电路》,高等教育出版社,第五版,2.参考书:[2]汪缉光,刘秀成主编,《电路原理》(第二版),清华大学出版社。
[3](美)尼尔森.《电路》.北京:电子工业出版社,20086. 具体要求及成绩评定⑴自主学习要求:⑵听课要积极主动⑶课后及时做思考题、作业,有问题及时课后时做考题作有问题时解决认真作业,必须独立完成;必须抄题目、画电路,电路图使用铅笔和尺子,下一节课前必须交上一节课的作业。
20 %平时成绩成绩评定标准:实验成绩期末考试20 %60 %(平时成绩:考勤、作业、课堂练习提问、答疑)第一章电路模型和电路定律第章电路模型和电路定律1.1电路和电路模型.1.2电流和电压的参考方向1.3电功率和能量1.4电路元件141.5电阻元件1.6电压源和电流源161.7受控电源1.8基尔霍夫定律教学目标1.牢固掌握电路模型和理想电路元件的特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电路模型和电路定律
解题方法指导
一、元件电压,电流参考方向的设定指导 (1) 设定参考方向是分析电路的前提,各种关系式都是在参考方向指定下表示的。
(2) 电压、电流的参考方向是任意指定的,它不一定是真实方向或极性。
(3) 如果分析结果 则设定的与实际的相一致;否则,如果则两者相反。
参阅习题1-1。
二、元件伏安特性的确定指导
元件的伏安特性是指流过元件的电流和元件两端电压之间的关系,是元件本身的约束关系。
对于电阻、电感、电容等无源元件,若电压、电流取关联参考方向,则其伏安特性的系数为正,反之为负。
参阅习题1-4。
三、元件的吸收功率或发出功率的判断指导
(1) 若取关联的参考方向,元件吸收的功率定义为当时,表示该元件实际吸收功率;当表示该元件实际发出功率,在非关联参考方向下,则相反。
参阅习题1-1,习题1-14。
(2) 电压与电流取关联的参考方向,则电路在任何时刻,其全部支路吸收的功率之和恒等于零。
即满足功率守恒。
四、含受控源的应用举例
当电路中出现受控源时,应注意掌握它的受控关系、端口特性及独立源的区别。
即在列写电路方程时,受控源可以当作独立源处理,但是必须补充控制量的约束方程,参阅习题1-21。
五、基尔霍夫电流定律和基尔霍夫电压定律应用举例
基尔霍夫电流定律和基尔霍夫电压定律简称为KCL 和KVL ,这两个定律是集中电路的重要,0,0>>u i ,0,0<<u i ,ui p =0>=ui p ,0<=ui p
定律,分别研究电路中的结点电流与回路电压的约束关系,是一种电路的结构约束关系。
列写KVL、KCL前,必须先确定参考方向。
参阅习题1-10,习题1-21。
六、理想电压源和理想电流源的外特性应用举例
(1)理想电压源能够独立产生电压,其端电压不随输出电流而变,但输出电流随外电路而变。
(2)理想电流源能够独立产生电流,其输出电流不随端电压而变,但端电压随外电路而变。