Agilent ICP-MS原理
ICP-MS简单培训资料

一、ICP-MS 简介ICP-MS全称电感耦合等离子体质谱(Inductively Coupled Plasma Mass Spectrometry),可分析几乎地球上所有元素(Li-U)ICP-MS技术是80年代发展起来的新的分析测试技术。
它以将ICP的高温(8000K)电离特性与四极杆质谱计的灵敏快速扫描的优点相结合而形成一种新型的最强有力的元素分析、同位素分析和形态分析技术。
该技术提供了极低的检出限、极宽的动态线性范围、谱线简单、干扰少、分析精密度高、分析速度快以及可提供同位素信息等分析特性。
自1984年第一台商品仪器问世以来,这项技术已从最初在地质科学研究的应用迅速发展到广泛应用于环境保护、半导体、生物、医学、冶金、石油、核材料分析等领域。
被称为当代分析技术最激动人心的发展。
二、ICP-MS 仪器和原理介绍标准样品引入系统由两个主要部分组成:样品提升部分和雾化部分。
样品提升部分可以使用蠕动泵或自提升的雾化器。
蠕动泵用于提升样品或提升经T 接头混合的样品/内标混和液,可以便捷地实现内标的在线加入。
使用标准的1.02mm内径的样品管时,在转速下,蠕动泵提升样品的能力大约为min。
而内标管的直径为0.19mm,因此内标液的流速更慢,在转速下,蠕动泵提升内标的能力大约为20µl/min。
也就是说,内标溶液相对于被稀释20倍,所以虽然我们要求引入系统的内标元素浓度为50ppb,但使用的内标溶液浓度为1ppm(1000ppb)。
注:即使用自提升的雾化器,仍需要使用蠕动泵,因为雾化器里的废液是通过蠕动泵排到废液桶中的。
如果雾化器不排废液,将导致信号不稳定,如果过多的液体流入炬管,将导致熄火,对仪器造成危害。
样品引入系统的第二部分是雾化器和雾化室。
样品以泵入方式或者自提升方式进入雾化器后,在载气作用下形成小雾滴,并进入雾化室。
大的、重的雾滴碰到雾化室壁后被排至废液中,只有小雾滴才可进入等离子体内。
7500 仪器及原理介绍ICP-MS

•饮用水、海水、环境水资源 •食品、卫生防疫、商检等 •土壤、污泥、固体废物 •生产过程QA/QC,质量控制 •烟草/酒类质量控制, 鉴别真伪等 Hg, As, Pb, Sn等的价态形态分析
•同位素比的研究
•激光熔蚀直接分析固 体样品
医药及生理分析6% •头发、全血、血清、尿样、 生物组织等 •医药研究,药品质量控制
Title of Presentation Date Agilent Restricted Page 14
ICP离子源中的物质
等离子体能量越高电离效率越高
许多元素的电离度主要取决于等离子体的温度,若等离子体的能量不够高, 基体水平的变化就会引起轻微的温度变化,从而严重影响灵敏度。
plasma temperature Element Ip (eV) 5000 K 6000 K 7000 K 8000 K Cs Na Ba Li Sr Al Pb Mg Co Sb Cd Be Se As Hg 3.89 5.14 5.21 5.39 5.69 5.98 7.42 7.64 7.86 8.64 8.99 9.32 9.75 9.81 10.43 99.4% 90.0% 88.4% 83.4% 71.5% 56.2% 4.3% 2.6% 1.6% 0.3% 0.1% 0.1% 0.0% 0.0% 0.0% 99.9% 98.9% 98.7% 98.2% 96.8% 94.5% 51.2% 40.7% 31.0% 9.0% 4.8% 2.6% 1.1% 1.0% 0.3% 100.0% 99.8% 99.8% 99.7% 99.5% 99.1% 91.1% 87.7% 83.2% 57.6% 43.2% 30.6% 17.8% 16.4% 6.5% 100.0% 99.9% 99.9% 99.9% 99.9% 99.8% 98.3% 97.7% 96.9% 90.9% 85.7% 78.8% 66.6% 64.6% 42.6%
ICP-MS基本原理

ICP-MS基本原理ICP-MS(Inductively Coupled Plasma Mass Spectrometry)是一种高灵敏度、高选择性和高分辨率的元素分析技术,广泛应用于环境监测、食品安全、地质矿产、生物医药等领域。
其基本原理是利用高温感应耦合等离子体(ICP)产生的离子流,经过质谱仪的分析,实现对样品中元素的快速、准确检测和定量分析。
ICP-MS的基本原理可以分为三个主要步骤,样品进样与离子化、离子分离与检测、数据分析与结果输出。
首先,样品经过适当的预处理后,以气体或液体的形式进入ICP。
在高温的感应耦合等离子体中,样品中的元素被离子化,并形成带电荷的离子。
这些离子随后被引入质谱仪中进行分析。
其次,离子进入质谱仪后,首先经过离子分离装置进行分离。
在质谱仪中,离子根据其质量/电荷比(m/z)被分离并聚焦成一个离子束。
然后,这些离子被分别加速、偏转和聚焦,最终击中检测器。
检测器接收到的离子信号被转换为电信号,并经过放大、数字化处理后,形成质谱图。
最后,通过数据分析软件对质谱图进行处理,得到各个元素的相对丰度和绝对含量。
同时,ICP-MS还可以进行同位素比值的测定,以实现更加精确的元素定量分析。
这些数据可以用于研究样品的成分、污染物含量、地球化学特征等方面。
总的来说,ICP-MS技术基于高温等离子体和质谱仪的联合应用,能够实现对样品中元素的高灵敏度、高选择性和高分辨率的分析。
其在环境监测、食品安全、地质矿产、生物医药等领域具有重要的应用价值。
随着技术的不断进步,ICP-MS在元素分析领域的地位将会更加突出,为人类的健康和环境保护提供更加可靠的技术支持。
仪器分析基础:ICP-MS的工作原理与干扰原理

仪器分析基础:ICP-MS的工作原理与干扰原理ICP-MS 构造原理与干扰构造与干扰〇. 一般ICP-MS分析包括下面几个步骤:①原子化②将原子化的原子大部分转化为离子③离子按照质荷比分离④计数各种离子的数目原理:雾化器将溶液样品送入等离子体光源,在高温下汽化,解离出离子化气体,通过铜或镍取样锥收集的离子,在低真空约133.322帕压力下形成分子束,再通过1~2毫米直径的截取板进入四极质谱分析器,经滤质器质量分离后,到达离子探测器,根据探测器的计数与浓度的比例关系,可测出元素的含量或同位素比值。
一.等离子体:等离子体指的是含有一定浓度阴阳离子能够导电的气体混合物。
在等离子体中,阴阳离子的浓度是相同的,净电荷为零。
通常用氩形成等离子体。
氩离子和电子是主要导电物质。
一般温度可以达到10,000K。
电感耦合等离子体产生构件的组成:①石英炬管 (Fassel型)由三个同心石英管组成,三股氩气流分别进入炬管。
冷却气:等离子体支持气体,保护管壁辅助气:保护毛细管尖雾化气:进样并穿透等离子体中心ICP焰炬的形成:形成稳定的ICP焰炬,应有三个条件:高频电磁场、工作气体以及能维持气体稳定放电的石英炬管。
在管子的上部环绕着一水冷感应线圈,当高频发生器供电时,线圈轴线方向上产生强烈振荡的磁场。
用高频火花等方法使中间流动的工作气体电离,产生的离子和电子再与感应线圈所产生的起伏磁场作用,这一相互作用使线圈内的离子和电子沿图市所示的封闭环路流动;它们对这一运动的阻力则导致欧姆加热作用。
由于强大的电流产生的高温,使气体加热,从而形成火炬状的等离子体。
②耦合负载线圈(2~3圈水冷细铜管)③射频发生器(提供能量)④Tesla线圈(点火装置)样品溶液在ICP中的历程:二.ICP与MS的接口(Interface)1. 离子的提取:采样锥(sampling cone);截取锥(skimmer cone)2. 离子的聚焦:离子透镜组3. 真空系统:一个机械泵;一个分子涡轮泵三.质谱仪四极杆质谱 (Quadrupole Mass),四极杆质谱仪是一个由四个平行的导电棒组成的质量过滤器,只有具有一定质荷比的离子才能通过,质量不符合要求的离子或与棒相碰撞或离开棒之间的轨道,被真空泵抽出系统。
Agilent 8900串联四极杆ICPMS技术参数

安捷伦电感耦合等离子体串联质谱仪(ICP-MS/MS)指标1.电感耦合等离子体串联质谱(ICP-MS/MS)的定义及应用要求1.1.电感耦合等离子体串联质谱(以下简称ICP-MS/MS)是指液态样品经雾化器雾化、雾室筛选后进入等离子体,在高温下样品电离,离子经过接口锥进入真空系统,滤除中性未电离成分后的离子束经第一级四级杆(Q1)选择单一质量数的离子(母离子)进入碰撞反应池,母离子在池中经碰撞/反应后产生子离子,再经过第二级四级杆(Q2)筛选,选定质量数的子离子最终进入检测器。
1.2.ICP-MS/MS不但能替代传统的ICP-MS适用于食品、环境、半导体、医药、核工业等广泛领域的各种样品的元素分析和同位素分析任务,更以其卓越的抗干扰能力可达到无视基体的分析能力,可成功解决传统ICP-MS未能解决的质谱干扰,在众多领域可替代昂贵的高分辨率双聚焦等离子体质谱(HR-ICP-MS),甚至在某些特定领域可完成HR-ICP-MS所无法完成的工作。
1.3.ICP-MS/MS具有以下分析能力:1) 通过离子的荷质比以及同位素比指纹进行定性分析的能力;2)可选择特定母离子进入碰撞反应池,再进行子离子扫描,杜绝副反应对分析结果的影响,无视基体的多元素准确定量分析能力;3) 不需要标准工作曲线,通过全谱扫描对所有元素进行较准确的半定量分析的能力,可能的未知的多种干扰可采用碰撞/反应池技术直接排除;4) 同位素比测定能力以及同位素稀释法精确定量能力;5)可以与色谱技术联机进行形态分析。
1.4.★投标所用的ICP-MS/MS型号需具有广泛的用户基础及应用前景,投标商须提供不少于20篇2014年至2017年发表的使用该型号进行应用研究的外文应用文献。
2.仪器主机:2.1.雾化器: 高精度、高效同心雾化器。
2.2.雾化室: 双通道设计,石英材质,高效半导体控温装置。
2.3.★高盐进样系统:仪器配置全自动在线稀释装置,稀释方式为气体自动稀释,避免使用溶剂稀释引入污染,最高可连续测定含盐量高达25%的样品;2.4.ICP发生器: 数字式驱动的固态ICP发生器,27 MHz,最大功率1.6 kW。
ICP-MS的原理和使用

仪器的准备
(3)检查并确认进样系统(炬管、雾化室、雾化器、泵 管等)是否正确安装。 (4)上好样品管和废液管,检漏; (5)点击Instrument Control 左上角的“ON”点火; (6)点火后,先用娃哈哈的水冲洗5min,再用 2%HNO3冲洗5min,稳定仪器,同时注意观察进液和出 液是否顺畅。
2023最新整理收集 do something
ICP-MS的原理和使用
2017-2-9
主要内容
一、原理 二、结构 三、使用和注意事项
四、日常维护
ICP-MS仪器的原理
ICP-MS:
全称是电感耦合等离子体-质谱法 (Inductively coupled plasma-Mass Spectrometry) 它是一种将ICP技术和质谱结合在一起的分析仪器,它 能同时测定几十种痕量无机元素,可进行同位素分析、 单元素和多元素分析,以及有机物中金属元素的形态分 析。
素被有效地电离为单电荷离子
接口
接口是ICP-MS仪器的心脏,采样锥和截取锥是 其关键部件 (一个冷却的采样锥(大约1mm孔径) 和截取锥(大约0.4-0.8mm孔径)组成, 两孔相 距6-7mm。
接口的功能是将等离子体中的离子有效传输到质谱仪
质谱分析器(四级杆)
利用静电透镜系统将穿过截取锥的离子拉出来,输送到 四极杆滤质器。四极杆的工作是基于在四根电极之间的 空间产生一随时间变化的特殊电场,只有给定M/Z的离 子才能获得稳定的路径而通过极棒,从其另一端出射。 其它离子将被过分偏转,与极棒碰撞,并在极棒上被中 和而丢失。四极杆扫描速度很快,大约每100毫秒可扫描 整个元素覆盖的质量范围。
止机械泵过热自动保护熄火了。
icpms的原理与应用

ICP-MS的原理与应用1. ICP-MS的原理ICP-MS(Inductively Coupled Plasma Mass Spectrometry)是一种高灵敏度的元素分析技术,结合了ICP和MS两种技术的优点。
以下是ICP-MS的工作原理:1.电感耦合等离子体(ICP)–ICP是一种高温等离子体,由RF发生器产生。
–ICP中的气体被电磁场加热并电离,形成充满活跃离子和电子的等离子体。
–ICP提供了一个高温、高离子浓度的环境,有利于样品中元素的离子化。
2.离子光学系统–ICP产生的离子通过一系列的离子光学器件,如离子镜和偏转器,按质荷比被传输到质谱仪。
–离子光学系统的设计和参数设定决定了进入质谱仪的离子束的取向和调制。
3.质谱分析(MS)–质谱仪分析样品中的离子,并根据离子的质量/荷比进行分离和检测。
–典型的ICP-MS使用磁扇形质量过滤器(如四极杆)来分离离子。
4.检测器–检测器通常是一个具有高增益和高分辨率的电子倍增器。
–离子的到达在检测器上形成的电荷被放大并转换成电信号。
–通过测量电荷或电压信号的幅度,可以确定样品中的元素含量。
2. ICP-MS的应用ICP-MS作为一种高灵敏度、高选择性的分析技术,在多个领域中被广泛应用。
以下是一些ICP-MS的应用:1.环境分析–ICP-MS可以用于分析水和土壤中的微量元素。
–它可以检测重金属、有机物和其他环境污染物的含量。
–ICP-MS还可以用来研究大气颗粒物的组成和来源。
2.地质学研究–ICP-MS可用于研究地质样品中的稀有元素、硫化物、矿物和岩石的成分。
–它可以提供有关岩石的年龄、起源和地壳演化的信息。
3.生物医学研究–ICP-MS在药物代谢、毒理学和临床分析中起着重要作用。
–它可以用于分析人体组织和血液中的微量元素,如铁、锰和铬。
4.食品和农产品检测–ICP-MS可以用于检测食品和农产品中的农药残留、重金属污染和营养元素含量。
–它被广泛应用于食品安全检测和农产品质量控制。
ICP-MS简单培训资料

ICP-MS简单培训资料一、ICP-MS 简介ICP-MS全称电感耦合等离子体质谱(Inductively Coupled Plasma Mass Spectrometry),可分析几乎地球上所有元素(Li-U)ICP-MS技术是80年代发展起来的新的分析测试技术。
它以将ICP的高温(8000K)电离特性与四极杆质谱计的灵敏快速扫描的优点相结合而形成一种新型的最强有力的元素分析、同位素分析和形态分析技术。
该技术提供了极低的检出限、极宽的动态线性范围、谱线简单、干扰少、分析精密度高、分析速度快以及可提供同位素信息等分析特性。
自1984年第一台商品仪器问世以来,这项技术已从最初在地质科学研究的应用迅速发展到广泛应用于环境保护、半导体、生物、医学、冶金、石油、核材料分析等领域。
被称为当代分析技术最激动人心的发展。
•光刻胶和清洗剂二、ICP-MS 仪器和原理介绍标准样品引入系统由两个主要部分组成:样品提升部分和雾化部分。
样品提升部分可以使用蠕动泵或自提升的雾化器。
蠕动泵用于提升样品或提升经T 接头混合的样品/内标混和液,可以便捷地实现内标的在线加入。
使用标准的1.02mm内径的样品管时,在0.1rps转速下,蠕动泵提升样品的能力大约为0.4ml/min。
而内标管的直径为0.19mm,因此内标液的流速更慢,在0.1rps转速下,蠕动泵提升内标的能力大约为20µl/min。
也就是说,内标溶液相对于被稀释20倍,所以虽然我们要求引入系统的内标元素浓度为50ppb,但使用的内标溶液浓度为1ppm(1000ppb)。
注:即使用自提升的雾化器,仍需要使用蠕动泵,因为雾化器里的废液是通过蠕动泵排到废液桶中的。
如果雾化器不排废液,将导致信号不稳定,如果过多的液体流入炬管,将导致熄火,对仪器造成危害。
样品引入系统的第二部分是雾化器和雾化室。
样品以泵入方式或者自提升方式进入雾化器后,在载气作用下形成小雾滴,并进入雾化室。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Agilent ICP-MS原理
ICP-MS是一种多元素分析技术,具有极好的灵敏度和高效的样品分析能力。
ICP-MS仪器用等离子体(ICP)作为离子源,质谱(MS)分析器检测产生的离子。
它可以同时测量周期表中大多数元素,测定分析物浓度可低至亚纳克/升(ng/l)或万亿分之几(ppt)的水平。
等离子体离子源
通常,液体样品通过蠕动泵引入到一个雾化器产生气溶胶。
双通路雾室确保将气溶胶传输到等离子体。
在一套形成等离子体的同心石英管中通入氩气(Ar)。
炬管安置在射频(RF)线圈的中心位置,RF能量在线圈上通过。
强射频场使氩原子之间发生碰撞,产生一个高能等离子体。
样品气溶胶瞬间在等离子体中被解离(等离子体温度大约为6000 - 10000 K),形成被分析原子,同时被电离。
将等离子体中产生的离子提取到高真空(一般为10-4 Pa)的质谱仪部分。
真空由差式抽真空系统维持:被分析离子通过一对接口(称作采样锥和截取锥)被提取。
四极杆质谱仪
被分析离子由一组离子透镜聚焦进入四极杆质量分析器,按其质荷比进行分离。
之所以称其
为四极杆,是因为质量分析器实际上是由四根平行的不锈钢杆组成,其上施加RF和DC电压。
RF和DC电压的结合允许分析器只能传输具有特定质荷比的离子。
检测器
最后,采用电子倍增器测量离子,由一个计数器收集每个质量的计数。
质谱
质谱图非常简单。
每个元素的同位素出现在其不同的质量上(比如,27Al会出现在27 am u处),其峰强度与该元素在样品溶液中同位素的初始浓度直接成正比。
1-3分钟内可以同时分析从低质量的锂到高质量数的铀范围内的大量元素。
用ICP-MS,一次分析就可以测量浓度水平从ppt级到ppm级的很宽范围的元素。
应用
ICP-MS广泛用于许多工业领域,包括半导体工业、环境领域、地质领域、化学工业、核工业、临床以及各类研究实验室,是痕量元素测定的关键分析工具。
百度百科解释
ICP-MS介绍
ICP-MS介绍
电感耦合等离子体质谱 ICP-MS所用电离源是感应耦合等离子体(ICP),它与原子发射光谱仪所用的ICP 是一样的,其主体是一个由三层石英套管
组成的炬管,炬管上端绕有负载线圈,三层管从里到外分别通载气,辅助
气和冷却气,负载线圈由高频电源耦合供电,产生垂直于线圈平面的磁场。
如果通过高频装置使氩气电离,则氩离子和电子在电磁场作用下又会与其
它氩原子碰撞产生更多的离子和电子,形成涡流。
强大的电流产生高温,
瞬间使氩气形成温度可达10000k的等离子焰炬。
样品由载气带入等离子体
焰炬会发生蒸发、分解、激发和电离,辅助气用来维持等离子体,需要量
大约为1L/min。
冷却气以切线方向引入外管,产生螺旋形气流,使负载线
圈处外管的内壁得到冷却,冷却气流量为10-15L/min。
最常用的进样方式是利用同心型或直角型气动雾化器产生气溶胶,在
载气载带下喷入焰炬,样品进样量大约为1ml/min,是靠蠕动泵送入雾化器的。
在负载线圈上面约10mm处,焰炬温度大约为8000K,在这么高的温度下,电离能低于7eV的元素完全电离,电离能低于10.5ev的元素电离度大于20%。
由于大部分重要的元素电离能都低于10.5eV,因此都有很高的灵敏度,少
数电离能较高的元素,如C,O,Cl,Br等也能检测,只是灵敏度较低。
ICP-MS由ICP焰炬,接口装置和质谱仪三部分组成;若使其具有好的
工作状态,必须设置各部分的工作条件。
ICP工作条件
主要包括ICP功率,载气、辅助气和冷却气流量。
样品提升量等,ICP 功率一般为1KW左右,冷却气流量为15L/min,辅助气流量和载气流量约为1L/min,调节载气流量会影响测量灵敏度。
样品提升量为1ml/min。
接口装置工作条件
ICP产生的离子通过接口装置进入质谱仪,接口装置的主要参数是采样深度,也即采样锥孔与焰炬的距离,要调整两个锥孔的距离和对中,同时要调整透镜电压,使离子有很好的聚焦。
质谱仪工作条件
主要是设置扫描的范围。
为了减少空气中成分的干扰,一般要避免采集N2、O2、Ar等离子,进行定量分析时,质谱扫描要挑选没有其它元素及氧化物干扰的质量。
同时还要有合适的倍增器电压。
事实上,在每次分析之前,需要用多元素标准溶液对仪器整体性能进行测试,如果仪器灵敏度能达到预期水平,则仪器不再需要调整,如果灵敏度偏低,则需要调节载气流量,锥孔位置和透镜电压等参数。