函数的表达方法

合集下载

函数的表示法知识点

函数的表示法知识点

函数的表示法1.函数的三种表示法: 图象法、列表法、解析法2.分段函数:在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。

3.映射:一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。

记作“f :A →B ”给定一个集合A 到B 的映射,如果a ∈A,b ∈B.且元素a 和元素b 对应,那么,我们把元素b 叫做元素a 的象,b=f (a ),元素a 叫做元素b 的原象.说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A 、B 及对应法则f 是确定的;②对应法则有“方向性”,即强调从集合A 到集合B 的对应,它与从B 到A 的对应关系一般是不同的;③对于映射f :A →B 来说,则应满足:(Ⅰ)集合A 中的每一个元素,在集合B 中都有象,并且象是唯一的;(Ⅱ)集合A 中不同的元素,在集合B 中对应的象可以是同一个;(Ⅲ)不要求集合B 中的每一个元素在集合A 中都有原象。

注意:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B 中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.4.常用的函数表示法及各自的优点:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.注意:解析法:便于算出函数值。

列表法:便于查出函数值。

图象法:便于量出函数值5.分段函数:在定义域的不同部分上有不同的解析表达式的函数。

在不同的范围里求函数值时必须把自变量代入相应的表达式。

函数的基本概念

函数的基本概念

函数的基本概念函数是数学中的一个重要概念,也是数学分析的基础。

它在数学和其他领域中有着广泛的应用。

本文将介绍函数的基本概念以及一些常见的函数类型。

1. 函数的定义函数是数学中一种对应关系,它将一个集合中的每个元素都映射到另一个集合中的唯一元素。

通常用f(x)表示函数,其中x为自变量,f(x)为因变量。

函数可以用图像、表格或公式的形式表示。

2. 函数的表示方法函数可以通过不同的方式进行表示。

常见的表示方法包括:- 变量表达式:如y = 2x + 1,其中y表示因变量,x表示自变量。

- 函数图像:通过绘制自变量和因变量之间的关系,可以得到函数的图像。

图像可以帮助我们更直观地理解函数的性质。

- 函数表格:通过将自变量和因变量的对应关系列成表格形式,可以清晰地展示函数的取值情况。

3. 函数的定义域和值域函数的定义域是指自变量的取值范围,即函数能够接受的输入。

函数的值域是指函数的所有可能输出值,即函数的取值范围。

定义域和值域是函数的重要性质,可以帮助我们了解函数的范围和性质。

4. 常见的函数类型4.1 线性函数线性函数是最简单的一种函数类型,其表达式为f(x) = ax + b,其中a和b为常数,a不等于零。

线性函数的图像为一条直线,具有常等差的特点。

4.2 幂函数幂函数是指形如f(x) = x^n的函数,其中n为整数。

幂函数的图像根据n的不同而变化,n为偶数时图像可以是开口向上或向下的抛物线,n为奇数时图像则可以是一条直线。

4.3 指数函数指数函数是指形如f(x) = a^x的函数,其中a为正实数且不等于1。

指数函数的图像通常呈现出逐渐增长或逐渐减小的曲线,具有指数增长或指数衰减的特点。

4.4 对数函数对数函数是指形如f(x) = log_a(x)的函数,其中a为正实数且不等于1。

对数函数的图像通常呈现出逐渐增长但增长速度逐渐减缓的曲线,具有反指数增长的特点。

4.5 三角函数三角函数包括正弦函数、余弦函数和正切函数等。

第3讲函数的表示方法

第3讲函数的表示方法

问题研究
求函数解析式通常有哪些方法?
典型例题1
例1 分别根据下列条件,求函数f(x)的解析式:
⑴已知 f ( x 1) x 2 x ;
⑵已知 f ( x)是一次函数,且f f x 9x 8; ⑶已知 3 f x 2 f x 2x 5; ⑷已知 f 0 0,且对任意x,y R,有
例2
已知函数
f
( x)满足:f

x

1 x


x2
1, x2
求函数 f ( x)的解析式.

配方,得f

x

1 x



x

1 x
2
-2,
f ( x) x2 -2.
错!
思考1 解题是否就此结束?
定义域!
思考2 函数定义域是{x∈R︱x≠0},对吗?
求解过程
x 0且x 1.
1
-1 O 1
x
回顾反思
(1)求解步骤:
①确定函数的定义域;
y
②化简函数的解析式;
③作出函数的图象. (2)思维误区:
1
-1 O 1
x
①不会化简,无从下手;
②范围有误,图象失真;
③忽视细节,作图粗糙.
思路分析
例3 画出下列函数的图象:(2) y x 1 x 2 .
①×3- ②×2,解得 f(x)=2x+1.
回顾反思
(1)基本策略:解方程组,实施消元. (2)数学思想:函数与方程思想. (3)思维障碍:无法找到另一个方程,思维受阻.
思路分析
例1 ⑷已知f(0) =1,且对任意x,y∈R,有 f(x-y)=f(x)-y(2x-y+1),求f(x). 赋值法!

函数的三种表示方法

函数的三种表示方法

函数的三种表示方法全文共852字,预计阅读时间:3分钟上周,我们学习了函数的概念和三个要素。

你记得他们吗?如果忘记了,请及时复习!今天我们将继续函数的学习,主要学习函数的不同表达方式和相关知识点,并额外拓展映射的内容,大家看好了!一,函数的常见表示方法在初中阶段,我们已经学习了函数的三种常用表示法,即解析法、列表法和图像法。

你知道这三种方法各自的适用范围和优缺点吗?解析法:使用数学表达式表示两变量之间的对应关系,也就是函数式表达法,其优点是比较简洁明了,并且可以在已知定义域(自变量)的情况下根据函数式的特点求得值域(函数值),但是这种方法往往非常抽象,因此在之后的学习过程中,解析法常常和图像法结合使用;列表法:使用表格表示两变量之间的对应关系,这种方法的优点是并不需要计算就可以清晰地看出函数值,适合银行利率表之类的问题,但是大家也会发现,列表法的容量是非常有限的,而且是离散的,并不是连贯的;图像法:用图像来表示两个变量之间的对应关系,与前两者相比,图像法更直观,能看到变化趋势。

然而,提取图像的过程往往很复杂,因此它常常与分析方法一起使用。

二,分段函数分段函数是指在一个定义域内,自变量的不同范围有不同对应关系的函数。

需要同学们注意的是:1)虽然分段函数包括几个不同的对应关系,但是它依然是一个函数;2)分段函数的定义域是几个部分的“并”(什么是并,大家还记得吗?);3)分段函数定义域的不同部分并不能相交;4)由于分段函数包含若干对应关系,因此分段函数的图像不一定是连续曲线。

三,扩展学习 - 映射人教版教材中已经删除了映射的内容,但是为了让学生更好的理解函数,我们先简单的了解一下映射的基本概念,并不是强制性的!映射的定义是:其中“f:A→B”表示A到B的映射,而“f:B→A”表示B到A的映射,这两者并不是同一个映射!映射也有三个要素,即两个集合和一个对应的规则,和函数很像。

但函数要求两个集合必须是数的集合,映射对集合没有特殊要求。

浅谈函数三种表示方法的合理运用

浅谈函数三种表示方法的合理运用

浅谈函数三种表示方法的合理运用
表示函数的三种方法:图象法、列表法、解析法。

从直观、精准等方面归纳:
1.解析法的优点: 用函数关系式来表示,形如y=f(x),y=2x+5 或者是关于x和y的方
程例如5x+3y=7函数关系清楚,容易从自变量的值求出其对应的函数值,便于研究函数的性质。

2.列表法的优点: 采用表格的形式。

列出相应的x值和对应的y值,列举出来就行,
缺点是有些方程不可能把所有的x都列举出来,所以不能完全表示一个函数。

不必通过计算就知道当自变量取某些值时函数的对应值.
3.图象法的优点: 一条曲线(直线是特殊的曲线)与函数相一一对应,所以一条曲线
表示一个函数。

能直接形象的表示出函数的变化情况.。

高一数学函数的常用表示方法

高一数学函数的常用表示方法

x
45
钱数y
5 10 15 20 25
例4 下表是某校高一(1)班三名同学在高一 学年度六次数学测试的成绩及班级平均分表。
解:从表中可以知道每位同学在每次测试中的成 绩,但不太容易分析每位同学的成绩变化情况。 如果将“成绩”与“测试时间”之间的关系用函 数图象表示出来,如下表,那么就能比较直观地 看到成绩变化地情况。这对我们地分析很有帮助。
解:这个函数的定义域是数集{1,2,3,4,5} 用解析法可将函数y=f(x)表示为
y 5x, x 1,2,3,4,5
用列表法可将函数表示为
笔记本数x 1
钱数y
5
234 5 10 15 20 25
用图象法可将函数表示为下图
y

25
. 20 . 15 .. 10
5
012345
笔记本数x 1 2 3
2.1.2函数表示法 课件
例5 画出函数y=|x|的图象.
解:由绝对值的概念,我们有
y=
图象如下:
x, x≥0, -x, x<0.
y
5 4 3 2 1
-3 -2 -1 0 1 2 3
x
例6.某市空调公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元; (2)5公里以上,每增加5公里,票价增加1元 (不足5公里的按5公里计算)。
已知两个相邻的公共汽车站间相距为1公里,如果 沿途(包括起点站和终点站)有21个汽车站,请 根据题意,写出票价与里程之间的函数解析式, 并画出函数的图象。
解:设票价为y,里程为x,则根据题意, 如果某空调汽车运行路线中设21个汽车站,那么汽车 行驶的里程约为20公里,所以自变量x的数的三种表示法及其各种的优点 2、分段函数 3、映射的概念

函数的表示方法

函数的表示方法

函数的表示方法★知识梳理一、函数的三种表示法:图象法、列表法、解析法1.图象法:就是用函数图象表示两个变量之间的关系; 2.列表法:就是列出表格来表示两个变量的函数关系; 3.解析法:就是把两个变量的函数关系,用等式来表示。

二、分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。

★重、难点突破重点:掌握函数的三种表示法-----图象法、列表法、解析法,分段函数的概念 难点:分段函数的概念,求函数的解析式重难点:掌握求函数的解析式的一般常用方法: (1)若已知函数的类型(如一次函数、二次函数),则用待定系数法; (2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法; 问题1.已知二次函数)(x f 满足564)12(2+-=+x x x f ,求)(x f 方法一:换元法令)(12R t t x ∈=+,则21-=t x ,从而)(955216)21(4)(22R t t t t t t f ∈+-=+-⋅--= 所以)(95)(2R x x x x f ∈+-= 方法二:配凑法因为9)12(5)12(410)12(564)12(222++-+=+-+==+-=+x x x x x x x f 所以)(95)(2R x x x x f ∈+-= 方法三:待定系数法因为)(x f 是二次函数,故可设c bx ax x f ++=2)(,从而由564)12(2+-=+x x x f 可求出951=-==c b a 、、,所以)(95)(2R x x x x f ∈+-=(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f 问题2:已知函数)(x f 满足x xf x f 3)1(2)(=+,求)(x f 因为 x xf x f 3)1(2)(=+① 以x 1代x 得 xx f x f 13)(2)1(⋅=+②由①②联立消去)1(x f 得)0(2)(≠-=x x xx f ★热点考点题型探析考点1:用图像法表示函数[例1] (09年广东南海中学)一水池有2个进水口, 1个出水口,一个口的进、出水的速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.给出以下3个论断:进水量 出水量 蓄水量(1)0点到3点只进水不出水;(2)3点到4点不进水只出水;(3)4点到6点不进水不出水.则一定不正确...的论断是 (把你认为是符合题意的论断序号都填上) . [解题思路]根据题意和所给出的图象,对三个论断进行确认即可。

高一数学函数的表示方法

高一数学函数的表示方法

函数的表示方法(一)1、列表法:通过列出自变量与对应的函数值的表来表达函数关系的方法叫列表法2、图像法:如果图形F 是函数)(x f y =的图像,则图像上的任意点的坐标满足函数的关系式,反之满足函数关系的点都在图像上.这种由图形表示函数的方法叫做图像法.3、如果在函数)(x f y =)(A x ∈中,)(x f 是用代数式来表达的,这种方法叫做解析法4、讨论分别用a x -,a y -分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?5、讨论分别用x -,y -分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?6、讨论分别用ax ,by 分别替换函数)(x f y =中的x ,y 以后函数的图像会发生哪些变化?7、讨论分别用||x ,|)(|x f 分别替换函数)(x f y =中的x ,)(x f 以后函数的图像会发生哪些变化?8、试作出下列函数的图像: (1)43-+=x x y (2)11-=x y11、若)3()3(x f x f +=-,那么函数)(x f 的图像有何性质? 12、)3(x f y -=与)3(x f +的图像之间有何关系函数的表示方法(二)1.例题:例1.(1)已知一次函数()f x 满足(0)5f =,图象过点(2,1)-,求()f x ;(2)已知二次函数()h x 与x 轴的两交点为(2,0)-,(3,0),且(0)3h =-,求()h x ; (3)已知二次函数()F x ,其图象的顶点是(1,2)-,且经过原点,()F x .例2.(1)已知2()43f x x x =-+,(1)f x +; (2)已知2(1)2f x x x +=-,求()f x .例3.函数在闭区间[1,2]-例4.某人开汽车以60/km h 的速度从A 地到150km 远处的B 地,在B 地停留1h 后,再以50/km h 的速度返回A 地,把汽车离开A 地的路程()x km 表示为时间()t h (从A 地出发是开始)的函数,并画出函数的图象;再把车速v /km h 表示为时间()t h 的函数,并画出函数的图象.例5.已知一个函数的解析式为22y x x =-,它的值域为[1,3]-,这样的函数有多少个?试写出其中两个函数.2.练习:(1)练习:(1)已知2(3)21f x x =-,求()f x ; (答案:22()19f x x =-)(2)已知2211()1f x x xx-=++,求()f x .(答案:2()3f x x =+)3.小结:1.已知函数类型,求函数解析式,常用待定系数法;它的基本步骤是:设出函数的一般式(或顶点式等),代入已知条件,通过解方程(组)确定未知系数; 2.已知()f x 的解析式,求[()]f g x 时,把x 用()g x 代替;已知[()]f g x 的解析式,求()f x 时,常用配凑法或换元法;3.在解决实际问题时,求出函数解析式后,一定要写出定义域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的表达方法
表达函数有三种方法:解析法,列表法,图象法.结合其意义,优点与不足,分别说明如下. (1)利用解析式(如学过的代数式)表示函数的方法叫做解析法.用解析式表示函数的优点是简明扼要,规范准确.已学利用函数的解析式,求自变量x=a时对应的函数值,还可利用函数的解析式,列表,描点,画函数的图象,进而研究函数的性质,又可利用函数解析式的结构特点,分析和发现自变量与函数间的依存关系,猜想或推导函数的性质(如对称性,增减性等),探求函数的应用等.不足之处是有些变量与函数关系很难或不能用解析式表示,求x与y的对应值需要逐个计算,有时比较繁杂. (2)通过列表给出y与x的对应数值,表示y是x的函数的方法叫做列表法.列表法的优点是能鲜明地显现出自变量与函数值之间的数量关系,于是一些数学用表应运而生. (3)利用图象表示y是x的函数的方法叫做图象法.用图象表示函数的优点是形象直观,清晰呈现函数的增减变化,点的对称,最大(或小)值等性质.图象法的不足之处是所画出的图象是近似的,局部的,观察或由图象确定的函数值往往不够准确. 由于函数关系的三种表示方法各具特色,优点突出,但大都存在着缺点,不尽人意,所以在应用中本着物尽其用,扬长避短,优势互补的精神,通常表示函数关系是把这三种方法结合起来运用,先确定函数的解析式,即用解析法表示函数;再根据函数解析式,计算自变量与函数的各组对应值,列表;最后是画出函数的图象.。

相关文档
最新文档