解析法、列表法和图像法的各自优点_对函数的再认识2
新教材苏教版高中数学必修一 知识点09 函数的表示方法

高一数学同步精品课堂讲、例、测(苏教版2019必修第一册)知识点9函数的表示方法教材知识梳理函数的表示法-------理解函数表示法的三个关注点(1)列表法、图象法、解析法均是函数的表示法,无论是哪种方式表示函数,都必须满足函数的概念.(2)列表法更直观形象,图象法从形的角度描述函数,解析法从数的角度描述函数.(3)函数的三种表示法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.函数三种表示法的优缺点比较:求函数解析式的四种常用方法(1)换元法:设t=g(x),解出x,代入f(g(x)),求f(t)的解析式即可.(2)配凑法:对f(g(x))的解析式进行配凑变形,使它能用g(x)表示出来,再用x代替两边所有的“g(x)”即可.(3)待定系数法:若已知f(x)的解析式的类型,设出它的一般形式,根据特殊值确定相关的系数即可.(4)方程组法(或消元法):当同一个对应关系中的两个之间有互为相反数或互为倒数关系时,可构造方程组求解.提醒:应用换元法求函数解析式时,务必保证函数在换元前后的等价性.分段函数图象的画法(1)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.(2)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.分段函数的实际应用(1)当目标在不同区间有不同的计算表达方式时,往往需要用分段函数模型来表示两变量间的对应关系,而分段函数图象也需要分段画.(2)分段函数模型应用的关键是确定分段的各分界点,即明确自变量的取值区间,对每一个区间进行分类讨论,从而写出相应的函数解析式.例题研究一、求函数的解析式题型探究例题1已知函数()f x 的定义域为R ,且对任意x ∈R 均满足:2()()31f x f x x --=+,则函数()f x 的解析式为( ) A .()1f x x =+ B .()1f x x C .()1f x x =-+ D .()1f x x =--【答案】A【分析】利用构造方程组的方法,解出()f x 的解析式. 【详解】由2()()31f x f x x --=+,可得2()()31f x f x x --=-+ ①又4()2()62f x f x x --=+①,+①②得:()333f x x =+,解得()1f x x =+故选:A【点睛】考查函数解析式的求法,考查学生计算能力,属于基础题. 例题2如图中的图象所表示的函数的解析式为( )A .31(02)2y x x =-≤≤B .331(02)22y x x =--≤≤ C .31(02)2y x x =--≤≤ D .11(02)y x x =--≤≤【答案】B【分析】分段求解:分别把0≤x≤1及1≤x≤2时的解析式求出即可. 【详解】当0≤x≤1时,设f (x )=kx ,由图象过点(1,32),得k=32,所以此时f (x )=32x ; 当1≤x≤2时,设f (x )=mx+n ,由图象过点(1,32),(2,0),得3202m n m n ⎧=+⎪⎨⎪=+⎩,解得3m 23n ⎧=-⎪⎨⎪=⎩ 所以此时f (x )=3-x 32+.函数表达式可转化为:y =32 32-|x -1|(0≤x≤2) 故答案为B【点睛】考查函数解析式的求解问题,本题根据图象可知该函数为分段函数,分两段用待定系数法求得.跟踪训练训练1已知()f x 是一次函数,且(1)35f x x -=-,则()f x 的解析式为( ) A .()32f x x =+ B .()32f x x =-C .()23f x x =+D .()23f x x =-【答案】B【分析】设()f x kx b =+,(0k ≠),利用()135f x x -=-两边恒等求出k 即可得结果. 【详解】设()f x kx b =+,(0k ≠)①()()1135f x k x b x -=-+=-, 即35kx k b x -+=-,所以35k b k =⎧⎨-=-⎩,解得3k =,2b =-,①()32f x x =-,故选B .【点睛】考查函数解析式的求法,属于中档题.求函数的解析式常见题型有以下几种:(1)根据实际应用求函数解析式;(2)换元法求函数解析式,利用换元法一定要注意,换元后参数的范围;(3)待定系数法求函数解析式,这种方法适合求已知函数名称的函数解析式;(4)消元法求函数解析式,这种方法求适合自变量互为倒数或相反数的函数解析式. 训练2设函数()f x 的定义域为R ,满足(2)2()f x f x -=,且当[)2,0x ∈-时,()2(2)f x x x =-+.若对任意[),x m ∈+∞,都有3()4f x ≤,则m 的取值范围是( ) A .2,3⎡⎫+∞⎪⎢⎣⎭B .3,4⎡⎫+∞⎪⎢⎣⎭C .1,2⎡⎫+∞⎪⎢⎣⎭D .3,2⎡⎫+∞⎪⎢⎣⎭【答案】D【分析】根据题设条件可得当)12,2k k x +⎡∈⎣时,()10,2k f x ⎡⎤∈⎢⎥⎣⎦,其中*k N ∈,结合函数在[)0,2上的解析式和函数在[)2,-+∞的图象可求m 的取值范围. 【详解】当[)2,0x ∈-时,()2()212f x x =-++,故()[]2()2120,2f x x =-++∈,因为(2)2()f x f x -=,故当[)0,2x ∈时,[)22,0x -∈-,()()()[]1220,12f x f x x x =-=--∈,同理,当[)2,4x ∈时,()()1120,22f x f x ⎡⎤=-∈⎢⎥⎣⎦, 依次类推,可得当)12,2k k x +⎡∈⎣时,()10,2k f x ⎡⎤∈⎢⎥⎣⎦,其中*k N ∈. 所以当2x ≥时,必有3()4f x ≤. 如图所示,因为当[)0,2x ∈时,()f x 的取值范围为[]0,1, 故若对任意[),x m ∈+∞,都有3()4f x ≤,则0m ≥, 令232402x x x ⎧-+≤⎪⎨⎪≤<⎩,322x ≤<或102x ≤≤,结合函数的图象可得32m ≥, 故选:D.【点睛】思路点睛:此类问题考虑函数的“类周期性”,注意根据已知区间上函数的性质推证函数在其他区间上的性质,必要时应根据性质绘制函数的图象,借助形来寻找临界点.二、分段函数的实际应用题型探究例题1已知21,[1,0)()1,[0,1]x x f x x x +∈-⎧=⎨+∈⎩,则函数()y f x =-的图象是( ) A . B .C .D .【答案】A【分析】先画函数()f x 的图象,再根据函数()f x 的图象与()f x -的图象关于y 轴对称,即可选出正确选项.【详解】先画函数21,[1,0)()1,[0,1]x x f x x x +∈-⎧=⎨+∈⎩的图象,如下图:因为函数()f x 的图象与()f x -的图象关于y 轴对称,只有A 选项的图象符合.故选:A.【点睛】考查分段函数的画法,同时考查函数有关对称性的知识,解题的关键是把原函数的图象画出,那么对称函数的图象随之可得.例题2函数22,01()2,123,2x x f x x x ⎧≤≤⎪=<<⎨⎪≥⎩的值域是( )A .RB .[0,+∞)C .[0,3]D .{x |0≤x ≤2或x =3}【答案】D【分析】分段函数的值域等于每一段函数的值域的并集. 【详解】解:当01x ≤≤时,2()2f x x =,其值域为[0,2], 所以()f x 值域为[0,2]①{3,2}={x |0≤x ≤2或x =3}. 故选:D【点睛】考查求分段函数的值域,分段函数的值域等于每一段函数的值域的并集,属于基础题.跟踪训练训练1设{},()max ,,,()a ab a b b a b ≥⎧=⎨<⎩则函数22()max{,1}=--f x x x x 的单调增区间为( )A .1[1,0],[,)2-+∞B .1(,1],[0,]2-∞-C .1(,],[0,1]2-∞- D .1[,0],[1,)2-+∞ 【答案】D【分析】由221x x x -=-,解出x 的值,作出两个函数的图像,当1≥x 或12x ≤-时,{}222()max ,1f x x x x x x =--=-据此可得此时函数的递增区间,当{}22211,(),112x f x max x x x x -<<=--=-,据此可得此时函数的递增区间,综合即可得到结论. 【详解】由221x x x -=-得2210x x --=,解得1x =或12x =-,当1≥x 或12x ≤-时,{}222()max ,1f x x x x x x =--=-此时函数的递增区间为[1,)+∞, 当{}22211,(),112x f x max x x x x -<<=--=-,此时函数的递增区间为1,02⎡⎤-⎢⎥⎣⎦, 综上所述函数的递增区间为1[,0],[1,)2-+∞. 故选:D【点睛】考查函数单调区间,解题的关键是掌握函数单调性及单调区间的求法,属于中档题. 训练2设定义在R 上的函数()y f x =,对于任一给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p ⎧≤⎪=⎨>⎪⎩,则称函数()p f x 为()f x 的“p 界函数”.关于函数()221f x x x =--的2界函数,结论不成立的是( )A .()()()()22 00f f f f = B .()()()()22 11f f f f = C .()()()()2222f f f f = D .()()()()2233f f f f = 【答案】B【分析】先求得函数()f x 的“2界函数”,然后对四个选项逐一进行排除,由此得到正确选项. 【详解】令2212x x --=,解得1x =-或3x =,根据“p 界函数”的定义,有()222,321,132,1x f x x x x x >⎧⎪=---≤≤⎨⎪<-⎩,所以()()()22012f f f =-=,()()()2012ff f =-=,故A 选项成立;()()()22122f f f =-=,()()()2127f f f =-=,故B 选项不成立;()[]22212f f f ⎡⎤=-=⎣⎦,()()()2212f f f =-=,故C 选项成立; ()()()22231f f f ==-,()()()2321f f f ==-,故D 选项成立.故选:B.【点睛】考查新定义函数的概念及应用,考查分段函数求值,考查分析问题和解决问题的能力.属于中档题.解题的突破口在于理解新定义的函数:新定义的函数关键是函数值大于p ,或者函数值小于或等于p ,也就是先要求得函数值等于p 时对应x 的值,由此写出分段函数“p 界函数”.三、函数三种表示法题型探究例题1某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )A .B .C .D .【答案】D【分析】根据学生的走法情况,先跑步(快速),再步行(慢速),从离校的距离与出发时间的函数图象来看,先陡后平缓,且y 随着x 的增大而减小,由此可作出判断. 【详解】由题意可知,一开始速度较快,后来速度变慢,所以开始曲线比较陡峭, 后来曲线比较平缓,又纵轴表示离校的距离,所以开始时距离最大, 最后距离为0,故符合要求的图象为D 选项中的图象. 故选:D.【点睛】考查实际问题中函数图象的识别,属于基础题. 例题2已知函数()y f x =,用列表法表示如下:则(2)[(2)]f f f -+-=( ) A .4- B .0C .2D .3【答案】D【分析】根据表格中自变量x 和函数值y 的对应关系,代入数据,即可得答案.【详解】由表格可得:(2)1f -=,所以[(2)](1)2f f f -==,所以(2)(2)3f f +-=故选:D跟踪训练训练1已知函数()f x 满足()()1120f f x x x x x⎛⎫+-=≠⎪⎝⎭,则()2f -= A .72-B .92C .72D .92-【答案】C【分析】令1x x=-,代入解析式,通过解方程组即可求得()f x -的解析式,进而求得()2f -的值. 【详解】由()()112?1f f x x x x ⎛⎫+-=⎪⎝⎭, 可得()12? f x xf x x ⎛⎫--=- ⎪⎝⎭(2), 将(1)x ⨯+(2)得:()2222f x x x-=-⇒()21,f x x x -=-()722f ∴-=, 故选C .【点睛】考查了函数解析式的求法,方程组法在解析式求法中的应用,属于中档题. 训练2如图,矩形AOBC 的面积为4,反比例函数(0)ky k x=≠的图像的一支经过矩形对角线的交点P ,则该反比例函数的解析式是( )A .1y x =-B .1y x=C .2y x=- D .2y x=【答案】A【分析】本题首先可设矩形的长为a 、宽为4a,然后结合图像得出点P 的坐标为2,2a a,最后根据点P 在反比例函数(0)ky k x=≠上即可得出结果. 【详解】设矩形的长为a ,则矩形的宽为4a,结合图形可知,点P 的坐标为2,2a a, 因为点P 在反比例函数(0)ky k x=≠上, 所以22a a k=-,解得1k =-,1y x =-,故选:A.【点睛】考查反比例函数解析式的求法,能否根据图像和矩形面积确定点P 坐标是解决本题的关键,考查数形结合思想,考查计算能力,是简单题.综合式测试一、单选题1.已知函数2221,0()log ,0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,若()()()()1234f x f x f x f x ===,且1234x x x x <<<,则下列判断正确的个数为( ) ①122x x +=-; ①341x x =;①212≤-x x ;①431≤-x x . A .1 B .2C .3D .4【答案】C【分析】先画出()f x 的图象如图所示,令()()()()1234f x f x f x f x t ====,由图可知当1t =时,21x x -和43x x -都取得最大值,从而可求得最值,12,x x 关于二次函数221y xx =++的对称轴1x =-对称,可得122x x +=-,由34()()f x f x =可得2324log log x x -=,化简可得341x x =【详解】解:令()()()()1234f x f x f x f x t ====,即函数()f x 的图象与直线y t =有4个不同的交点,()f x 的图象如图所示,由图可知(0,1]t ∈,12,x x 关于二次函数221y x x =++的对称轴1x =-对称,则122x x +=-,所以①正确;当1t =时,21x x -取得最大值,且此时212x x -=,故212≤-x x ,所以①正确; 因为34()()f x f x =,所以2324log log x x -=,即2324log log 0x x +=,234log ()0x x =,所以341x x =,所以①正确;因为当1t =时,43x x -取得最大值,此时2324log log 1x x -==,解得341,22x x ==,所以此时43132122x x -=-=>,所以①错误, 所以正确的有①①①,共3个, 故选:C【点睛】考查函数和方程的应用,解题的关键是正确画出函数图象,利用数形结合的思想求解,属于中档题2.定义在R 上的函数()f x 满足()()22f x f x +=,且当(]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,若任给[]12,0x =-,存在[]22,1x ∈-,使得()()21g x f x =,则实数a 的取值范围为( ). A .11,,88⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B .11,00,48⎡⎫⎛⎤-⎪⎢⎥⎣⎭⎝⎦C .(]0,8D .11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】D【分析】求出()f x 在[2,4]上的值域,利用()f x 的性质得出()f x 在[2-,0]上的值域,再求出()g x 在[2-,1]上的值域,根据题意得出两值域的包含关系,从而解出a 的范围【详解】解:当[2,4]x ∈时,224,23()2,34x x x f x x x x⎧-+⎪=⎨+<≤⎪⎩,可得()f x 在[2,3]上单调递减,在(3,4]上单调递增,()f x ∴在[2,3]上的值域为[3,4],在(3,4]上的值域为11(3,9]2,()f x ∴在[2,4]上的值域为[3,9]2,(2)2()f x f x +=,11()(2)(4)24f x f x f x ∴=+=+, ()f x ∴在[2,0]-上的值域为3[4,9]8,当0a >时,()g x 为增函数,()1g x ax =+在[2-,1]上的值域为[21a -+,1]a +,∴3214918a a ⎧≥-+⎪⎪⎨⎪+⎪⎩,解得18a ;当0a <时,()g x 为减函数,()g x 在[2-,1]上的值域为[1a +,21]a -+,∴3149218a a ⎧+⎪⎪⎨⎪-+⎪⎩,解得14a -;当0a =时,()g x 为常数函数,值域为{1},不符合题意;综上,a 的范围是18a 或14a -. 故选:D .【点睛】考查了分段函数的值域计算,集合的包含关系,对于不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .3.已知函数()22log (1),142,1x x f x x x x ⎧-<=⎨-+-≥⎩,则方程121f x x ⎛⎫+-= ⎪⎝⎭的实根的个数为( )A .5B .6C .7D .8【答案】B【分析】由()1f x =可得13,1,1,2x x x x ===-=,而由121f x x ⎛⎫+-= ⎪⎝⎭,可得121x x +-=-,或1122x x +-=,或121x x +-=,或123x x+-=,然后分别解这四个方程,可得答案 【详解】解:当1x <时,令()1f x =,则2log (1)1x -=,解得1x =-或12x =, 当1≥x 时,令()1f x =,则2421x x -+-=,解得1x =或3x =,因为121f x x ⎛⎫+-= ⎪⎝⎭, 所以121x x +-=-,或1122x x +-=,或121x x +-=,或123x x+-=, 由121x x+-=-,得210x x -+=,此时2(1)40∆=--<,方程无解; 由1122x x +-=,得22520x x -+=,此时2(5)42290∆=--⨯⨯=>,所以方程有两个不相等的实根,分别2x =或12x =;由121x x+-=,得2310x x -+=,此时2(3)41150∆=--⨯⨯=>,所以方程有两个不相等的实根,即为x =由123x x+-=,得2510x x -+=,此时2(5)411210∆=--⨯⨯=>,所以方程有两个不相等的实根,即为52x =, 所以方程121f x x ⎛⎫+-= ⎪⎝⎭的实根的个数为6, 故选:B【点睛】考查函数与方程的应用,解题的关键是由()1f x =可得13,1,1,2x x x x ===-=,从而可得121x x +-=-,或1122x x +-=,或121x x +-=,或123x x+-=,然后解方程可得答案,考查数学转化思想和计算能力,属于中档题4.已知函数()1212,02log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,且()0f m =,则不等式()f x m >的解集为( )A .10,2⎛⎫ ⎪⎝⎭B .()0,1C .11,2⎛⎫- ⎪⎝⎭D .()1,-+∞【答案】C【分析】分0m ≤和0m >解方程()0f m =,求出m 的值,然后分0x ≤和0x >解不等式()f x m >,即可得出结果. 【详解】当0m ≤时,()1202mf m =+>,方程()0f m =无解; 当0m >时,令()12log 0f m m ==,解得1m =,合乎题意.下面解不等式()1f x >.当0x ≤时,令()1212xf x =+>,得出122x >,解得1x >-,此时,10-<≤x ;当0x >时,令()11221log 1log 2f x x =>=,解得12x <,此时,102x <<. 因此,不等式()f x m >的解集为11,2⎛⎫- ⎪⎝⎭.故选:C.【点睛】考查分段函数方程与分段函数不等式的求解,在解题时要注意对自变量的取值进行分类讨论,选择合适的解析式进行计算,考查分类讨论思想的应用与运算求解能力,属于中等题.5.已知2(),()32,()2()()g x f x x g x x x F x f x ⎧=-=-=⎨⎩, ()()()()f x g x f x g x ≥<,则()F x 的最值是( )A .最大值为3,最小值-1 B.最大值为 C .最大值为3,无最小值 D .既无最大值,又无最小值【答案】B【分析】根据函数表达式画出各自图象,()F x 其实表示的是(),()f x g x 较小的值.【详解】如图,在同一坐标系中画出(),()f x g x 图象,又()F x 表示两者较小值,所以很清楚发现()F x 在A 处取得最大值23+222=3+2A A A x x x x y x =-⇒= B.【点睛】取两函数较大值(较小值)构成的新函数问题,有效的手段就是构建图象,数形结合.6.已知函数f (x )=2,02,0x x a x x -⎧⋅≥⎨<⎩(a ①R),若f [f (-1)]=1,则a =( )A .14B .12C .1D .2【答案】A【分析】由题意,函数()f x 的解析式,可得()12f -=,进而求解()(1)f f -的值,列出方程,即可求解. 【详解】由题意,函数()2,02,0x x a x f x x -⎧⋅≥=⎨<⎩,则()(1)122f ---==, 则()2(1)(2)241f f f a a -==⋅==,所以14a =,故选A. 【点睛】考查了分段函数的应用问题,其中解答中根据分段函数的分段条件,合理选择相应的对应法则求解是解答的关键.7.已知f (x )=21102(1)0x x x x ⎧+≤⎪⎨⎪-->⎩,,使f (x )≥–1成立的x 的取值范围是A .[–4,2)B .[–4,2]C .(0,2]D .(–4,2]【答案】B 【解析】①f (x )≥–1,①01112x x ≤⎧⎪⎨+≥-⎪⎩或()2011x x >⎧⎪⎨--≥-⎪⎩,①–4≤x ≤0或0<x ≤2,即–4≤x ≤2.故选B . 8.已知函数()()()()()()()()()2,32,2,,,g x f x g x f x x g x x x F x f x g x f x ⎧≥⎪=-=-=⎨≥⎪⎩则( ) A .()F x 的最大值为3,最小值为1B .()F x的最大值为2C .()F x 的最大值为7-,无最小值D .()F x 的最大值为3,最小值为1-【答案】C【分析】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,解出两个函数的交点,即可求得最大值. 【详解】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值. 由图象可知,当0x <时,()y F x =取得最大值,所以由232||2x x x -=-得2x =2x =结合函数图象可知当2x =()F x 有最大值7- 故选:C .【点睛】考查了函数的图象,以及函数求最值,同时考查了分析问题的能力和作图的能力. 二、填空题9.设函数()f x 对于所有的正实数x ,均有(3)3()f x f x =,且()12(13)f x x x =--≤≤,则使得()(2014)f x f =的最小的正实数x 的值为____.【答案】416【分析】由题可得(2014)173f =,根据13,233()333,123n n nn n n x x x f x f x x +⎧-≤≤⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪-≤<⎪⎩分情况讨论可求解.【详解】对于所有的正实数x ,均有(3)3()f x f x =,()33x f x f ⎛⎫∴=⎪⎝⎭, 22201420142014(2014)333333n n f f f f ⎛⎫⎛⎫⎛⎫∴==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当6n =时,[]620141,33∈, 662014(2014)3121733f ⎛⎫∴=-+= ⎪⎝⎭,13,233()333,123n n n n n n x x x f x f x x +⎧-≤≤⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪-≤<⎪⎩,当13173233n n x x +⎧-=⎪⎨≤≤⎪⎩时,113173233n n n x x ++⎧=-⎨⨯≤≤⎩,当6n =时,x 取得最小正值为556; 当3173123n n x x ⎧-=⎪⎨≤<⎪⎩时,3173323n n nx x ⎧=+⎨≤<⨯⎩,当5n =时,x 取得最小正值为416, 综上,使得()(2014)f x f =的最小的正实数x 的值为416.故答案为:416.【点睛】考查分段函数的应用,考查函数性质等基础知识,解题的关键是由已知得出13,233()333,123n n n n n n x x x f x f x x +⎧-≤≤⎪⎪⎛⎫==⎨ ⎪⎝⎭⎪-≤<⎪⎩.10.已知函数2223,2()log ,2x x x f x a x x ⎧-+≤=⎨+>⎩有最小值,则1f a ⎛⎫⎪⎝⎭的取值范围为__________. 【答案】[2,3) 【分析】函数()f x 有最小值,所以求出1a ≥,则有101a<≤,代入()f x 求出()f x 的取值范围. 【详解】当2x ≤时,2()(1)2f x x =-+的最小值为2.当x 2>时,要使()f x 存在最小值,必有2log 22a +≥,解得1a ≥.101a∴<≤,21112[2,3)fa a ⎛⎫⎛⎫∴=-+∈ ⎪ ⎪⎝⎭⎝⎭. 故答案为:[2,3).【点睛】考查分段函数求函数值的范围,属于中档题. 易错点睛:(1)分段函数是一个函数,只有一个最值; (2)分段函数已知函数值求自变量的取值,要分段讨论.11.已知函数211,0,22()13,,12x x f x x x ⎧⎡⎫+∈⎪⎪⎢⎪⎣⎭=⎨⎡⎤⎪∈⎢⎥⎪⎣⎦⎩,若存在12x x <,使得()()12f x f x =,则()12x f x ⋅的取值范围为_____________.【答案】,162⎪⎢⎣⎭【分析】根据条件作出函数图象求解出1x 的范围,利用()()12f x f x =和换元法将()12x f x ⋅变形为二次函数的形式,从而求解出其取值范围. 【详解】由解析式得()f x 大致图象如下图所示:由图可知:当12x x <时且()()12f x f x =,则令211322x ⎛⎫+=⋅ ⎪⎝⎭,解得:14x =, 111,42x ⎡⎫∴∈⎪⎢⎣⎭,又()()12f x f x =,221221333,124x x x ⎛⎫⎡⎫∴+=∈⎪ ⎪⎢⎣⎭⎝⎭,()2222121332x f x x x ⎛⎫∴⋅=⋅- ⎪⎝⎭,令2233,14x t ⎡⎫=∈⎪⎢⎣⎭,则()()2211113,124164x f x g t t t t t ⎛⎫⎛⎫⎛⎫⎡⎫⋅==-=--∈ ⎪ ⎪⎪ ⎪⎢⎝⎭⎝⎭⎣⎭⎝⎭, ()31,162g t ⎡⎫∴∈⎪⎢⎣⎭,即()2131,162x f x ⎡⋅⎫∈⎪⎢⎣⎭.故答案为:,162⎪⎢⎣⎭【点睛】思路点睛:根据分段函数的函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误. 12.定义在R 上函数()f x 满足()()112f x f x +=,且当[)0,1x ∈时,()121f x x =--.若当x ①[),m +∞时,()116f x ≤,则m 的最小值等于________. 【答案】154. 【分析】转化条件为在区间[)(),1n n n Z +∈上,()()11122122n n f x x n ⎡⎤=--+≤⎣⎦,作出函数的图象,数形结合即可得解. 【详解】 由题意,当[)1,2x ∈时,故()()()11112322f x f x x =-=--, 当[)2,3x ∈时,故()()()11112524f x f x x =-=--⋅⋅⋅, 可得在区间[)(),1n n n Z +∈上,()()11122122n n f x x n ⎡⎤=--+≤⎣⎦, 所以当4n ≥时,()116f x ≤, 作函数()y f x =的图象,如图所示,当7,42x ⎡⎫∈⎪⎢⎣⎭时,由()()11127816f x x =--=得154x =, 由图象可知当154x ≥时,()116f x ≤,所以m 的最小值为154. 故答案为:154. 【点睛】考查了分段函数解析式的求解及图象的应用,考查了运算求解能力与数形结合思想,属于中档题. 三、解答题13.根据下列条件,求函数()f x 的解析式;(1)已知()f x 是一次函数,且满足()()3121217f x f x x +--=+;(2)已知3311f x x x x ⎛⎫+=+ ⎪⎝⎭; (3)已知等式()()()21f x y f x y x y -=--+对一切实数x 、y 都成立,且()01f =;(4)知函数()f x 满足条件()123f x f x x ⎛⎫+= ⎪⎝⎭对任意不为零的实数x 恒成立 【答案】(1)()27f x x =+;(2)3()3(2f x x x x =-≥或2)x ≤-;(3)()21f x x x =++;(4)1()2(0)f x x x x=-≠.【分析】(1)设函数()f x kx b =+,结合等式()()3121217f x f x x +--=+,利用一次项系数和常数项分别相等列出方程组解出k b 、的值,即可得出函数()f x 的解析式;(2)用配凑法根据232321111113x x x x x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=++-=++-⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,然后换元1t x x =+可得出函数()y f t =的解析式,利用双勾函数求出1t x x=+的取值范围,即为函数()y f x =的定义域; (3)由已知令x y =,则有()()()021f f x x x x =--+且()01f =,化简即可求得结果;(4)将1x代入等式()123f x f x x ⎛⎫+= ⎪⎝⎭得出132()f f x x x ⎛⎫+= ⎪⎝⎭,与原式列方程組解出函数()y f x =的解析式. 【详解】(1)设()(0)f x kx b k =+≠,则[][]3(1)2(1)3(1)2(1)5217f x f x k x b k x b kx b k x +--=++--+=++=+所以2,517k b k =⎧⎨+=⎩解得:2,7k b =⎧⎨=⎩所以()27f x x =+;(2)232321111113x x x x x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=++-=++-⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦33311113f x x x x x x x x ⎛⎫⎛⎫⎛⎫+=+=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴,令1t x x=+,由双勾函数的性质可得2t ≤-或2t ≥, 3()3f t t t =-∴,3()3(2f x x x x =-≥∴或2)x ≤-(3)因为()()()21f x y f x y x y -=--+对一切实数x 、y 都成立,且()01f = 令x y =则()()()021f f x x x x =--+,又因为()01f = 所以()()()01=1f f x x x =-+,即()22+1f x x x =+(4)将1x代入等式()123f x f x x ⎛⎫+= ⎪⎝⎭得出132()f f x x x ⎛⎫+= ⎪⎝⎭,联立12()313()2f x f x x f x f x x ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,变形得:14()2613()2f x f x x f x f x x ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,解得1()2(0)f x x x x=-≠ 【点睛】考查求函数解析式的一般方法:配凑法、换元法、待定系数法、方程组法.14.若函数f (x )()()2211,02,0b x b x x b x x ⎧-+->⎪=⎨-+-≤⎪⎩,满足对于任意的12x x ≠,都有()()12120f x f x x x ->-成立,g (x )=23x +.(1)求b 的取值范围;(2)当b =2时,写出f [g (x )],g [f (x )]的表达式.【答案】(1)12b ≤≤;(2)()()23610,2323,2x x f g x x x ⎧+>-⎪⎪⎡⎤=⎨⎣⎦⎪-+≤-⎪⎩;[]265,0()23,0x x g f x x x +>⎧=⎨-+≤⎩. 【分析】(1)先利用已知条件判断函数单调性,再根据分段函数单调性列条件计算即得结果;(2)先讨论()g x 的符号,再代入分段函数()f x 解析式中,即得[]()f g x 的解析式;利用分段函数()f x 的解析式,直接代入()g x 的解析式,即得[]()g f x 的解析式.【详解】解:(1)因为任意的12x x ≠,都有()()12120f x f x x x ->-成立,故设任意的12x x <时,有()()12f x f x <,即分段函数()f x 在R 上单调递增,故当0x >时,()()211f x b x b =-+-单调递增,即210b ->,即12b >; 当0x ≤时,()2()2f x x b x =-+-单调递增,即对称轴202bx -=≥,即2b ≤; 且在临界点0x =处,左边取值不大于右边取值,即01b ≤-,即1b ≥ . 综上,b 的取值范围是12b ≤≤;(2)当b =2时,231,0(),0x x f x x x +>⎧=⎨-≤⎩,又()23g x x =+, 故当()230g x x =+>时,即32x >-时,()()3231610f g x x x ⎡⎤=++=+⎣⎦, 当()230g x x =+≤时,即32x ≤-时,[]()2()23f g x x =-+, 故()()23610,2323,2x x f g x x x ⎧+>-⎪⎪⎡⎤=⎨⎣⎦⎪-+≤-⎪⎩; 当0x >时,()31f x x =+,则[]()(31)2(31)365g f x g x x x =+=++=+, 当0x ≤时,2()f x x =-,则[]22()()23g f x g x x =-=-+,故[]265,0()23,0x x g f x x x +>⎧=⎨-+≤⎩. 【点睛】关键点点睛::要讨论分段函数的自变量所在的取值区间确定对应的关系式,进而代入,以突破难点.15.已知函数()f x 的解析式为()()()()350501281x x f x x x x x ⎧+≤⎪=+<≤⎨⎪-+>⎩,(1)求12f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭; (2)若()2f a =,求a 的值;(3)画出()f x 的图象,并求出函数的值域;【答案】(1)3-;(2) 1a =-或3;(3)答案见解析,值域为(],6-∞;【分析】(1)先求出12f ⎛⎫ ⎪⎝⎭,进而可求出12f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. (2)按0a ≤,01a <≤,1a >三种情况进行讨论,分别由()2f a =列出关于a 的方程,进而可求出a 的值.(3)画出分段函数的图象后,由图象可求出函数的值域.【详解】(1)解:因为1012<<,所以111122f ⎛⎫=> ⎪⎝⎭,则11111283222f f f ⎛⎫⎛⎫⎛⎫==-⨯+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)解:当0a ≤时,()352f a a =+=,解得1a =-;当01a <≤时,()52f a a =+=, 解得3a =-,不符合题意;当1a >时,282a -+=,解得3a =,综上所述,1a =-或3.(3)解:如图所示,当1x =时,函数最大值为6,无最小值,所以值域为(],6-∞.【点睛】考查了分段函数函数值的求解,考查了分段函数图象.。
对函数的再认识优秀教案

对函数的再认识【课时安排】2课时【第一课时】【教学目标】1.知识目标:使学生经历从实际问题抽象出函数模型的过程,了解对应观点下的函数意义,会求简单函数的函数值。
2.能力目标:使学生会根据实际问题求出函数的关系式,建立函数模型。
培养学生类比和转化的思想方法,锻炼学生缜密的逻辑思维能力和观察归纳的能力。
3.情感目标:培养学生养成勇于探索、大胆质疑、严谨论证的良好思维习惯。
在合作学习中,学会交流,相互评价,提高学生的合作意识与能力。
【教学重难点】1.函数意义的理解,会求简单函数的函数值。
2.会根据实际问题求出函数的关系式。
【教学过程】一、创设情景,引入新课(一)出示问题:1.什么是函数?你能举出几个函数的例子吗?例如;正比例函数、一次函数、反比例函数。
2.A、B两地的路程为900km,一辆汽车从A到B地所需时间t(h)与汽车的平均速度v(km/h)之间的关系式是___________________。
3.如图,矩形ABCD的面积为18cm2,其中一边BC长为a cm,矩形ABCD的周长l(cm)与a(cm)的关系式是_____________。
4.某种书的定价为8元,如果购买10本以上,超过10本以上,超过10本的部分打八折,问题:(1)购买该种书6本需付款__________元;(2)购买该种书14本需付款_________元;(3)付款金额y(元)与购买该种书的本数x(本)之间的关系式是___________。
师生活动:抽学生起来回答正比例函数、一次函数和反比例函数的表达式。
教师适时点拨,学生独立完成2、3、4题。
学生带着这三个问题以小组为单位进行讨论,找出它们之间的联系,从而加强对函数定义的理解。
二、设计意图(一)创设研究情景,展现知识的发生过程,激发学生的求知欲。
(二)给学生实践的机会,使学生手、眼和脑并用,加深对新知的印象。
对培养学生的观察能力和归纳概括能力都有益。
(三)探究新知,合作交流。
函数及其图像知识点

《函数及其图像》知识点一、函数的概念、变量〔自变量、因变量〕、常量的概念。
①变量:在某一函数变化过程中,可以取不同数值的量,叫做变量。
②自变量:在某一函数变化过程中,主动变化的量的叫做自变量。
③因变量:在某一函数变化过程中,因为自变量的变化而被动变化的量叫做因变量。
此时,我们也称因变量是自变量的函数④常量:在某一函数变化中,始终保持不变的量,叫做常量。
练习:在函数r cπ2=中,自变量是 ,因变量是 ,常量是 , 叫做的函数。
二、函数的三种表示方法:①解析法:②列表法:三、函数自变量的取值范围:平面直角坐标系。
水平的数轴叫做横轴〔x 轴〕,取向右为正方向;铅直的数轴叫做纵轴〔y 轴〕,取向上为正方向;两条数轴的交点O 叫做坐标原点。
x 轴和y 轴将坐标平面分成四个象限〔如图〕:五、平面内点的坐标:〔横坐标,纵坐标〕如图:过点P 作x 轴的垂线段,垂足在x 轴上表示的数是2,因此点P 的横坐标为 2 过点P 作y 轴的垂线段,垂足在y 轴上表示的数是3,因此点P 的纵坐标为 3 所以点P 的坐标为〔2 , 3〕 六、平面内特殊位置的点的坐标情况:〔连线〕第一象限 第二象限 第三象限 第四象限 x 轴上 y 轴上 〔- ,-〕 〔- ,+〕 〔+ ,+〕 〔+ ,-〕 〔0 ,a 〕 (b , 0) 七、点的表示〔横坐标,纵坐标〕注意: ①不要丢了括号和中间的逗号;②表示的意思:当___x =时,___y =如点A 〔2,1〕 表示:当2x =时,1y =③注意x 轴上点的特征:(___,0)即纵坐标等于0;y 轴上点的特征:(0,___)即:横坐标等于0。
概括:坐标轴上的点的横坐标和纵坐标至少有一个为0。
八、对称点的坐标关系:⑴关于x 轴对称的点:横坐标 ,纵坐标 。
y xO 第四象限第三象限第二象限第一象限⑵关于y 轴对称的点:横坐标 ,纵坐标 。
⑶关于原点对称的点:横坐标 ,纵坐标 。
高中数学第二章函数2.1.1函数2.1.2函数的表示方法学习导航学案新人教B版必修1

函数-2.1.2 函数表示方法自主整理设集合A是一个非空数集,对A内任意数x,按照确定法那么f,都有唯一确定数值y与它对应,那么这种对应关系叫做集合A上一个函数,记作y=f(x),x∈A.其中,x叫做自变量,自变量取值范围A叫做函数定义域;如果自变量取值a,那么由法那么f确定值y称作函数在a处函数值,记作y=f(a)或y|x=a.所有函数值构成集合{y|y=f(x),x∈A}叫做函数值域.函数定义含有三个要素,即定义域A、值域C与对应法那么f.当且仅当两个函数定义域与对应法那么都分别一样时,这两个函数才是同一个函数.(1)在数轴上,区间可以用一条以a,b为端点线段来表示(如下表).用实心点表示端点包括在区间内,用空心点表示端点不包括在区间内.定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b](2)无穷区间概念:关于-∞,+∞作为区间一端或两端区间称为无穷区间,它定义与符号如下表:{x|x≥a}[a,+∞){x|x>a}(a,+∞){x|x≤a}(-∞,a]{x|x<a}(-∞,a)R(-∞,+∞)取遍数轴上所有值设A、B是两个非空集合,如果按某种对应法那么f,对A内任意一个元素x,在B中有一个且仅有一个元素y与x对应,那么称f是集合A 到集合B映射.这时,称y是x在映射f作用下象,记作f(x).于是y=f(x),x称作y原象,映射f也可记为f:A→B,x→f(x).其中A叫做映射f定义域(函数定义域推广),由所有象f(x)构成集合叫做映射f值域,通常记作f(A).(1)列表法:通过列出自变量与对应函数值表来表达函数关系方法;(2)图象法:就是用函数图象来表达函数关系;(3)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达,那么这种表达函数方法叫做解析法(也称公式法).在函数定义域内,对于自变量x不同取值区间,有着不同对应法那么,这样函数通常叫做分段函数.高手笔记1.(1)“y=f(x)〞中“f〞是函数符号,可以用任意字母表示,如“y=g(x)〞;(2)函数符号“y=f(x)〞中f(x)表示与x对应函数值,是一个数,而不是f 乘x.2.对应法那么可以有多种形式给出,可以是解析法,可以是列表法与图象法,不管是哪种形式,都必须是确定,且使集合A中每一个元素在B 中都有唯一元素与之对应.3.函数是建立在两个非空数集间一种对应,假设将其中条件“非空数集〞弱化为“任意两个非空集合〞,按照某种法那么可以建立起更为普通元素之间对应关系,这种对应就叫映射.A到B映射与B到A映射是截然不同.4.区间与数轴是严密联系在一起,在识别与使用区间符号时都不能脱离开数轴.区间端点值取舍是很容易出错地方,一定要准确判断是该用小括号还是中括号,正确书写.在用数轴表示时也要注意实心点与空心点区别.对于某些不能用区间表示集合就仍用集合符号表示.5.对于分段函数问题,一般要分别转化成在定义域内每一个区间上来解决.要明确分段函数是一个函数,不是多个函数,只是这个函数较为特殊,不像一般函数可以用一个解析式表示,而只能分段表示.分段函数画法要领是根据各段上函数解析式,分段画出各段图象.6.假设y=f(u),u=g(x),x∈(a,b),u∈(m,n),那么y=f[g(x)]称为复合函数,u称为中间变量,它取值范围是g(x)值域与(m,n)交集.名师解惑1.如何理解构成函数三要素:定义域、对应关系与值域求值域有几种常用方法剖析:(1)解决一切函数问题必须认真确定该函数定义域,函数定义域包含三种形式:①自然型:指函数解析式有意义自变量x取值范围(如:分式函数分母不为零,偶次根式函数被开方数为非负数,等等);②限制型:指命题条件或人为对自变量x限制,这是函数学习重点,往往也是难点,因为有时这种限制比拟隐蔽,不容易注意,或者即使注意到,在解题时却忘记用到;③实际型:解决函数综合问题与应用问题时,应认真考察自变量x实际意义.(2)求函数值域是比拟困难数学问题,中学数学要求能用初等方法求一些简单函数值域问题.求法主要有以下几种:①配方法(转化为二次函数);②判别式法(转化为二次方程);③不等式法(运用不等式各种性质);④函数法(运用根本函数性质或抓住函数单调性、函数图象等).2.函数有哪几种表示法?各有什么优点与缺乏?剖析:(1)表示函数有三种方法:解析法,列表法,图象法.现实生活中如:商场各种商品与其价格之间函数关系就是用列表法表示;房地产公司出售商品房,总价格与面积之间函数关系就是用解析式来表示;工厂每月产量与月份之间函数关系是用图表来表示.(2)表示函数三种方法优点与缺乏,分别说明如下.①用解析式表示函数优点是简明扼要、标准准确.可以利用函数解析式求自变量x=a时对应函数值,还可利用函数解析式列表、描点、画函数图象,进而研究函数性质,又可利用函数解析式构造特点,分析与发现自变量与函数间依存关系,猜测或推导函数性质(如对称性、增减性等),探求函数应用等.缺乏之处是有些变量与函数关系很难或不能用解析式表示,求x与y对应值需要逐个计算、有时比拟繁杂.②列表法优点是能鲜明地显现出自变量与函数值之间数量关系,于是一些数学用表应运而生.如用立方表、平方根表分别表示函数.商店职员也制作售价与数量关系计价表,方便收款.列表法缺点是只能列出局部自变量与函数对应值,难以反映函数变化全貌.③用图象表示函数优点是形象直观,清晰呈现函数增减变化、点对称、最大(或小)值等性质.图象法缺乏之处是所画出图象是近似、局部,观察或由图象确定函数值往往不够准确.由于以上表示函数三种方法具有互补性,因此在实际研究函数时,通常是三种方法交替使用.3.如何理解映射?为什么说映射是一种特殊对应剖析:(1)理解映射概念,必须注意以下几点:①方向性,“集合A到集合B映射〞与“集合B到集合A映射〞往往不是同一个映射;②非空性,集合A、B必须是非空集合;③唯一性,对于集合A中任何一个元素,集合B中都是唯一确定元素与之对应,这是映射唯一性,也可以说“在集合B中〞,A中任一元素象必在集合B中,也叫映射封闭性.④存在性,就是说对集合A中任何一个元素,集合B中都有元素与它对应,这是映射存在性.(2)映射也是两个集合A与B元素之间存在某种对应关系.说其是一种特殊映射,就是因为它只允许存在“一对一〞与“多对一〞这两种对应,而不允许存在“一对多〞对应.映射中对应法那么f是有方向,一般来说从集合A到集合B映射与从集合B到集合A映射是不同.讲练互动【例题1】以下各组中两个函数表示同一个函数是…( )A.f(x)=x,g(x)=n n x22B.f(n)=2n+1(n∈Z),g(n)=2n-1(n∈Z)C.f(x)=x-2,g(t)=t-2D.f(x)=,g(x)=1+x解析:两个函数一样必须有一样定义域、值域与对应法那么.A中两函数值域不同;B中虽然定义域与值域都一样,但对应法那么不同;C 中尽管表示自变量两个字母不同,但两个函数三个要素是一致,因此它们是同一函数;D中两函数定义域不同.答案:C绿色通道给定两个函数,要判断它们是否是同一函数,主要看两个方面:一看定义域是否一样;二看对应法那么是否一致.只有当两函数定义域一样且对应法那么完全一致时,两函数才可称为同一函数.只要三者中有一者不同即可判断不是同一个函数,比方上面对A判断即属此.变式训练1.判断以下各组中两个函数是否为同一函数,并说明理由.(1)y=x-1,x∈R 与y=x-1,x∈N ; (2)y=42-x 与y=22+•-x x ; (3)y=1+x 1与u=1+v1;(4)y=x 2与y=x 2x ;(5)y=2|x|与y=分析:判断两个函数是否为同一函数,应着眼于两个函数定义域与对应法那么比拟,而求定义域时应让原始解析式有意义,而不能进展任何非等价变换,对应法那么判断需判断它本质是否一样而不是从外表形式上下结论.解:(1)不同,因为它们定义域不同.(2)不同,前者定义域是x≥2或x≤-2,后者定义域是x≥2.(3)一样,定义域均为非零实数,对应法那么都是自变量取倒数后加1.(4)不同,定义域是一样,但对应法那么不同.(5)一样,将y=2|x|利用绝对值定义去掉绝对值结果就是y=【例题2】设f,g 都是由A 到A 映射,其对应法那么(从上到下)如下表:表1 映射f 对应法那么原象1 2 3 象 2 3 1 表2 映射g 对应法那么原象123象213试求f[g(1)],g[f(2)],f{g[f(3)]}.分析:此题是将映射概念与复合函数求值相结合一道典型例题,解答此题首先要弄清f[g(x)]含义与映射中原象与象关系,然后再按照有关定义解题.解:∵g(1)=2,f(2)=3,∴f[g(1)]=f(2)=3.又∵g(3)=3,∴g[f(2)]=g(3)=3.∵f(3)=1,g(1)=2,∴f{g[f(3)]}=f[g(1)]=f(2)=3.绿色通道读懂对应法那么f与g含义是解题关键,要弄清在法那么f与g作用下,集合A中元素在集合A中象是什么,要掌握象与原象定义.变式训练2.以下各图中表示对应,其中能构成映射个数是…( )图2-1-1A.4B.3C.2解析:所谓映射,是指多对一或一对一对应且A中每一个元素都必须参与对应.只有图(3)所表示对应符合映射定义,即A中每一个元素在对应法那么下,B中都有唯一元素与之对应.图(1)不是映射,因A中元素c没有参与对应,即违背A中任一元素都必须参与对应原那么.图(2)、图(4)不是映射,这两个图中集合A中元素在B中有多个元素与之对应,不满足A中任一元素在B中有且仅有唯一元素与之对应原那么.综上,可知能构成映射个数为1.答案:D3.(2007山东济宁二模,理10)A={a,b,c},B={-1,0,1},函数f:A→B满足f(a)+f(b)+f(c)=0,那么这样函数f(x)有( )解析:对f(a),f(b),f(c)值分类讨论.当f(a)=-1时,f(b)=0,f(c)=1或f(b)=1,f(c)=0,即此时满足条件函数有2个;当f(a)=0时,f(b)=-1,f(c)=1或f(b)=1,f(c)=-1或f(b)=0,f(c)=0,即此时满足条件函数有3个;当f(a)=1时,f(b)=0,f(c)=-1或f(b)=-1,f(c)=0,即此时满足条件函数有2个.综上所得,满足条件函数共有2+3+2=7(个).应选C.答案:C【例题3】求以下函数值域:(1)y=x2-2x-1,x∈[0,3];(2)y=3x;-2+(3)y=;(4)y=|x-1|+|x-2|.分析:求二次函数值域一般要数形结合,先配方找出对称轴,再考察给定区间与对称轴关系,利用二次函数在对称轴两侧单调性,求出给定区间上最大值与最小值,即可得到函数值域.除数形结合之外,求函数值域方法还有逐步求解法、判别式法、别离常数法与利用有界性等.绝对值函数通常先化为分段函数.解:(1)将原式变形,得y=(x-1)2-2,此函数对称轴为x=1,由于x∈[0,3],∴当x=1时,y 有最小值-2.根据函数对称性知,x=3比x=0时值要大,∴当x=3时,y 有最大值2.∴这个函数值域为[-2,2].(2)易知x≥2,∴2-x ≥0. ∴y=2-x +3≥3.∴这个函数值域为[3,+∞).(逐步求解法)(3)先别离常数,y=1311311222222+-=+-+=+-x x x x x .① 解法一(逐步求解法):∵x 2+1≥1,∴0<≤1.∴1>1≥-2.∴y∈[-2,1).解法二(判别式法):两边同乘x 2+1并移项,得(y-1)x 2+y+2=0. 又由①可知y<1,∴Δ=-4(y-1)(y+2)≥0.∴y∈[-2,1).解法三(利用有界性):∵y≠1,易得x 2=.又∵x 2≥0,∴≥0.∴y∈[-2,1).(4)原函数可化为y=由图2-1-2可知y∈[1,+∞).图2-1-2绿色通道求值域一定要注意定义域限制,一定要在定义域范围内求函数值域.当然,求值域一定要根据函数对应关系来确定.如果我们抓住了这些解决问题关键,求这类问题就能得心应手.变式训练4.函数y=-x2+4x+5(1≤x≤4)值域是…( )A.[5,8]B.[1,8]C.[5,9]D.[8,9]解析:y=-x2+4x+5=-(x-2)2+9(x∈[1,4]).∴当x=2时,y最大=9;当x=4时,y最小=5.∴函数值域为{y|5≤x≤9}.答案:C【例题4】图2-1-3是一个电子元件在处理数据时流程图:图2-1-3(1)试确定y与x函数关系式;(2)求f(-3)、f(1)值;(3)假设f(x)=16,求x值.分析:此题是一个分段函数问题,当输入值x≥1时,先将输入值x加2再平方得输出值y;当输入值x<1时,那么先将输入值x平方再加2得输出值y.解:(1)y=(2)f(-3)=(-3)2+2=11;f(1)=(1+2)2=9.(3)假设x≥1,那么(x+2)2=16,解得x=2或x=-6(舍去).假设x<1,那么x2+2=16,解得x=14(舍去)或x=14-.综上,可得x=2或x=14-.绿色通道通过实例,了解简单分段函数并能简单应用是新课程标准根本要求.对于分段函数来说,给定自变量求函数值时,应根据自变量所在范围利用相应解析式直接求值;假设给定函数值求自变量,应根据函数每一段解析式分别求解,但应注意要检验该值是否在相应自变量取值范围内.变式训练5.(2007山东蓬莱一模,理13)设函数f(n)=k(k∈N*),k是π小数点后第n位数字,π=3.141 592 653 5…,那么等于____________.解析:由题意得f(10)=5,f(5)=9,f(9)=3,f(3)=1,f(1)=1,…,那么有=1.答案:1【例题5】函数f(x+1)=x2-1,x∈[-1,3],求f(x)表达式.分析:函数是一类特殊对应,函数f(x+1)=x2-1,即知道了x+1象是x2-1,求出x象,即是f(x)表达式.求解f(x)表达式此题可用“配凑法〞或“换元法〞.解法一(配凑法):∵f(x+1)=x2-1=(x+1)2-2(x+1),∴f(x)=x2-2x.又x∈[-1,3]时,(x+1)∈[0,4],∴f(x)=x2-2x,x∈[0,4].解法二(换元法):令x+1=t,那么x=t-1,且由x∈[-1,3]知t∈[0,4],∴由f(x+1)=x2-1,得f(t)=(t-1)2-1=t2-2t,t∈[0,4].∴f(x)=(x-1)2-1=x2-2x,x∈[0,4].绿色通道函数f[g(x)]表达式,求f(x)表达式,解决此类问题一般有两种思想方法,一种是用配凑方法,一种是用换元方法.所谓“配凑法〞即把f[g(x)]配凑成关于g(x)表达式,而后将g(x)全用x取代,化简得要求f(x)表达式;所谓“换元法〞即令f[g(x)]中g(x)=t,由此解出x,即用t表达式表示出x,后代入f[g(x)],化简成最简式.需要注意是,无论是用“配凑法〞还是用“换元法〞,在求出f(x)表达式后,都需要指出其定义域,而f(x)定义域即x取值范围应与条件f [g(x)]中g(x)范围一致,所以说求f(x)定义域就是求函数g(x)值域.变式训练6.函数f(x)对于任意实数x满足条件f(x+2)=,假设f(5)=-5,那么f [f(1)]=___________.解析:∵f(x+2)=,∴f(x)=.∴f(1)===f(5)=-5.∴f(1)=-5.∴f[f(1)]=f(-5).又f(-5)=)23(11)3(1)25(1+---=--=+--f f f =f(-1)=51)1(1)21(1--=-=+--f f =51, ∴f[f(1)]=51. 答案:51 7.f(x)=x +11(x∈R 且x≠-1),g(x)=x 2+2(x∈R ), (1)求f(2)、g(2)值.(2)求f [g(2)]值.(3)求f [g(x)]解析式.分析:在解此题时,要理解对应法那么“f〞与“g〞含义,在求f [g(x)]时,一般遵循先里后外原那么.解:(1)f(2)=,g(2)=22+2=6.(2)f [g(2)]=f(6)=.(3)f [g(x)]=f(x 2+2)=.教材链接[思考与讨论]如何检验一个图形是否是一个函数图象写出你检验法那么,图2-1-4所示各图形都是函数图象吗哪些是,哪些不是,为什么图2-1-42-1-4所示各图形中因为(1)、(3)、(4)符合“一对一〞或“多对一〞原那么,所以(1)、(3)、(4)是函数图象,而(2)中有一个x 值对应两个y 值,不满足函数“多对一〞或“一对一〞条件,所以(2)不是函数图象.。
解析法列表法图象法-资料

设一封(0x20)0的信函应付的邮资为 (单
位:y分),试写出以 x为自变量的函数 y的解析式,
并画出这个函数的图象.
解:这个函数的定义域是 0<x≤200 ,函数解析
式为
80, x ∈ (0,20]
81160 , x ∈ (20,40]
y = 240, x ∈ (40,60]
320, x ∈ (60, 80]
例 以下给出的对应是不是从集合A到B的映射? (1)集合A={P︱P是数轴上的点},集合B=R,对应 关系f:数轴上的点与它所代表的实数对应; (2)集合A={P︱P是平面直角坐标系中的点},集合
B={(x,y)︱xR,yR},对应关系f:平面直角坐标
系中的点与它的坐标对应;
(3)集合A={x︱x是三角形},集合B={x︱x是圆}, 对应关系f:每一个三角形都对应它的内切圆; (4)集合A={x︱x是新华中学班级},集合B={x︱x是 新华中学的学生},对应关系f:每一班级都对应班里 的学生.
王伟
98
87
张城
90
76
赵磊
68
65
班级平均分 88.2 78.3
第三次 第三次
91
92
88 75
73 72
85.4 80.3
第五次 第六次
88 95 86 80 75 82 75.7 82.6
对这三位同学在高一学年度的数学学习情况做 一个分析.
解:从表中可以知道每位同学在每次测试中的成
绩,但是不容易看出每位同学的成绩的变化情况.
a2(x – 4 )2 + 6 (0≤ x ≤ 10) 由x = -10,y = 0,得a1 = - 1/6; 由x = 10,y = 0,得a2 = -1/6. 于是,所求函数解析式是
解析法,列表法,图象法

例2、已知抛物线y=x2-4x-12 (1)求抛物线与x轴交点A,B的坐标; (2)画出图象,若抛物线顶点为P,求 三角形PAB的面积; (3)若点Q在抛物线上,且S△QAB =2S△PAB,则Q点有几个?依次求出Q点 的坐标。
结束寄语
下课了!
• 观察,思考,感悟是能否进入数 学大门,领略数学奥妙的关键.
/ 卫斯理小说网
干系/他の本意是出手相救/假设结局别如意/他还别如当初别出那各手/虽然他们之间从没什么谈论过名分问题/可是霍沫是各兰心蕙质の女子/怎么可能想别到那壹层关系?所以当王爷提出/名分/问题の时候/由于她早早就深思熟虑过/当即没什么 丝毫迟疑地回复道:/回爷/那壹辈子/霍沫真是啥啊念想也没什么/若别是十三爷/霍沫现在也就是孤魂野鬼壹各/若别是您/霍沫现在也就是贫尼壹名/两位爷の救命、知遇之恩/霍沫就是壹辈子给您们当牛做马也报答别完/怎么可能还会奢望啥啊/ 更别要说名分咯//此时面对目光坚定、心思纯静の霍沫/听着她说咯别知好些遍の决定/他仍是按照既定の方针/将他那番深思熟虑咯许久の顾虑/特别是名分问题/向霍沫和盘托出:/唉/您别在乎名分/爷却是觉得亏欠咯您/您可是要想好咯/将来若 是进咯爷の府里/没什么名分の诸人别可能成为主子/虽然在吃穿用度方面爷断别会亏待咯您/但是比起有名分の主子/您自是要低人壹头/哪各主子都能够支使您、差谴您/当然咯/爷肯定会和她们讲清楚/您别是谁の奴才/别能随意差谴/而且爷也会 尽量护着您/但是爷别可能整天都呆在府里/总有顾别到の时候/难免会发生壹些别愉快の事情
函数的表示法

类比二次函数y= 类比二次函数 =x2 及二次函数y=( - 及二次函数 =(x-2 )2+1你 =( 你 有何感想? 有何感想?
问题探究
2x+3, x<- <-1, <- x2, -1≤x<1, < 4. 已知函数 (x)= 已知函数f x-1, - x≥1 .
(1)求f{f[f(-2)]} ;(复合函数) 求 - (复合函数) (2) 当f (x)=-7时,求x ; - 时求
欲改造营口开发区世纪广场中 心的圆形喷水池, 心的圆形喷水池,已知原喷水池直径为 20m, 20m,喷水池的周边靠近水面的位置安装 一圈喷水头,喷出的水柱在离池中心4m 一圈喷水头,喷出的水柱在离池中心4m 处达到最高,高度为6m 6m, 处达到最高,高度为6m,现设想在喷水 池的中心设计一个装饰物, 池的中心设计一个装饰物,使各方面喷 来的水柱在此处汇合, 来的水柱在此处汇合,这个装饰物的高 度应当如何设计? 度应当如何设计?
函数的表示法
函数表示法有几种?
函数表示法 解析法 图像法 列表法
一、函数的三种表示方法: 函数的三种表示方法:
定义:是把两个变量的函数关系,用一个等式来表示, 定义:是把两个变量的函数关系,用一个等式来表示, 1、解析法 简称解析式。 简称解析式。 优点:函数关系清楚, 优点:函数关系清楚,容易从自变量的值求出其对应 的函数值,便于用解析式来研究函数的性质。 的函数值,便于用解析式来研究函数的性质。 2、列表法 定义:是列出表格来表示两个变量的函数关系。 定义:是列出表格来表示两个变量的函数关系。 优点: 优点:不必通过计算就知道当自变量取某些值时函 数的对应值。 数的对应值。 3、图象法 定义:是用函数图象来表示两个变量的函数关系。 定义:是用函数图象来表示两个变量的函数关系。 优点:能直观形象地表示出函数的变化情况。 优点:能直观形象地表示出函数的变化情况。
函数有哪几种表示法?你能谈谈它们的优点和不足吗?

函数有哪几种表示法?你能谈谈它们的优点和不足吗?
答:表示函数有三种方法:解析法,列表法,图象法.结合其意义、优点与不足,分别说明如下.
(1)利用解析式(如学过的代数式)表示函数的方法叫做解析法.用解析式表示函数的优点是简明扼要、规范准确.已学利用函数的解析式,求自变量x=a时对应的函数值,还可利用函数的解析式,列表、描点、画函数的图象,进而研究函数的性质,又可利用函数解析式的结构特点,分析和发现自变量与函数间的依存关系,猜想或推导函数的性质(如对称性、增减性等),探求函数的应用等.不足之处是有些变量与函数关系很难或不能用解析式表示,求x与y的对应值需要逐个计算、有时比较繁杂.
(2)通过列表给出y与x的对应数值、表示y是x的函数的方法叫做列表法.列表法的优点是能鲜明地显现出自变量与函数值之间的数量关系,于是一些数学用表应运而生.
(3)利用图象表示y是x的函数的方法叫做图象法.用图象表示函数的优点是形象直观,清晰呈现函数的增减变化、点的对称、最大(或小)值等性质.图象法的不足之处是所画出的图象是近似的、局部的,观察或由图象确定的函数值往往不够准确.
由于函数关系的三种表示方法各具特色,优点突出,但大都存在着缺点,不尽人意,所以在应用中本着物尽其用、扬长避短、优势互补的精神,通常表示函数关系是把这三种方法结合起来运用,先确定函数的解析式,即用解析法表示函数;再根据函数解析式,计算自变量与函数的各组对应值,列表;最后是画出函数的图象.。