第三节 溶 胶
合集下载
第八章 溶胶

3cV r 4n
1/ 3
超显微镜是根据丁铎尔效应而设计的可看到胶体粒子 的存在及运动的显微镜. 与普通显微镜的差别是强光源照射, 在与入射光垂直的方向上及黑暗视野条件下观察.
00-7-28 14
第四节
溶胶的动力学性质
用分子运动论的观点, 研究胶体粒子的无规则运动以及由 此而产生的扩散, 渗透等现象, 研究胶粒在重力场作用下, 粒子 浓度随高度的变化规律. 一、布朗(Brown)运动: 溶胶中的分散相粒子的不停息地作无 规则的运动,这种现象是植物学家(Brown)于1827年首先从水 中悬浮花粉的运动中观察到的. 用超显微镜可以观察布朗运动.
四、超显微镜测定胶体粒子的大小
在超显微镜下看到的是粒子的散射光的影像, 其大小比胶 体粒子本身的投影大数倍之多. 粒子的平均大小可以估算. 设用超显微镜测出体积为V的溶胶中粒子数为n ,而已 知分散相的浓度为c ,则在所测体积V中,胶粒的总质量为 cV ,每个胶粒的质量为cV/n ;假设粒子是半径为r 的球形, 粒子密度为 ,则由 cV/n = (4/3) r3 即可求得胶粒的平均半径:
00-7-28 8
丁铎尔效应
由于溶胶的高度分散性和多相不均匀性, 当一束波长大 于溶胶分散相粒子尺寸的入射光照射到溶胶系统, 可发生散 射现象-丁铎尔现象.
透 镜 光 源
溶胶
• 丁铎尔效应
00-7-28 9
第三节 溶胶的光学性质
一、光的吸收、散射和反射 • 当入射光的频率与分子的固有频率相同时, 发生光的吸收. • 当光束与体系不发生任何相互作用时, 则可透过. • 当入射光的波长小于分散粒子的尺寸时, 则发生光的反射. • 若入射光的波长大于分散粒子的尺寸时, 则发生光的散射. 可见光波长在400~700nm范围内, 大于一般胶体粒子的尺寸 (1~100)nm, 可发生光的散射. 光的振动频率高达1015Hz, 光的照射相当于外加电磁场作用于 胶体粒子, 使围绕分子或原子运动的电子被迫产生振动, 而质量达 大于电子的原子核是无法跟上如此高频率的振动的, 这样被光照射 的微小晶体上的每个分子, 便以一个次级光源的形式, 向四面八方 辐射出与入射光有相同频率的次级光波. 丁铎尔现象的实质是光 的散射作用. 丁铎尔效应又称为乳光效应, 散射光的强度可由瑞利 00-7-28 10 公式计算.
第二章 胶体溶液(2011.9)

丁达尔现象(Tyndall)——一束波长大于溶胶分散相粒子 尺寸的入射光照射到溶胶系统,可发生散射现象
光源 透镜
溶胶 丁达尔效应
丁达尔现象
丁达尔现象的产生与胶粒大小和入射光波长 有关。
产生原因:胶粒直径小于可见光波长 (400nm~700nm),当可见光照射在胶粒上 时产生的散射作用。
丁铎尔现象
乳状液的类型主要取决于乳化剂 一般来说,亲水性较强的乳化剂易形成O/W型乳状液
亲油性较强的乳化剂易形成W/O型乳状液
水
油
油
水
O/W型乳状液
W/O型乳状液
乳化作用在医学上的意义
乳状液和乳化作用在医学上有重要的意 义。
油脂在体内的消化吸收过程中,依赖于 胆汁中胆汁酸盐的乳化作用。医药学中乳状 液称为乳剂。药用油类常需乳化后才能作为 内服药,如鱼肝油乳剂。此外,消毒和杀菌 用的药剂也常制成乳剂,如煤酚皂溶液。
++ +
++
+++
++ +
+
++
–
+++
电泳
(2)电渗-在外电场作用下,限制胶粒不能移动, 而液体介质发生定向移动的现象。
+– +– +– +– +– +– +– +– +– +– +– +– +– +– +–
–+ –+ –+ –+ –+ –+ –+ –+ –+ –+ –+ –+ –+ –+ –+
第八章完整溶胶ppt课件

(3) 将浓度2 g dm 3转换为体积摩尔浓度,
nW
W
c
V VM V 4πr3L
32
0.018
14π1.3 (10 9)31.3 9 130 6.02 13 203 3
mol
m-3
=cRT=0.018708.314298.16=46.34 Pa
三. 重力沉降与沉降平衡
溶胶粒子在外力场定向移动称沉降
FeO+ +H2O
结构式:[( Fe (OH)3 )mn FeO+ (n-x) Cl– ] xCl–
液态空气 钠
苯
苯
接受管
二.凝聚法
1. 物理凝聚法 2. 化学凝聚法
凡能有沉淀析出的化学反应都可能用来制备相应溶胶
如水解反应制备Fe (OH)3溶胶 FeCl3 +3H2O Fe (OH)3 + 3HCl
二.凝聚法
1. 物理凝聚法 2. 化学凝聚法 3. 改变溶剂法
使溶解度骤变,如 松香在乙醇中:溶 水中:不溶
电磁场 作用
二次光源
散射是溶胶特有的现象
光线
二.光散射定律 Reyleigh公式
I2434V2nn12122nn22222I0
I 散射光强度 粒子浓度(粒子数/体积)
I0 入射光强度 V 单个粒子体积
波长
n1,n2 粒子,介质折光率
二.光散射定律 Reyleigh公式
I2434V2nn12122nn22222I0
四. 光学方法测定粒子大小
1. 超显微镜法 普通显微镜:明视野,分辩率10–7m,无法计数 超显微镜:
四. 光学方法测定粒子大小
1. 超显微镜法 普通显微镜:明视野,分辩率10–7m,无法计数 超显微镜:
3-2 溶胶-凝胶法 PPT

胶体溶胶
干凝胶
干燥
纯化,浓缩
洗涤过滤
水凝胶
凝 聚
陈化
成型
颗粒
煅烧
催化剂
5
二.金属盐溶液的选择
1.阳离子选取:催化剂中所用的金属离子。 2.阴离子的选取:阴离子的选择涉及多方面的因素。 例如:溶解度、杂质含量、易获性、价格等可能存在的问题 等,应综合考虑。 阴离子应该比较容易经分解、挥发或洗涤除去。
溶胶凝胶法是指无机物或金属醇盐经过溶 液、溶胶、凝胶而固化,再经热处理而形 成氧化物或其它化合物固体的方法。
2
不同溶胶-凝胶过程的特征
化学特征
凝胶
前驱物
应用
胶体型 Sol-Gel 过程
无机聚 合物型 Sol-Gel 过程
络合物 型SolGel过程
调整pH值/加入电 解质/ 蒸发溶剂使 粒子形成凝胶网络
§3-2 溶胶-凝胶法
一.sol-gel法制备过程 二.金属盐溶液的选择 三.沉淀过程 四.胶凝过程 五.陈化 六.洗涤过滤 七.干燥 八.煅烧
1
作为载体,必须有大表面积和多孔的性质, 作为非负载的单一组分催化剂,也通常是制 成大表面积和高孔隙率的,对这类物质,一 般采用sol- gel法(溶胶-凝胶法) 。
(3)影响成核、长大速率的因素 A. 过饱和度↑ ,VN↑ B. 盐类极性↑, Vg ↑ ,常生成晶形沉淀
(4)沉淀的溶解度对晶粒大小的影响
沉淀的溶解度越大越易形成粗晶型
12
四.胶凝过程
胶凝过程对催化剂孔结构、比表面会产生很大影响
例如:PH=4时,硅胶胶粒最小,比表面最大 Sg=730m2/g,孔径=3.3nm,孔容最小为Vg=0.62ml/g
ε1
医用化学第1章溶液和溶胶2

注意:
1. 质量摩尔浓度反映了溶质和溶剂粒子相对数目的大小, 与依数性有密切关系;
2. 不受温度的影响,在物理化学中常用;
第二节
混合物的常用组成标度
一、B 的质量分数
二、B 的体积分数
三、B 的分子浓度
四、B 的质量浓度
五、B 的浓度 六、B的摩尔分数 七、溶质B的质量摩尔浓度
一、B的质量分数(mass fraction)
1. 定义:物质B的质量与混合物总质量之比,符号为ωB。
2. 表达式:
mB B m
3. 单位:1(one)
MB 为 B 的摩尔质量。
例 2: 正常人血浆中每100ml含Na+ 326mg、HCO3164.7mg、Ca2+10mg,它们的浓度(单位mmol· L-1)各为 多少?解: ຫໍສະໝຸດ B=c(Na+) =
nB
V
326 23.0
=
×
mB
MB V
1000 100 1000 = 142 ( mmol· L-1)
物质B的质量
混合物的质量
例 100 g NaCl溶液中含NaCl 10 g,可表示为 ω NaCl = 0.1= 10%
二、B的体积分数 (volume fraction)
VB B V
(C2H5OH)=75%
物质B在某温度和压力 下的体积
混合前各物质在该温度 和压力下的体积和
表示该溶液是乙醇75 ml 加水25 ml 配制而成。
关系:1 mol· L-1 =1×103 mmol· L-1 =1×106 μmol· L-1
4. 在使用物质的量浓度时需指明基本单元。
世界卫生组织建议:医学上表示体液组成 标度时,凡是体液中相对分子质量已知的物质, 均应使用物质的量浓度;对于相对分子质量未 知的物质,可以暂时使用质量浓度。 B 的质量浓度与 B 的浓度之间的关系为: ρB = cBMB
胶体

四. 纳米粒子和纳米技术
纳米粒子:尺度为1~100 nm之间的粒子 1. 纳米粒子的结构和特性 (1) 小尺寸效应 (2) 表面效应 (3) 量子尺寸效应 (4) 宏观量子隧道效应 2.纳米粒子的制备方法 基本方法与制备憎液溶胶雷同 纳米组装材料的制备技术 (1)自组织技术 (2) 模板合成法 3.纳米技术在药学中的应用
(1)Browm运动与Einstein方程
Browm运动:溶胶粒子在介质中无规则的运动 原因:粒子受各个方向介质分子的撞击 撞击的动量不能完全抵消而移动 分子热运动的宏观表现。 Einstein公式:Brown运动平均位移的计算 若在时间 t 内观察布朗运动位移 x ,其关系:
x
RT t L 3r
第九章 胶体分散系统
胶
体
胶体是多相系统,一种或多种物质分散在另一 种分子中所形成的体系称为分散体系。被分散的物 质称作分散相,另一种物质称作分散介质。 胶体是一种高度分散的分散系统。胶体化学与 化学其他分支的不同之处是,后者研究对象均属小 分子,胶体化学除了分子之外 ,更注意胶体大小的 粒子 。 在分散系统中,分散相粒子(质点)半径为10-9 ~10-7m的称胶体,通常所说的胶体多指粒子分散在液 体介质中 ,又称溶胶 。
胶
体
由于胶体的高度分散,致使它有很大的相 界面(例如直径为10nm的金溶胶,当其粒子的 总体积为1立方厘米时,其表面积可达600平方 米),从而有很高的界面能。 胶体的许多性质都与界面能有密切关系, 因此对界面性质的研究构成胶体化学的重要内 容之一。 所以,研究表(界)面性质的表面化学是胶 体化学中极其重要和不可分割的一部分,二者常 被联系在一起而命名为胶体和表面化学。
不能透过滤纸,扩散慢,超显微镜下可见。热力学不稳定 体系),但动力学稳定体系----布朗运动。
基础化学第三章
高度分散的多相性和热力学不稳定性既是胶体系统的主要特征,又 是产生其它现象的依据。
高等教育出版社 高等教育电子音像出版社
首页
前页 后页
第三章 溶液与胶体
基础化学
二、表面现象 表面现象:在任何两相界面上产生的物理化学现象总称为表面现象。
界面:在多相系统中,任意两相间的接触面。 表面:若其中一相为气体,这种界面通常称为表面。
高等教育出版社 高等教育电子音像出版社
首页
前页 后页
第三章 溶液与胶体
基础化学
沸点升高值与溶液中溶质的质量摩尔浓度的关系为
式中Kb为沸点升高常数,它只与溶剂的本性有关。bB为溶质的质量摩 尔浓度。 从式(3-8)可以看出,溶液的沸点升高只与溶质的质量摩尔浓度有关, 而与溶质的本性无关。 常见溶剂的沸点Tb及Kb和凝固点Tf及Kf
高等教育出版社 高等教育电子音像出版社
首页
前页 后页
第三章 溶液与胶体
基础化学
式中,k为比例常数,说明蒸气压下降只与一定量溶剂中所含溶质 的微粒数有关,而与溶质的本性无关。 应当指出:若溶质不挥发,pA即为溶液的蒸气压;若溶质挥发,pA 则为溶剂A在气相中的分压。 溶液的蒸气压下降原理具有实际意义。如CaCl2、P2O5以及浓H2SO4 等可用作干燥剂的原因就是由于这些物质表面吸收水蒸气后形成了溶 液,其蒸气压比空气中水蒸气压要低。因此,将陆续吸收水蒸气,直 至由于溶液变稀,蒸气压回升与空气的水蒸气相等,从而建立起液-气 平衡为止。
溶液浓度的表示方法
高等教育出版社 高等教育电子音像出版社
首页
前页 后页
第三章 溶液与胶体
基础化学
三、摩尔分数 摩尔分数:物质B的物质的量nB除以混合物的物质的量 Σni,用符 i 号xB表示,即
第五章 胶体
(2)同价反离子的聚沉能力虽相差不大, 但也有所不同。 如:一价正离子(对负溶胶)聚沉能力: H+﹥ Cs+﹥ Rb+﹥ NH4+﹥ K+﹥ Na+﹥ Li+
一价负离子(对正溶胶)聚沉能力:
F- ﹥Cl- ﹥Br- ﹥I -﹥CNS-
(3)一些有机物离子具有非常强的聚沉能 力。特别是一些表面活性剂(脂肪酸盐)和聚酰 胺类化合物的离子,能有效地破坏溶胶使之聚 沉,这可能是有机物离子能被胶核强烈吸附的 缘故。 2.溶胶的相互聚沉:带相反电荷的溶胶有 相互聚沉能力。例如,用明矾净水*。
2.表面自由能(surface free energy) 任何两相的界面分子与其相内分子所处状况
不同,它们的能量也不同(图5-1)。 等温等压下的表面能称为表面自由能。 系统表面自由能和表面积的关系为
气相
液相
图5-1 液体内部及表层分子 受力情况示意图
dG表=dS (13.1) S ---系统表面积, ---比表面自由能,简称 比表面能(specific surface energy) 若dG表<0,则dS<0, 即:表面积缩小过程是自发过程。 故:液体呈球形是自发过程。 此结论对固体物质(dS<0)同样适用*。 高度分散的溶胶比表面大,所以表面能也大, 它们有自动聚积成大的颗粒而减小表面积的趋势, 称为聚结不稳定。 是热力学不稳定体系。
沸腾 FeCl 3 +3H 2 O F e(O H ) 3 +3H C l
部分Fe(OH)3与HCl作用:
Fe (O H ) 3 + H C l
Fe O C l+ 3 H 2 O
FeOCl
FeO +Cl
+
一价负离子(对正溶胶)聚沉能力:
F- ﹥Cl- ﹥Br- ﹥I -﹥CNS-
(3)一些有机物离子具有非常强的聚沉能 力。特别是一些表面活性剂(脂肪酸盐)和聚酰 胺类化合物的离子,能有效地破坏溶胶使之聚 沉,这可能是有机物离子能被胶核强烈吸附的 缘故。 2.溶胶的相互聚沉:带相反电荷的溶胶有 相互聚沉能力。例如,用明矾净水*。
2.表面自由能(surface free energy) 任何两相的界面分子与其相内分子所处状况
不同,它们的能量也不同(图5-1)。 等温等压下的表面能称为表面自由能。 系统表面自由能和表面积的关系为
气相
液相
图5-1 液体内部及表层分子 受力情况示意图
dG表=dS (13.1) S ---系统表面积, ---比表面自由能,简称 比表面能(specific surface energy) 若dG表<0,则dS<0, 即:表面积缩小过程是自发过程。 故:液体呈球形是自发过程。 此结论对固体物质(dS<0)同样适用*。 高度分散的溶胶比表面大,所以表面能也大, 它们有自动聚积成大的颗粒而减小表面积的趋势, 称为聚结不稳定。 是热力学不稳定体系。
沸腾 FeCl 3 +3H 2 O F e(O H ) 3 +3H C l
部分Fe(OH)3与HCl作用:
Fe (O H ) 3 + H C l
Fe O C l+ 3 H 2 O
FeOCl
FeO +Cl
+
第5章 胶体
被分散的物质称为分散相(dispersed phase)或分 散质,而容纳分散相的连续介质称为分散介质 (dispersed medium)或分散剂。
按照分散相粒子的大小,可以把分散系分为真溶 液、胶体分散系和粗分散系。表5-2
分散相 粒子 大小
分散系 真溶液
分散相的 粒子组成
低分子, 离子
胶粒(分子, 原子或离子 聚集体)
如:As2S3溶胶加热至沸,析出淡黄色沉淀。
4.高分子物质对溶胶的保护作用和敏化作用 在溶胶中加入一定量的高分子,能显著提高溶 胶的稳定性,这种现象称为高分子对溶胶的保护作
用。
图5-7 高分子物质对溶胶保护作用(a) 和敏化作用(b)示意图
三、气溶胶(aerosol)
气溶胶:由极小的固体或液体粒子悬浮在气体 介质中所形成的分散系统。 例如:烟、粉尘、雾等。 预防医学中很重视气溶胶问题。在工农业生产
性
质*
小于
1nm
1~ 100 nm
均相,能透过半透膜, 热力学稳定
胶 体 分 散 系
溶胶
高分子 溶液 缔合 胶体
非均相,不能透过半透 膜,热力学不稳定
均相,不能透过半透膜, 热力学稳定,透明
高分子
胶束
粗粒子*
均相,不能透过半透膜, 热力学稳定,透明
非均相,不能透过半透 膜,热力学不稳定
大于 100 nm
-水合双电层,水合双电层犹如一层弹性膜,阻碍
了胶粒间相互碰撞,使胶粒彼此隔开,不易聚集。
水合膜越厚,胶粒越稳定。 3.布朗运动也是溶胶稳定因素之一。
(四)溶胶的聚沉现象
当溶胶的稳定因素遭到破坏,胶粒碰撞时合并
变大,胶粒就从介质中析出而下沉,称为聚沉
第05章胶体
散射现象的强弱:
颗粒越大、越多;折光率相差越大散射越强。
(二)动力学性质——Brownian movement
1 Brownian movement:显微镜下可见胶体粒 子作不断改变速度和方向的无规则运动
颗粒越小, 温度越高, 布朗运动 越剧烈。
布朗运动 并不是胶 体特有的 性质。
2 扩散与沉降平衡 当溶胶中的胶粒存在浓度差时,胶粒从浓度 大的区域向浓度小的区域迁移,这种现象叫 扩散。
(一)溶胶的光学性质
当一束强光透过胶体时,可以看到一条光亮的 通路,这种现象叫做丁达尔现象。
用这种方法可以区别溶液和胶体。
产生原因:当颗粒大小d小于入射光波长入时 ,光环绕颗粒除入射光方向外,还向各方向散 射,即每个颗粒又作为一个光源,向各方向发 射光,散射出来的光称乳光。
产生条件: ①颗粒大小合适,d<λ(1-100nm之间) ②分散相折光率(n1)与分散介质折光率(n2)不 同。
氨基酸的 带电状态和在电场中的状况: 等电点
pH = pI pH < pI pH > pI
净电荷为零 带正电荷 带负电荷
在电场中不移动
在电场中移向负极
在电场中移向正 极
4 蛋白质在等电点时的性质
5 溶解度、黏度、渗透压、膨胀性最小 三 高分子溶液稳定性的破坏
加入高浓度无机盐,使蛋白质沉淀析出叫盐析。 实质是使蛋白质脱水,破坏水化膜,而析出。 盐析与溶胶聚沉不同: ①盐析用量大,聚沉用量少 ②盐析时正、负离子均起作用,聚沉时只与胶 粒电性相反的离子起作用。 ③除去电介质,蛋白质可以重新溶解即具可逆 性,而溶胶聚沉是不可逆的。
在胶体溶液中加入电解质,迫使一部分反离子 进入吸附层,使扩散层变薄,当电解质浓度加 大时,扩散层厚度可趋于零,在电场中不泳动
颗粒越大、越多;折光率相差越大散射越强。
(二)动力学性质——Brownian movement
1 Brownian movement:显微镜下可见胶体粒 子作不断改变速度和方向的无规则运动
颗粒越小, 温度越高, 布朗运动 越剧烈。
布朗运动 并不是胶 体特有的 性质。
2 扩散与沉降平衡 当溶胶中的胶粒存在浓度差时,胶粒从浓度 大的区域向浓度小的区域迁移,这种现象叫 扩散。
(一)溶胶的光学性质
当一束强光透过胶体时,可以看到一条光亮的 通路,这种现象叫做丁达尔现象。
用这种方法可以区别溶液和胶体。
产生原因:当颗粒大小d小于入射光波长入时 ,光环绕颗粒除入射光方向外,还向各方向散 射,即每个颗粒又作为一个光源,向各方向发 射光,散射出来的光称乳光。
产生条件: ①颗粒大小合适,d<λ(1-100nm之间) ②分散相折光率(n1)与分散介质折光率(n2)不 同。
氨基酸的 带电状态和在电场中的状况: 等电点
pH = pI pH < pI pH > pI
净电荷为零 带正电荷 带负电荷
在电场中不移动
在电场中移向负极
在电场中移向正 极
4 蛋白质在等电点时的性质
5 溶解度、黏度、渗透压、膨胀性最小 三 高分子溶液稳定性的破坏
加入高浓度无机盐,使蛋白质沉淀析出叫盐析。 实质是使蛋白质脱水,破坏水化膜,而析出。 盐析与溶胶聚沉不同: ①盐析用量大,聚沉用量少 ②盐析时正、负离子均起作用,聚沉时只与胶 粒电性相反的离子起作用。 ③除去电介质,蛋白质可以重新溶解即具可逆 性,而溶胶聚沉是不可逆的。
在胶体溶液中加入电解质,迫使一部分反离子 进入吸附层,使扩散层变薄,当电解质浓度加 大时,扩散层厚度可趋于零,在电场中不泳动
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二) 扩散 胶粒将从浓度大的区域向浓度小的 区域运动,这种现象称为胶粒的扩散。 浓度差越大,扩散越快。温度愈高溶 胶的粘度愈小,愈容易扩散。 利用胶粒不能透过半透膜这一性质, 可除去溶胶中的小分子杂质,使溶胶 净化,净化溶胶常用方法是透析(或渗 析)。例如,用于尿毒症的“血透”疗法。
(三) 沉降 沉降:分散系中的分散相粒子在重 力作用下逐渐下沉的现象。溶胶的胶 粒较小,质量较轻,沉降和扩散两种 作用同时存在。当沉降和扩散这两个 相反作用的速度相等时,即达平衡状 态,称为沉降平衡。平衡时,底层浓 度最大,但随着高度的增加逐渐降低, 形成了一定的浓度梯度。
H2SiO 3
SiO 2H
2 3
(三) 胶粒的双电层结构 Fe(OH) 胶团结构可用简式表示如下:
3
Fe(OH) 3 m nFeO胶核 Nhomakorabea胶粒
(n x) CI
x
xCI
吸附层
扩散层
胶团
式中,m表示胶核中所含Fe(OH)3的 分子数(约为103左右),n表示胶核所 吸附的FeO+离子数,n的数值比m小 得多,(n-x)表示吸附层中Cl离子数, X表示扩散中的Cl-离子数。由于n (n x) ,故胶粒带X个单位正电荷。
3. 加热 很多溶胶加热发生聚沉。 例如,将 As2S3溶胶加热至沸, 就折出黄色的硫化砷沉淀。
达到沉降平衡所需的时间与胶粒的 大小有密切关系,为了加速沉降平衡 的建立,使用超速离心机,可使溶胶 或蛋白质溶液迅速达到沉降平衡。目 前超速离心机广泛用于医学研究中, 以测定各种蛋白质的分子量及病毒的 分离提纯。
三、溶胶的电学性质 (一) 电泳
电泳:在外电场的作用下,胶粒在 介质中定向移动的现象。 从电泳方向可以确定胶粒带有什么 电荷,Fe(OH)3胶粒带正电荷。 正溶胶:大多数金属氢氧化物溶胶 向负极迁移, 胶粒带正电荷。 负溶胶:大多数金属硫化物、硅胶、 金、银等溶胶向正极迁移, 胶粒带负电荷。
例如, NaCI 、 CaCI 、 AICI 三种电解质对 As2S3溶胶(带负电荷)的聚沉能力 的比例为:
2 3
Na : Ca : AI 1: 80 : 500
3
2
2. 加入带相反电荷的溶胶 相互聚沉现象:两种带相反电荷 的溶胶按适当比例混合,也能引起 溶胶聚沉 。 用明矾净水就是溶胶相互聚沉的 实际应用。
一、溶胶的光学性质 1869年物理学家Tyndall发现
产生的原因:溶胶粒子的直径 (1~100nm)略小于可见光波长(400~ 760nm),光波会环绕着溶胶粒子向 各个方向散射,散射出来的光称为 散射光或乳光。利用丁铎尔现象, 常可以区别溶胶与真溶液、悬浊液 和高分子溶液。
二、溶胶的动力学性质 (一) 布朗运动 1827年,植物学家布朗(Brown) 发现胶粒在介质中作无规则运动。 产生的原因:是由于周围分散介 质的分子从各个方向以不等的力撞击 这些溶胶粒子。因而在每一瞬间粒子 所受到的合力方向不断改变,所以胶 粒处于不断地无秩序运动状态。布朗 运动是溶胶的特征之一。胶粒越小, 运动越快,布朗运动越激烈。
四、溶胶的稳定性和聚沉 (一) 稳定性 溶胶,是一个聚结不稳定体系。 具有相对的稳定性,除了胶粒 的布朗运动起到部分稳定作用 外,主要有下面两个原因:
(1) 胶粒带电 带电越多,斥力越 大,胶粒就越稳定。 (2) 水化膜 胶团具有水化双电层结 构,主要方法有下面几种:
(二) 聚沉 使胶粒聚集成较大颗粒而沉淀 的过程 1. 加入电解质 例如在 Fe(OH)3溶胶 中加入少量 K 2SO 4 溶液,析出氢 氧化铁沉淀。
聚沉值:使一定量溶胶在一定时间 内完全聚沉所需电解质的最小浓度, 称为该电解质的聚沉值,单位为
mmoI L
1
聚沉能力是聚沉值的倒数,聚沉值
越小,聚沉能力越大。
使溶胶聚沉的电解质有效部分是与 胶粒带相反电荷的离子。实验表明, 与胶粒带相反电荷的同价离子聚沉 能力几乎相等;当反离子的价数增 高时,聚沉能力急剧增加。
溶液中部分Fe(OH)3与HCl作用,
Fe(OH)3 HCl FeOCl 2H2O FeOCl FeO Cl -
Fe(OH)3胶核就选择性吸附与其 组成类似的FeO+而带正电荷。 2. 表面分子离解 胶核和介质接触后,表面层上的 分子与介质作用而离解,胶核表面 便带相反的电荷。例如硅胶, 可以 2离解为SiO3 和H+: H+扩散到介质中去,而SiO32-留在 胶核表面,结果使胶粒带负电荷。
应用: 蛋白质、氨基酸和核酸等物质 的分离和鉴定方面有重要的应 用。例如在临床检验中,应用 电泳法分离血清中各种蛋白质, 为疾病的诊断提供依据。
(二) 胶粒带电的原因 1. 选择性吸附 胶核总是选择性的 吸附与其组成相类似的离子。例如, 用水解法制备Fe(OH)3溶胶时,反 应式为:
FeCl3 3H2O Fe(OH)3 3HCl