非线性动态电路分析共44页文档
非线性动态电路的分析

t
O
tk
t k 1
xk 1 xk hf ( xk 1 , tk 1 )
后向欧拉法
后向欧拉法 迭代公式
3.梯形法(trapezoidal method)
如图所示,本法梯形面积近似代替曲边梯形面积 S k ,即令
S K 0.5(tk 1 tk ) [ f ( xk , tk ) f ( xk 1 , tk 1 )] 0.5h[ f ( xk , tk ) f ( xk 1 , tk 1 )]
C
au bu 2 ,求 t 0 时的电压uC。
S (t 0 )
t 0 时的电流为
du 2 i C C au bu 2 auC buC dt
两边除以-C
uC
u
duC a b 2 uC uC dt C C
2 两边除以 uC
伯努利 方程
图12.4 例题12.1
非线性状态方程的标准形式
推广到一般情况
u1 [ f 2 (Ψ 2 ) f 4 (u1 ) iS ]/ C Ψ 2 u1 R3 f 2 (Ψ 2 )
(t ) F{ X (t ) ,V (t )} X
直流激励或零输入
(t ) G{ X (t )} X
V(t)是常量s equation):方程中不明显地含有时间t的微分方程组。 自治网络(autonomous network):可用自治方程描述的电网络。 (t ) 0 的解。对应的电路状 平衡点(equilibrium):自治方程的稳态解,即 X 态称为平衡状态。在平衡点处状态变量 G{ X (t )} 0
~ u hf (u ) u k 1 k k
第2章 非线性电路的分析

第2章 非线性电路的分析方法 章
线性放大电路的特点是其输出信号与输入信号具有 时域上讲, 输出信号波形与输 某种特定的线性关系。从时域 时域 入信号波形相同, 只是在幅度上进行了放大; 从频域 频域 上讲, 输出信号的频率分量与输入信号的频率分量相 同。 然而, 在通信系统和其它一些电子设备中, 需要 一些能实现频率变换 频率变换的电路。这些电路的特点是其输出 频率变换 信号的频谱中产生 产生了一些输入信号频谱中没有的频率分 产生 输入信号频谱中没有的频率分 频率分量的变换, 量 , 即发生了频率分量的变换 故称为频率变换电路。 频率分量的变换
非线性电路分析解析ppt课件

5
非线性电路中至少包含
一个非线性元件,它的输出 输入关系用非线性函数方程 v + 或非线性微分方程表示,右 –
图所示是一个线性电阻与二
极管组成的非线性电路。
Di
i
ZL
0
V0 v
二极管电路及其伏安特性
二极管是非线性器件,ZL为负载,V是所加信号 源,幅度不大。设非线性元件的函数关系为i = f
所表征的电流。如果根据叠加原理,电流i应该是v1和 v2分别单独作用时所产生的电流之和,即
i
kv
2 1
kv
2 2
kV12m
sin2 1t
kV22m
sin2 2t
(6)
i kV12m sin2 1t kV22m sin2 2t 2kV1mV2m sin1t sin2t
(4)
18
i
kv
2 1
kv
28
(4) m次谐波(直流成分可视作零次、基波可 视作一次)以及系数之和等于m的各组合频 率成分,其振幅只与幂级数中等于及高于 m次的各项系数有关。例:直流成分与b0 、 b2都有关,而二次谐波及组合频率为1 + 2与1 - 2的各成分其振幅只与b2有关, 而与b0无关。
29
(5) 因为幂级数展开式中含有两个信号的相 乘项,起到乘法器的作用,因此,所有 组合频率分量都是成对出现的,如有1 + 2就一定有1 – 2,有21 – 2,就 一定有21 + 2,等等。
31
信号较大时,所有实际的非
线性元件,几乎都会进入饱和
ic
如右图所示半导体二 i
i
极管的伏安特性曲线。当 (a)
某一频率的正弦电压作
非线性电路分析法

1)半流通角 电流流通时间所对应的相角叫流通角,用
叫做半流通角或截止角。有 c
2c 表示,
上式来自以下推导:
vB VBB Vbm cost
iC gc (vB VBZ )
gc (VBB Vbm cos t VBZ )
当wt=θc时,iC=0。代入上式即得。
21
2)集电极电流脉冲
iC gc (VBB Vbm cos t VBZ )
式 sin cos 1 sin( ) 1 sin( )
2Hale Waihona Puke 2cos sin 1 sin( ) 1 sin( )
2
2
9
3,幂级数分析法的具体应用举例 设非线性元件的静态特性用三次多项式表示
i b0 b1 (v V0 ) b2 (v V0 )2 b3 (v V0 )3
工作范围尿限于特性曲线得起始弯曲部分因此可以用幂级数的前三项来近似3结合输入电压的时间函数求电流写出静态特性的幂级数表示式后将输入电压的时间函数代入然后用三角恒等式展开并加以整理即可得到电流的傅立叶级数展开式从而求出电流的各频谱成分
非线性电路分析法
变系数线性微分方程、非线性微分方程的求解问题:
1 困难
3)电流中的直流成分、偶次谐波以及组合频率系数之和为偶数的各种组合频率成 分,振幅只与幂级数的偶次项(包括常数项)有关;奇次谐波等的组合频率成分, 振幅则只与幂级数的奇次项有关。
14
4)m次谐波以及系数之和等于m的各个组合频率成分,振幅只与幂级数中等于及 高于m次的各项系数有关。
5)所有组合频率都是成对出现的。 掌握这些规律很重要。 可以利用这些规律,根据不同的要求,选用具有适当特性的非线性元 件,或者选择合适的工作范围,以得到所需的频率成分,而尽量减弱 甚至消除不需要的频率成分。
非线性电路特性及分析方法

ic
gC
ICEO
uห้องสมุดไป่ตู้E
O
uCE
范围很大, 例:(以晶体管三极管 转移特性为例)当晶体 管的转移特性曲线运用 范围很大, :(以晶体管三极管 转移特性为例) 来近似, 如图示的 AOC ,可用 AB 和 BC 两直线段所构成的折线 来近似, ( i = 0 v B < V BZ ) 折线的数学表达式为: c 折线的数学表达式为: ic = g c ( v B − V BZ ) B > V BZ ) (v 式中, 截止电压; 跨导, 的斜率。 式中, V BZ-特性曲线折线化后的 截止电压; g c-跨导,即直线 BC 的斜率。 设基极输入端加入反向 直流偏置电压 − V BB 及余弦信号 Vbm cos ω t,则 基极输入电压为: 基极输入电压为: v B = −V BB + Vbm cos ω t 此时, 时三极管导通, 此时,只有 v B > V BZ 时三极管导通,其余时 间 截止, 变成余弦脉冲波形。 截止,即 ic变成余弦脉冲波形。电 流流通时间 对应的相角以 2θ c 表示, θ c简称导通角。 表示, 简称导通角。
3、折线法:大信号作用下 、折线法:
大信号作用下,所有实际的非线性元件几乎都会进入饱和或截止状态, 大信号作用下,所有实际的非线性元件几乎都会进入饱和或截止状态, 此时元件的非特性的突出表现是截止、导通、 此时元件的非特性的突出表现是截止、导通、饱和几种不同状态之间的 轮换,特性曲线上一些局部弯曲的非线性影响可忽略, 轮换,特性曲线上一些局部弯曲的非线性影响可忽略,元件的伏安特性 可用分段折线逼近(折线特性本质是一种开关特性) 可用分段折线逼近(折线特性本质是一种开关特性)
第5章 非线性电路特性及分析方法
非线性动力分析方法课件

反馈线性化控制
优点
能够处理非线性问题,提高系统的控制精度 和稳定性。
缺点
实现较为复杂,需要精确的系统模型和参数。
自适应控制
通过不断调整控制参数,以适应系统参数的变化。
优点:能够适应系统参数的变化,提高系统的鲁 棒性和适应性。
自适应控制是一种能够自动调整控制参数,以适 应系统参数变化的控制方法。这种方法通过实时 测量系统参数的变化,不断更新控制参数,以保 证系统性能的稳定性和最优性。
机构运动
在机构运动中,非线性动 力系统可以用于描述机构 的运动规律,如连杆机构、 凸轮机构等。
弹性力学
非线性动力系统在弹性力 学中可以用于描述材料的 非线性行为,如材料的弹 塑性、断裂等。
电力系统中的应用实例
电力系统的稳定性分析
非线性动力系统可以用于分析电力系统的稳定性,如电压波动、 频率稳定等。
谱方法的基本思想是将原问题转化为求解特征值或特征向量 的问题,通过选取适当的正交变换,将原问题转化为易于求 解的数值问题。该方法广泛应用于数值计算、流体动力学等 领域。
边界元法
边界元法是一种只对边界进行离散化 的数值方法,通过求解边界上的离散 方程来近似求解原问题的数值方法。
边界元法的基本思想是将问题只离散 化边界上的点,通过求解边界上的离 散方程来近似求解原问题的数值方法。 该方法广泛应用于流体动力学、电磁 学等领域。
缺点:可能会产生抖振现象, 需要精确的系统模型和参数。
05
非性力系的
欧拉方法
总结词
欧拉方法是数值计算中最基础的方法 之一,适用于求解初值问题。
详细描述
欧拉方法基于差分思想,通过已知的 初值和微分方程,逐步计算出未知的 函数值。该方法简单易懂,但精度较 低,适用于求解简单问题。
非线性电路

非线性电路学习报告电路是由电气、电子器件按某种特定的目的而相互连接所形成的系统的总称。
当电路中至少存在一个非线性电路元件时(例如非线性电阻、非线性电感元件等),其运动规律要由非线性微分方程或非线性算子来描述,我们称之为非线性电路或非线性系统。
一、非线性电路的特点:1、非线性电路不满足叠加定理是否满足叠加定理是线性系统与非线性系统之间的最主要区别。
2、非线性电路的解不一定唯一存在对于仅由非线性电阻元件组成的电阻性电路,或考察非线性动态电路的稳态性质时,其电路的特性有一组非线性代数方程来描述。
这组方程可能有唯一解,也可能有多个解,甚至可能根本无解。
因此,在求解之前,应该对系统的解得性质进行判断。
3、非线性系统平衡状态的稳定性问题线性系统一般存在一个平衡状态,并且很容易判断系统的平衡状态是否稳定。
而非线性系统往往存在多个平衡状态,其中有些平衡状态是稳定的,有些平衡状态则是不稳定的。
4、非线性电路中的一些特殊现象在非线性电路中常常会发生一些奇特的现象,这些奇特的现象在过去和现在一直都是非线性电路理论的重要研究课题,促进了非线性理论的研究和发展。
例如,非线性电路在周期激励作用下的次谐波振荡和超次谐波振荡;系统解的形式因为参数的微小变化而发生本质性改变的分叉现象;对于某些非线性电路和系统,还会出现一种貌似随机的混沌现象。
分叉和混沌现象的研究大大丰富了非线性系统科学的理论,促进了系统科学的发展。
二、非线性电阻电路非线性电阻电路研究的内容大体可分为理论定性分析和定量分析两大部分。
理论定性分析主要研究非线性电阻电路解得存在性和唯一性问题。
对于由无源电阻网络组成的网络,其无增益性质也是研究的重要内容之一。
定量分析大体包含四个方面:一是图解分析法和小信号分析法,二是数值分析方法,三是分段线性化方法,四是友网络法。
1、图解分析方法图解分析法用来解决简单非线性电阻电路的工作点分析、DP图和TC图分析等问题。
(1)曲线相交法:将其中一些非线性元件用串并联方法等效为一个非线性电阻元件,将其余不含非线性电阻的部分等效一个戴维南电路,画出这两部分电路的伏女關线,它们的交点为电路的丄作点,或称为静态丄作点Q(U Q,I Q)O图1曲线相交法(2)DP图法:若某非线性一端口网络的端口伏安矢系也称为驱动点特性曲线DP确定,则已知端口的激励波形,通过图解法可求得响应的波形。
非线性电路特性及分析方法

则产生电流: i k (v1 v2 ) 2 k (V1m sin 1t V2m sin 2 kV2m sin 2 2t 2kV1m sin 1t V2m sin 2t
2 2 2 1 cos21t 2 1 cos22t kV1m ( ) kV2m ( ) 2 2 2kV1mV2m cos(1 2 )t cos(1 2 )t ) 2 k 2 2 (V1m V2m ) kV1mV2m cos(1 2 )t kV1mV2m cos(1 2 )t 2 k k 2 2 V1m cos21t V2m cos22t 2 2 新产生的频率分量
非线性电路:含有非线性元件的电路即是。(以后各章
均讨论非线性电路,包括功放、振荡器、调制、解调等)
非线性电路的常用分析方法:图解法、解析法
5.2 非线性元件的特性
1、非线性元件的工作特性:非线性元件中有多种含义不同 的参数,且这些参数都随激励量的大小而变化。
例见非线性电阻器件,常用参数有直流电导、交流电导、平均电导。
平均电导:当非线性电阻器两端在静态直流电压的基础上又叠加幅度较 大的交变信号,对其不同的瞬时值,非线性电阻器的伏安特性曲线的斜 率是不同的,故引入平均电导的概念。 I g 1m Vm g 除与工作点 V 有关外,还随 v ( t) 幅度的不同而变化。 Q
2、非线性元件的频率变换作用
2 例:设非线性电阻的伏安特性曲线具有抛物线形状,即: i kv ,式中k为 常数。若在该元件上加入两个正弦电压:v V sin t , v V sin t 1 1 m 1 2 2 m 2
它是一周期函数,用傅 氏级数展开,可得频谱 成份: ic= I k cos k t