科技学院高频实验指导书

科技学院高频实验指导书
科技学院高频实验指导书

THCGP-1型高频电子线路实验教学系统

实验指导书

大连科技学院电气工程系

实验注意事项

1.每次安装实验模块之前应确保主机箱右侧的交流开关处于断开状态。

2.安装实验模块时,模块右边的双刀双掷开关要拨上,将模板四角的螺孔和母板上的铜支

柱对齐,然后用螺丝固定。确保四个接线柱均拧紧,以免造成实验模块与电源或地接触

不良。经检查确认无误后方可通电实验。

3.各实验模块上的双刀双掷开关、拨码开关、复位开关、自锁开关、手调电位器和旋转编

码器均为磨损件,请勿频繁按动或旋转。

4.请勿直接用手触摸芯片、电解电容器等元件,以免造成损坏。

5.各模块中的3362电位器(蓝色正方形封装)是出厂前调试使用的。出厂后的各实验模

块功能已调至最佳状态,无需另行调节这些电位器,否则将会对实验结果造成影响。

6.在关闭各模块电源之后,方可进行连线。连线时在保证接触良好的前提下应尽量轻插轻

放,检查无误后方可通电实验。拆线时若遇到连线与孔连接过紧,应用手捏住线端得金属外壳轻轻摇晃,直至连线与孔松脱,切勿旋转及用蛮力强行拔出。

7.实验前,应首先熟悉实验模块的电路原理以及内置仪器的性能和使用方法。

8.按动开关或旋动电位器以及调节电感线圈磁芯时,切勿用力过猛,以免造成元件损坏。

9.做综合实验时,应通过联调确保各部分电路处于最佳工作状态。

10.用“短路帽”换接电路时,动作要轻巧,更不能丢失“短路帽”,以免影响后续实验的

正常进行。

11.在打开的实验箱箱盖上不可堆放重物,以免损坏机箱的零部件。

12.实验完毕时必须按开启电源的逆顺序逐级切断相应的电源开关。

13.测量模块在不用时,应保持电源处于切断状态,以免引起干扰。

前言

高频电子技术是一门实践性较强的课程,加强实践环节教学,提高实践教学环节的效果,对这门课的学习是至关重要的,应通过一个学期的实验教学,努力提高学生的实际动手能力,并以实践教学促进学生对教材理论知识的理解和应用。为保证每个实验项目的可操作性,编者经过了一个学期时间的准备,结合自身的实验环节教学,对每个实验项目进行了设计、验证、分析和修正。下面对于本系统的高频电子线路实验项目教学,做以下几点说明和建议:

一、本书所有实验项目所采用的信号源均为高频实验箱自带的高频信号源和低频信号

源,所用实验项目所用到的数字频率计均为高频实验箱自带的数字频率计。若实验中采用独立的信号源和频率计设备,相应实验步骤内容需做相应变化,但基本方法相同。

二、本书所有实验项目中所涉及到的输入信号的幅度或频率大小,均经过实验验证结果正常。但在实验过程中,可能会出现高频实验箱自带信号源或频率计性能下降的情况,不能产生或测量出实验项目内容中所写的值。指导教师应根据实际情况,在不影响电路正常工作的情况下,自行灵活采用适当的信号幅度或频率,同样能起到实验的效果。

三、本实验系统的电路均做成模块化,为克服模块化电路在实验教学中的缺点,指导教师应尽量避免简单的输入和输出信号的验证性测量,加强对各单元电路的电路组成特点分析,以提高学生对单元电路的实际应用能力。

四、由于高频信号的特点,高频电路实验过程测量出的波形不理想、数据不精确为正常现象。指导教师应充分地对实验波形和数据进行分析,找出不理想的原因,并进行说明,以达到在验证性实验项目的基础上,融入设计性成份的目的。

(一)仪器介绍

该产品由3种实验仪器、10个实验模块及实验箱体(含电源)组成。实验仪器及主要指标如下:

1.高频信号源

输出频率范围:0.4 MH Z~45 MH Z(连续可调)

输出波形:正弦波

输出幅度:1V p-p

输出阻抗:75Ω

2.低频信号源

输出频率范围:0.2KH Z~20KH Z(连续可调)

输出波形:正弦波、方波、三角波

输出幅度:5V p-p

输出阻抗:100Ω

3.数字频率计

频率测量范围:20 Hz~100MHz

输入电平范围:100mV-5V

(二)使用方法说明

1.信号源

信号源面板如下图1-1所示:

图1-1 信号源面板图

使用时,首先按下”POWER”按钮,电源指示灯亮。

高频信号源的输出为RF1、RF2,频率调节步进有四个档位:1KHz、20 KHz、500 KHz、1 MH z。按频率调节旋钮可在各档位间切换,为1KHz、20 KHz、500 KHz档时相对应的LED 灯亮,当三灯齐亮时,即为1MHz档。

旋转“频率调节”旋钮可以改变输出高频信号的频率。通过调节“幅度调节”旋钮来改变高频信号的输出幅度。

音频信号源可以输出正弦波、方波、三角波三种波形,各波形的频率调节共用一个频率调节旋钮,共有2各档位:2KH z、20KH z,按频率档位选择可在两个档位间切换,并相应的指示灯亮。调节音频信号频率调节旋钮可以改变信号的频率。分别调节三种波形的幅度调节旋钮可以调节其输出的幅度大小。

本信号源有内调制功能,按下“AM”按钮时,对应下方的指示灯亮,在RF1和RF2输出调幅波,RF2可以外接频率计测量输出频率。调幅波的调制信号为正弦波,载波为信号源内的高频信号。改变“AM调幅度”旋钮可以改变调幅波的幅度。当“FM”按钮按下时,对应下方的指示灯亮,在RF1和RF2输出调频波,RF2可以外接频率计测量输出频率。调频波的音频信号为正弦波,载波为信号源内的高频信号。改变“FM频偏”旋钮调节输出的调频信号的调制指数。

面板下方为5个射频线插孔,RF1和RF2为高频输出。做实验时将RF1作为信号输出,RF2接配套的频率计观测频率。

2.频率计

频率计面板如图1-2所示:

图1-2 频率计面板图

频率显示窗口有5个数码管组成,在整个频率测量范围内都显示5位有效位数。按下“电源”开关,电源指示灯亮,此时频率显示窗口的5位数码管全显示8,且三档频率指示灯同时亮,约两秒后五位数码管全为0,进入测量状态。

若输入信号的频率在20.000Hz-999.99H Z范围内,Hz指示灯亮;输入的频率在1.0000KHz-999.99KHz范围内,KHz指示灯亮;输入的频率在1MHz以上的,MHz指示灯亮。当输入信号小于100KHz时,应按下“频率选择”按钮,此时“频率选择”按钮指示灯亮,当输入信号大于100KHz时,应弹开“频率选择”按钮,此时相应指示灯灭。

实验一高频小信号调谐放大器

一、实验目的

1.掌握小信号调谐放大器的基本工作原理。

2.谐振放大器电压增益、通频带、选择性的定义、测试及计算。

二、实验仪器、器材

1.THCGP-1型高频电子线路综合实验箱 1台

2.双踪示波器 MOS-620CH 1台

3.器材:单调谐小信号放大模块1块

三、实验原理

单调谐小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。其实验单元电路如图3-1所示(模块②上)。

图3-1 实验电路

该电路由三极管Q1及其集电极选频回路T1组成。它对输入的高频小信号进行放大,并具有一定的选频作用。基极偏置电阻W3、R22、R4和射极电阻R5决定三极管的静态工作点。可变电阻W3改变基极偏置电阻将改变三极管的静态工作点,从而可改变放大器的增益。

四、实验步骤

(一)单调谐小信号放大器单元电路实验

1.根据图3-1实验电路熟悉实验板电路,并在电路板上找出与原理图对应的各测试点。

2.按图3-2所示图连接好实验电路。

3.打开实验箱电源,按下信号源和频率计的电源开关,此时开关下方的工作指示灯点亮。

4.打开小信号调谐放大器的电源开关,并观察工作指示灯是否点亮。

5.调节信号源“RF幅度”和“频率调节”旋钮,使输出端口“RF1”、“RF2”输出频率为10.5MHz的高频信号。将信号输入到2号板的J4口。先用示波器在TH1处观察信号峰-峰值约为300mV。(先调频率再调幅度)

图3-2 测试连接图

6.调谐放大器的谐振回路(调节T1)使其在10.5MH z的频率点上谐振:

操作方法:将示波器探头接在调谐放大器的输出端TH2,调节示波器直至能观察到输出信号的波形,先调节W3使输出信号幅度最大,再调节中周T1磁芯使示波器上的信号幅度最大,此时放大器即被调谐到输入信号的频率点上。(此后,T1不能再调节)7.测量电压增益

用示波器在TH1和TH2处分别观测输入和输出信号的幅度大小,记录下输入和输出信号的幅度大小值。则

输出信号幅度

电压增益A U0=

输入信号幅度

8.测量放大器的通频带BW0.7

调节信号源面板上的频率调节旋钮,改变放大器输入信号的频率,使信号频率在谐振频率附近变化(以500KH z为步进间隔来增大和减小),用示波器观测各频率点的输出信号的幅度,填入表3-1。

表3-1

根据表3-1,在图3-3中绘制电路的幅频特性曲线。

图3-3 绘制电路幅频特性曲线

先记下谐振时的输出信号幅度,然后增加输入信号的频率(注意此时不能调节幅度旋钮),使输出信号幅度逐渐减小,直至减小到最大输出幅度的0.707倍,用频率计测量此时的频率值,记为上限截止频率?H1。再减小信号频率使输出信号幅度逐渐减小,直至减小到最大输出幅度的0.707倍,再用频率计测量此时的频率值,记为下限截止频率?L1。?H1和?L1之差,即是该电路的频带宽度BW0.7。

9.测量放大器的矩形系数(选做)

先记下谐振时的输出信号幅度,然后增加输入信号的频率(注意此时不能调节幅度旋钮),使输出信号幅度逐渐减小,直至减小到最大输出幅度的0.1倍,用频率计测量此时的频率值,记为上限截止频率?H2。再减小信号频率使输出信号幅度逐渐减小,直至减小到最大输出幅度的0.1倍,再用频率计测量此时的频率值,记为下限截止频率?L2。?H2和?L2之差,得到BW 0.1。即可求得矩形系数

7

.01

.01.0BW BW K

五、实验注意事项

1.在调节谐振回路的磁芯时,要用小型无磁性的起子,缓慢进行调节,用力不可过大,以免损坏磁芯。

2.对高频电路而言,随着频率升高,电路分布参数的影响将越来越大,而我们在理论计算中是没有考虑这些分布参数的,所以实际测试结果与理论分析可能存在一定的偏差。 六、实验报告要求

1.根据实验测量数据,记录该电路的增益。

2.根据实验测量数据,绘制单调谐放大电路的幅频特性曲线,并求出相应的频带宽度。 3.根据实验测量数据,计算该电路的矩形系数,并分析其选择性好坏。

实验二丙类谐振功率放大器

一、实验目的

1.了解丙类谐振功率放大器的基本工作原理。

2.掌握丙类谐振功率放大器负载特性。

3.掌握丙类谐振功率放大器的放大特性

二、实验仪器、器材

1.THCGP-1型高频电子线路综合实验箱 1台

2.双踪示波器 MOS-620CH 1台

3.器材:非线性丙类功率放大模块1块

三、实验原理

1.基本原理

放大器按照电流导电角θ的范围可分为甲类、乙类、甲乙类、丙类、丁类等不同类型。功率放大器电流导电角θ越小,放大器的效率η越高。

甲类功率放大器的θ=180°,其效率最高只能达到50%,适用于小信号低功率放大,一般作为中间级或输出功率较小的末级功率放大器。

丙类谐振功率放大器的电流导电角θ<90°,效率可达到80%,通常作为发射机末级功放以获得较大的输出功率和较高的效率。丙类谐振功率放大器通常用来放大窄带高频信号,其信号的频带宽度只有中心频率的1%或更小。由于其基极偏置为负值,输出电流波形为余弦脉冲,为了得到不失真的放大信号输出,其集电极负载必需是谐振网络。

2.实验电路

图5-1 非线性丙类谐振功率放大器实验电路

实验电路如图5-1所示。该实验电路由两级功率放大器组成。其中Q3(3DG130D)和T6组成甲类前置放大器,工作在线性放大状态,其中RA3、R14、R15组成静态偏置电路,调节RA3可改变放大器的增益。Q4与T4组成丙类谐振功率放大电路,放大后的信号经T4初级与C15组成的谐振网络选频后由J4处输出。R18、R19、R20是后级的负载。J6处是经R21、R22分压后的衰减输出。

四、实验步骤

1.根据电路原理图熟悉实验板电路,并在电路板上找出与原理图相对应的各测试点及可调器件。

2.连接好实验测试电路:(1)将高频信号源输出一路送数字频率计,一路送测试电路输入端J3;(2)根据需要,用示波器探头监测相应测量点的信号幅度变化。

3.打开实验箱电源和非线性丙类功率放大电路模块的电源开关,电路板上S1开关全部断开。

4.用高频信号源产生一频率为12MHz 、幅度峰-峰值为400mV 左右的信号(RF1处测量)。

5.测量前置放大器的调谐特性

将输入信号送至电路J3处,调节W1电位器和中周T6,使TP6处输出信号幅度最大且不失真。然后改变输入信号频率,将示波器测量的信号峰-峰值填入表5-1。

表5-1

根据上表测量数值,画出幅频特性曲线。 6.测量丙类谐振功放的负载特性

用示波器监测TH5处波形,调节中周T4使输出最大且不失真。然后示波器监测TH4处波形,调节中周T4使其为对称双峰。

将负载电阻转换开关S1依次从1、2、4拨动,用示波器观察TH4处的波形,并记录下波形形状,分析负载变化对丙类谐振功放的影响。

说明:TH4处实际上是发射极电压波形,等同于发射极电流波形(E

E

E R u i

),而发射极电流近似等于集电极电流。

7.测量丙类谐振功放的放大特性

用示波器监测TH4处信号波形,调节实验箱上高频信号源的幅度调节旋钮,使输入信号幅度由小逐渐增大(频率旋钮不可调),观察TH4处波形的变化,并记录下来。分析激励信号(输入信号)变化对丙类谐振功放的影响。 五、实验报告要求

1.根据第5步测量数据画出前置放大器的幅频特性曲线,并估算其通频带。

2.根据第6步测量,画出三种负载时的波形,并分析负载变化对丙类谐振功放的影响。 3.根据第7步测量,画出U im 变化时的集电极电流波形,并分析U im 变化时对丙类谐振功放的影响。

4.根据测量时观察到的TH4处和TH5处波形形状的不同,简述丙类谐振功率放大器工作时的基本原理。

实验三 三点式正弦波振荡器

一、实验目的

1.掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。

2.通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。

3.研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验仪器、器材

1.THCGP-1型高频电子线路综合实验箱 1台 2.双踪示波器 MOS-620CH 1台 万用表 MF-47型 1块 3.器材:正弦波振荡器模块 1块 三、实验原理

三点式振荡器包括电感三点式振荡器(哈特莱振荡器)和电容三点式振荡器(考毕兹振荡器)。三点式振荡器的一般组成原则为:X ce 和X be 必需为同性质的电抗,X bc 必需与X ce 和X be 电抗性质相异。

实验电路如图7-1所示。本次实验时,将开关S1全部断开,开关S2的1拨下2拨上,由晶体管Q3与C13、C16、C10、CC1、L2共同构成并联改进型电容三点式振荡器——西勒振荡器,电容CC1可用来改变振荡频率。其振荡频率为:

)

110(221

0CC C L f +=

π

振荡频率约为4.5MHz 左右,根据CC1的调节大小,振荡频率有一个变化范围(理论计算为4.0~4.8MHz 左右。其振荡反馈系数为:

21.0470

100

1613-≈-=-

=C C F 其中,C17为较大容量电容,起交流接地的作用,可认为不影响电路振荡频率。振荡

产生的信号经C3电容耦合,送入由Q2组成的射极跟随器,由于C3容量很小且射极跟随器有很大的输入电阻,因而可减小负载对振荡电路的影响。射极跟随后的信号经W2输出,调节W2可调节输出信号的幅度。经W2输出的信号送入由Q1组成的调谐放大器,放大后经变压器T1耦合由J1输出,其中R13为阻尼电阻,用来降低谐振回路的品质因数和扩展频带,以保证前级送来的一定频率范围内的信号均可以放大输出。

需要说明的是,电路中的W1及变容二极管D1、D2部分电路是构成压控振荡器时使用,CRY1晶体这部分电路是构成晶体振荡器时使用,本次实验暂不接入。J2音频输入及变容二极管D1、D2部分电路是调频时使用,本次实验也暂不接入。

电路中RA1电位器是Q3放大电路的基极偏置, RA1的大小应保证放大电路的静态工作点适当,使电路处于放大状态。RA1调节不当,会使电路失去放大作用,振荡器不满足振幅起振条件而停振。

图7-1 三点式正弦波振荡器实验电路

四、实验步骤

1.根据图7-1 在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

2.研究振荡器静态工作点对振荡幅度的影响。

(1)将开关S2的2拨上,构成电容三点式振荡器。

(2)改变Q3上偏置电位器RA1(向左阻值减小),用万用表直流电压档测量Q3发射

极电压(R10上端),并同时用示波器测量TH1处的振荡幅度V p-p(峰-峰值),记下停振时的静态工作点电流值,发射极电流I eo(=V e /R10 )。

3.测量振荡器输出频率范围

将数字频率计接于J1处,改变CC1,同时用示波器从TH1观察波形,并观察输出频率的变化,保证有输出波形,读取频率计数值,填于表7-1中。

表7-1 振荡频率范围测量

五、实验报告要求

1.分析静态工作点,反馈系数F对振荡器起振条件和输出波形振幅的影响,并用所学理论知识加以分析。

2.计算实验电路的振荡频率范围大小,并与实测结果比较。

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器 一、实验目的 1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计 算。 2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影 响。 3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、 熟悉振荡器模块各元件及其作用。 2、 进行LC 振荡器波段工作研究。 3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、 测试LC 振荡器的频率稳定度。 三、实验仪器 1、模块 3 1块 2、频率计模块 1块 3、双踪示波器 1台 4、万用表 1块 四、基本原理 实验原理图见下页图1。 将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。 ) 14(121 0CC C L f += π 振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数 F= 32.0470 220220 3311≈+=+C C C 振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经

N3调谐放大,再经变压器耦合从P1输出。 图1 正弦波振荡器(4.5MHz ) 五、实验步骤 1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 (1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。 (2)改变上偏置电位器W1,记下N1发射极电流I eo (=11 R V e ,R11=1K)(将万用表红 表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。 六、实验结果 1、步骤2振荡幅度V P-P 见表1.

RFID实验指导书

R F I D实验指导书 Revised final draft November 26, 2020

RFID实验指导书 适用所有对无线射频传感器感兴趣的学生 xxx 编写 概述 一、课程目的 《RFID无线射频实验》是一门实践性很强的实验课程,为了学好这门课,每个学生须完成一定的实验实践作业。通过本实验的实践操作训练,可以更好的了解RFID的基本功能和基本的使用方法,为以后深入的研究学习打下良好的基础。 本课程实验的目的是旨在使学生进一步扩展对无线射频方向理论知识的了解;培养学生的学习新技术的能力以及提高学生对该方向的兴趣与动手能力。 二、实验名称与学时分配 三、实验要求 1. 问题分析 充分地分析和理解问题本身,弄清要求做什么,包括功能要求、性能要求、设计要求和约束。 2. 原理理解 在按照教程执行过程当中,需要弄清楚每一个步骤为什么这样做,原理是什么。 3. 实践测试 按照要求执行每一步命令,仔细观察返回值,了解每项返回值表达什么意思,为什么有的卡片可以破解有的不可以。 三、实验考核 实验报告应包括如下内容: 1、实验原理描述:简述进行实验的原理是什么。 2、实验的操作过程:包括实验器材、实验流程的描述。 3、分析报告:实验过程中遇到的问题以及问题是否有解决方案。如果有,请写明如何解决的;如果没有,请说明已经做过什么尝试,依旧没有结果导致失败。最后简述产生问题的原因。 4、实验的体会以及可以讲该功能可以如何在其他地方发挥更强大的功能。 注:最后实验结果须附命令行回显截图 四、实验时间

总学时:6学时。

实验一高低频卡鉴别 一、实验目的 1、掌握RFID驱动等环境安装设置。 2、掌握如何通过读取电压高低来区分高低频。 二、实验要求 1、认真阅读和掌握本实验的程序。 2、实际操作命令程序。 3、保存回显结果,并结合原理进行分析。 4、按照原理最后得出结果。 三、注意事项: 命令在实行时,如果想停止,不能用平时的Ctrl+C或者ESC等常规结束按键(可能会造成未知损坏),只需要按下Promxmark3上的黑色按钮。 方形的为高频天线(Proxmark3 HF Antenna ); 圆形的为低频天线(Proxmark3 LF Antenna 125KHz/134KHz) 四、实验内容 1.安装驱动 打开我的电脑》右键--属性—设备管理器》人体学输入设备 这个“HID-compliant device”就是我们的proxmark3设备,选择“USB 人体学输入设备”一般是最下面那个,注意:不是“HID-compliant device”,更新驱动程序。 然后选择:Proxmark-Driver-2012-01-15\proxmark_driver\ 下一步继续安装完成。安装完成之后在设备管理器里面可以看到proxmark3的新驱动。 2.软件使用 所需要的软件已经打包好,直接在命令行中运行 D: \pm3-bin-r486\Win32\ 这样就算成功安装好各种环境,并可以在该命令窗口中执行命令了。 3.高低频卡的判别 本部分介绍利用高频天线判别卡片的高低频,可自行利用低频天线测试,原理类似。 命令:hw tune,这个命令大概需要几秒钟等待回显。 当你输入完hw tune之后,窗口所显示的HF antenna后面的数值就是现在非工作状态下的电压,当你把相关的卡放在高频天线上面/下面的时候,电压就会所变化了(依然是非工作状态下)。 从图中我们可以看到,当卡没有放到天线的情况下电压为,而卡放在天线之后电压将为,现在的电压依然是为非工作电压,但是从这个现象当中我们会得到很多非常有意义的数据。 变化出来了!第三张hw tune的结果为,是因为我把一张125kHZ的门禁卡放在了高频天线上面,所以其电压的降幅很低,但是如果我把一张的卡放

高频电子线路实验说明书

高频电子线路实验 说明书

实验要求(电信111班) l.实验前必须充分预习,完成指定的预习任务。预习要求如下: 1)认真阅读实验指导书,分析、掌握实验电路的工作原理,并进行必要的估算。 2)完成各实验“预习要求”中指定的内容。 3)熟悉实验任务。 4)复习实验中所用各仪器的使用方法及注意事项。 2.使用仪器和学习机前必须了解其性能、操作方法及注意事项,在使用时应严格遵守。 3.实验时接线要认真,相互仔细检查,确定无误才能接通电源,初学或没有把握应经指导教师审查同意后再接通电源。 4.高频电路实验注意: 1)将实验板插入主机插座后,即已接通地线,但实验板所需的正负电源则要另外使用导线进行连接。 2)由于高频电路频率较高,分布参数及相互感应的影响较大。因此在接线时连接线要尽可能短。接地点必须接触良好。以减少干扰。 3)做放大器实验时如发现波形削顶失真甚至变成方波,应检查工作点设置是否正确,或输入信号是否过大。

5.实验时应注意观察,若发现有破坏性异常现象(例如有元件冒烟、发烫或有异味)应即关断电源,保持现场,报告指导教师。找出原因、排除故障,经指导教师同意再继续实验。 6.实验过程中需要改接线时,应关断电源后才能拆、接线。 7.实验过程中应仔细观察实验现象,认真记录实验结果(数据、波形、现象)。所记录的实验结果经指导教师审阅签字后再拆除实验线路。 8.实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。 9.实验后每个同学必须按要求独立完成实验报告。 实验一调谐放大器 一、实验目的

1、熟悉电子元器件和高频电路实验箱。 2、熟悉谐振回路的幅频特性分析一通频带与选择性。 3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。 4、熟悉和了解放大器的动态范围及其测试方法。 二、实验仪器 1、双踪示波器 2、扫频仪 3、高频信号发生器 4、毫伏表 5、万用表 6、实验板1 三、预习要求 1、复习谐振回路的工作原理。 2、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。 3、实验电路中,若电感量L=1uh,回路总电容C=220pf (分布电容包括在内),计算回路中心频率 f 0 。图1-1 单调谐回路谐振放大器原理图 四、实验内容及步骤 (一)单调谐回路谐振放大器

中北大学高频电子线路实验报告

中北大学 高频电子线路实验报告 班级: 姓名: 学号: 时间: 实验一低电平振幅调制器(利用乘法器)

一、实验目的 1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与 过程,并研究已调波与二输入信号的关系。 2.掌握测量调幅系数的方法。 3.通过实验中波形的变换,学会分析实验现象。 二、预习要求 1.预习幅度调制器有关知识。 2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘 法器调制的工作原理,并分析计算各引出脚的直流电压。 3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。 三、实验仪器设备 1.双踪示波器。 2.SP1461型高频信号发生器。 3.万用表。 4.TPE-GP4高频综合实验箱(实 验区域:乘法器调幅电路) 四、实验电路说明 图 幅度调制就是载波的振幅受 调制信号的控制作周期性的变化。 变化的周期与调制信号周期相同。 即振幅变化与调制信 号的振幅成正比。通常称高频信号为载波5-1 1496芯片内部电路图 信号,低频信号为调制信号,调幅器即为 产生调幅信号的装置。 本实验采用集成模拟乘法器1496来构成调幅器,图5-1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。D、V7、V8为差动放大器V5、V6的恒流源。进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接 1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集

高频实验指导书精简版

实验一高频小信号调谐放大器实验 一、实验目的 1、进一步掌握高频小信号调谐放大器的工作原理。 2、学会小信号调谐放大器的设计方法。 二、实验内容 1、调节谐振回路使谐振放大器谐振在10.7MHz。 2、测量谐振放大器的电压增益。 3、测量谐振放大器的通频带。 4、判断谐振放大器选择性的优劣。 三、实验仪器 1、BT-3(G)型频率特性测试仪(选项)一台 2、20MHz模拟示波器一台 3、数字万用表一块 4、调试工具一套 四、实验原理 图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。晶体管的静态工作点由电阻RB1,RB2及RE决定,其计算方法与低频单管放大器相同。 图1-1 小信号调谐放大器 五、实验步骤 本实验中,用到BT-3频率特性测试仪和频谱仪的地方可选做。 参考所附电路原理图G2。先调静态工作点,然后再调谐振回路。 1、按下开关KA1,则LEDA1亮。

2、调整晶体管QA1的静态工作点: 不加输入信号(u i =0),即将TTA1接地,用万用表直流电压档(20V 档)测量三极管QA1发射极对地的电压u EQ (即测P6与G 两焊点之间的电压),调节WA1使u EQ =3V 左右,根据实验参考电路计算此时的u BQ ,u CEQ ,u EQ 及I EQ 。 3、使放大器的谐振回路谐振在10.7MHz 方法是:BT-3频率特性测试仪的扫频电压输出端和检波探头,分别接电路的信号输入端INA1及测试端TTA2,通过调节y 轴,放大器的“增益”旋钮和“输出衰减”旋钮于合适位置,调节中心频率刻度盘,使荧光屏上显示出放大器的“幅频谐振特性曲线”,根据频标指示用绝缘起子慢慢旋动变压器的磁芯,使中心频率o f =10.7MHz 所对应的幅值最大。 如果没有频率特性测试仪,可用示波器来观察调谐过程,方法是:在TTA1处输入由高频信号源提供的频率为10.7MHz ,峰峰值Vp-p-=20~100mV 的信号,用示波器在TTA2处观察输出波形,调节TA1使TTA2处信号幅度最大。 4、电压增益A V0 使用BT-3频率特性测试仪测0v A 的方法如下: 在测量前,先要对测试仪的y 轴放大器进行校正,即零分贝校正,调节“输出衰减”和“y 轴增益”旋钮,使屏幕上显示的方框占有一定的高度,记下此时的高度和此时“输出衰减”的读数N 1dB ,然后接入被测放大器,在保持y 轴增益不变的前提下,改变扫频信号的“输出衰减”旋钮,使谐振曲线清晰可见。记下此时的“输出衰减”的值N 2dB ,则电压增益为 A V0=(N1-N2)dB 若用示波器测量,则为输出信号幅度大小与输入信号幅度大小之比。方法如下: 用示波器测输入信号的峰峰值,记为U i 。测输出信号的峰峰值记为U 0。则小信号放大的电压放大倍数A V0=U 0/U i 。如果A V0较小,可以通过调节静态工作点来改善。 5、测量通频带BW 用BT-3频率特性测试仪测量BW : 先调节“频率偏移”(扫频宽度)旋钮,使相邻两个频标在横轴上占有适当的格数,然后接入被测放大器,调节“输出衰减”和y 轴增益,使谐振特性曲线在纵轴占有一定高度,测出其曲线下降3dB 处两对称点在横轴上占有的宽度(记为BW1),根据内频标就可以近似算出放大器的通频带BW= BW1=B 0.7。 6、放大器的选择性 放大器选择性的优劣可用放大器谐振曲线的矩形系数K r0.1表示 用步骤5中同样的方法测出B 0.1即可得: 7 .01.07.01.01.022f f B B K r ??== 由于处于高频区,存在分布参数的影响,放大器的各项技术指标满足设计要求后的元件参数值与设计计算值有一定的偏差,所以在调试时要反复仔细调整才能使谐振回路处于谐振状态。在测试要保证接地良好。

科技学院高频实验指导书

THCGP-1型高频电子线路实验教学系统 实验指导书 大连科技学院电气工程系 实验注意事项 1.每次安装实验模块之前应确保主机箱右侧的交流开关处于断开状态。 2.安装实验模块时,模块右边的双刀双掷开关要拨上,将模板四角的螺孔和母板上的铜支 柱对齐,然后用螺丝固定。确保四个接线柱均拧紧,以免造成实验模块与电源或地接触

不良。经检查确认无误后方可通电实验。 3.各实验模块上的双刀双掷开关、拨码开关、复位开关、自锁开关、手调电位器和旋转编 码器均为磨损件,请勿频繁按动或旋转。 4.请勿直接用手触摸芯片、电解电容器等元件,以免造成损坏。 5.各模块中的3362电位器(蓝色正方形封装)是出厂前调试使用的。出厂后的各实验模 块功能已调至最佳状态,无需另行调节这些电位器,否则将会对实验结果造成影响。 6.在关闭各模块电源之后,方可进行连线。连线时在保证接触良好的前提下应尽量轻插轻 放,检查无误后方可通电实验。拆线时若遇到连线与孔连接过紧,应用手捏住线端得金属外壳轻轻摇晃,直至连线与孔松脱,切勿旋转及用蛮力强行拔出。 7.实验前,应首先熟悉实验模块的电路原理以及内置仪器的性能和使用方法。 8.按动开关或旋动电位器以及调节电感线圈磁芯时,切勿用力过猛,以免造成元件损坏。 9.做综合实验时,应通过联调确保各部分电路处于最佳工作状态。 10.用“短路帽”换接电路时,动作要轻巧,更不能丢失“短路帽”,以免影响后续实验的 正常进行。 11.在打开的实验箱箱盖上不可堆放重物,以免损坏机箱的零部件。 12.实验完毕时必须按开启电源的逆顺序逐级切断相应的电源开关。 13.测量模块在不用时,应保持电源处于切断状态,以免引起干扰。 前言 高频电子技术是一门实践性较强的课程,加强实践环节教学,提高实践教学环节的效果,对这门课的学习是至关重要的,应通过一个学期的实验教学,努力提高学生的实际动手能力,并以实践教学促进学生对教材理论知识的理解和应用。为保证每个实验项目的可操作性,编者经过了一个学期时间的准备,结合自身的实验环节教学,对每个实验项目进行了设计、验证、分析和修正。下面对于本系统的高频电子线路实验项目教学,做以下几点说明和建议: 一、本书所有实验项目所采用的信号源均为高频实验箱自带的高频信号源和低频信号

高频电子技术实验指导书

高频电子技术 实验指导书安阳工学院电子信息与电气工程学院

目录 实验一、小信号调谐放大器 -------------------------------------- 2 实验二、通频带展宽----------------------------------------------5 实验三、LC与晶体振荡器 ---------------------------------------- 8 实验四、幅度调制与解调---------------------------------------- 18 实验五、集成乘法器混频实验 ----------------------------------- 19实验六、变容二极管调频器与相位鉴频器-------------------------22

实验一、小信号调谐放大器 一、实验目的 1)、了解谐振回路的幅频特性分析——通频带与选择性。 2)、了解信号源内阻及负载对谐振回路的影响,并掌握频带的展宽。 3)、掌握放大器的动态范围及其测试方法。 二、实验预习要求 实验前,预习教材选频网络、高频小信号放大器相应章节。 三、实验原理说明 1、小信号调谐放大器基本原理 高频小信号放大器电路是构成无线电设备的主要电路,它的作用是放大 信道中的高频小信号。为使放大信号不失真,放大器必须工作在线性范围内,例如无线电接收机中的高放电路,都是典型的高频窄带小信号放大电路。窄带放大电路中,被放大信号的频带宽度小于或远小于它的中心频率。如在调幅接收机的中放电路中,带宽为9KHz,中心频率为465KHz,相对带宽Δf/f0约为百分之几。因此,高频小信号放大电路的基本类型是选频放大电路,选频放大电路以选频器作为线性放大器的负载,或作为放大器与负载之间的匹配器。它主要由放大器与选频回路两部分构成。用于放大的有源器件可以是半导体三极管,也可以是场效应管,电子管或者是集成运算放大器。用于调谐的选频器件可以是LC谐振回路,也可以是晶体滤波器,陶瓷滤波器,LC集中滤波器,声表面波滤波器等。本实验用三极管作为放大器件,LC谐振回路作为选频器。在分析时,主要用如下参数衡量电路的技术指标:中心频率、增益、噪声系数、灵敏度、通频带与选择性。 单调谐放大电路一般采用LC回路作为选频器的放大电路,它只有一个LC 回路,调谐在一个频率上,并通过变压器耦合输出,图1-1为该电路原理图。 中心频率为f0 带宽为Δf=f2-f1 图1-1. 单调谐放大电路 为了改善调谐电路的频率特性,通常采用双调谐放大电路,其电路如图12-2所示。双调谐放大电路是由两个彼此耦合的单调谐放大回路所组成。它们的谐振C Ec 1 f 0.707 02 1 u

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验 实验一高频小信号放大器 1.1 实验目的 1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。 2、熟悉谐振回路的调谐方法及测试方法。 3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。 1.2 实验内容 1.2.1 单调谐高频小信号放大器仿真 图1.1 单调谐高频小信号放大器 1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。 ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz 2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形 Avo=Vo/Vi=1.06/0.252=4.206 3、利用软件中的波特图仪观察通频带,并计算矩形系数。 通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz 矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)= (14.278GHz-9.359KHz)/7.092MHz=2013.254 4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出

电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av 相应的图,根据图粗略计算出通频带。 Fo(KHz ) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV ) 0.66 9 0.76 5 1 1.05 1.06 1.06 0.97 7 0.81 6 0.74 9 0.65 3 0.574 0.511 Av 2.65 5 3.03 6 3.96 8 4.16 7 4.20 6 4.20 6 3.87 7 3.23 8 2.97 2 2.59 1 2.278 2.028 5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。 2次谐波 4次谐波

高频电路实验2

HUNAN UNIVERSITY 高频电路实验 报告 学生姓名 学生学号 专业班级 指导老师黄生叶 2015 年10月20 日

实验二二极管双平衡混频器 一、实验目的 1.掌握二极管双平衡混频器频率变换的物理过程。 2.掌握晶体管混频器频率变换的物理过程和本振电压V0和工作 电流I e对中频转出电压大小的影响。 3.掌握集成模拟乘法器实现的平衡混频器频率变换的物理过程。 4.比较上述三种混频器对输入信号幅度与本振电压幅度的要求。 二、实验内容 1. 研究二极管双平衡混频器频率变换过程和此种混频器的优缺 点。 2.研究这种混频器输出频谱与本振电压大小的关系。 三、实验仪器 1、1号板1块 2、6号板1块 3、3 号板1块 4、7 号板1块 5、双踪示波器1台 四、实验原理与电路 1、二极管双平衡混频原理

图3-1 二极管双平衡混频器 二极管双平衡混频器的电路图示见图3-1。图中V S 为输入信号电压,V L 为本机振荡电压。在负载R L 上产生差频和合频,还夹杂有一些其它频率的无用产物,再接上一个滤波器(图中未画出) 二极管双平衡混频器的最大特点是工作频率极高,可达微波波段,由于二极管双平衡混频器工作于很高的频段。图3-1中的变压器一般为传输线变压器。 二极管双平衡混频器的基本工作原理是利用二极管伏安特性的非线性。众所周知,二极管的伏安特性为指数律,用幂级数展开为 ?+?++=-=n T T T S S V v n V v V v I e I i T V v )(1)(21[ )1(2!! 当加到二极管两端的电压v 为输入信号V S 和本振电压V L 之和时,V 2项产生差频与和频。其它项产生不需要的频率分量。由于上式中u 的阶次越高,系数越小。因此,对差频与和频构成干扰最严重的是v 的一次方项(因其系数比v 2项大一倍)产生的输入信号频率分量和本振频率分量。

高频实验指导书2017

实验平台操作及注意事项 一、实验平台基本操作方法 在使用实验平台进行实验时,要按照标准的规范进行实验操作,一般的实验流程包含以下几个步骤: (1)将实验台面整理干净整洁,设备摆放到对应的位置开始进行实验; (2)打开实验箱箱盖,或取下箱盖放置到合适的位置;(不同的实验箱盖要注意不能混淆); (3)简单检查实验箱是否有明显的损坏;如有损坏,需告知老师,以便判断是否可以进行正常实验; (4)根据当前需要进行的实验内容,由老师或自行更换实验模块;更换模块需要专用的钥匙,请妥善保管; (5)为实验箱加电,并开启电源;开启电源过程中,需要注意观察实验箱电源指示灯(每个模块均有电源指示),如果指示灯状态异常,需要关闭电源,检查原因; (6)实验箱开启过程需要大约20s时间,开启后可以开始进行实验; (7)实验内容等选择需用鼠标操作; (8)在实验过程中,可以打开置物槽,选择对应的配件完成实验; (9)实验完成后,关闭电源,整理实验配件并放置到置物槽中; (10)盖上箱盖,将实验箱还原到位。 二、实验平台系统功能介绍 实验平台系统分为八大功能板块,分别为实验入门、实验项目、低频信号源、高频信号源、频率计、扫频仪、高频故障(实验测评)、系统设置。

1.设备入门 设备入门分为四类,分别是平台基本操作、平台标识说明、实验注意事项、平台特点概述。 2.实验项目 实验项目是指实验箱支持的实验课程项目,可以完成的实验内容列表,分为高频原理实验和高频系统实验。 高频原理实验细分为八大实验分类,分别是小信号调谐放大电路实验、非线性丙类功率放大电路实验、振荡器实验、中频放大器实验、混频器实验、幅度解调实验、变容二极管调频实验、鉴频器实验。如下图所示。

通信电路实验报告

实验十一包络检波及同步检波实验 一、实验目的 1、进一步了解调幅波的原理,掌握调幅波的解调方法。 2、掌握二极管峰值包络检波的原理。 3、掌握包络检波器的主要质量指标,检波效率及各种波形失真的现 象,分析产生的原因并思考克服的方法。 4、掌握用集成电路实现同步检波的方法。 二、实验内容 1、完成普通调幅波的解调。 2、观察抑制载波的双边带调幅波的解调。 3、观察普通调幅波解调中的对角切割失真,底部切割失真以及检波 器不加高频滤波时的现象。 三、实验仪器 1、信号源模块 1 块 2、频率计模块 1 块 3、4 号板 1 块 4、双踪示波器 1 台 5、万用表 1 块 三、实验原理 检波过程是一个解调过程,它与调制过程正好相反。检波器的作用是从振幅受调制的高频信号中还原出原调制的信号。还原所得的

信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。假如输入信号是高频等幅信号,则输出就是直流电压。这是检波器的一种特殊情况,在测量仪器中应用比较多。例如某些高频伏特计的探头,就是采用这种检波原理。 若输入信号是调幅波,则输出就是原调制信号。这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。从频谱来看,检波就是将调幅信号频谱由高频搬移到低频。检波过程也是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。 常用的检波方法有包络检波和同步检波两种。全载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。 1、二极管包络检波的工作原理 当输入信号较大(大于0.5伏)时,利用二极管单向导电特性对振幅调制信号的解调,称为大信号检波。检波的物理过程如下:在高频信号电压的正半周时,二极管正向导通并对电容器 C 充电,由于二极管的正向导通电阻很小,所以充电电流iD 很大,使电容器上的电压VC 很快就接近高频电压的峰值。 这个电压建立后通过信号源电路,又反向地加到二极管 D 的两端。这时二极管导通与否,由电容器C 上的电压VC和输入信号电

河南理工大学高频实验指导书

目录 实验一调谐放大器 (1) 实验二丙类高频功率放大器 (5) 实验三 LC电容反馈式三点式振荡器 (7) 实验四石英晶体振荡器 (10)

实验一 调谐放大器 一、 实验目的 1、熟悉电子元器件和高频电路试验箱。 2、熟悉谐振回路的幅频特性分析--通频带与选择性。 3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。 4、熟悉和了解放大器的动态范围及其测试方法。 二、 实验仪器 1、双踪示波器 2、扫描仪 3、高频信号发生器 4、毫伏表 5、万用表 6、实验箱 三、 预习要求 1、复习谐振回路的 工作原理。 2、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。 3、试验电路中,若 电感量L=1uh ,回路总 电容C=220pf (分布电容包括在内),计算回路中心频率f0。 四、 实验内容及步骤 (一) 单调谐回路谐振放大器。 1. 试验电路见图1-1 (1)、按图1-1所示连接电路(注意接线前先测量+12V 电源电压,无误后,关断电源再接线)。 (2)、接线后仔细检查,确认无误后连接电源。 图1-1 单调谐回路谐振放大器原理图 IN

2.静态测量 试验电路中选R e=1K,R=10K。 测量各静态工作点,计算并填表1.1 *V B,V E是三极管的基极和发射极对地电压。 3. 动态研究 (1)测放大器的动态范围Vi~V0(在谐振点) 选R=10K,Re=1K。把高频信号发生器接到电路输入端,电路输出端接毫伏表, 选择正常放大区的输入电压Vi,调节频率f使其为10.7MHz,调节C T使回路 谐振,使输入电压幅度最大。此时调节Vi由0.05伏变到0.8伏,逐点记录 V o电压,并填入表1.2。Vi的各点测量值可根据(各自)实测情况来确定。 表1.2 (2)当Re分别为500Ω、2K时,重复上述过程,将结果填入表1.2。在同一坐 标纸上画出Ic不同时的动态范围曲线。 (3)用扫描仪调回路谐振曲线。 仍选R=10K,Re=500。将扫描仪射频输出送入电路输入端,电路输出接至扫频 仪检波器输入端。观察回路谐振曲线(扫频仪输出衰减档位应根据实际情况来 选择适当位置),调回路电容点C T,使f0=10.7MHz。 (4)测量放大器的频率特性 当回路电阻R=10K时,选择正常放大区的输入电压Vi,将高频信号发生器输 出200mV接至电路输入端,调节频率f使其为10.7MHz,调节C T使回路谐振, 使输出电压幅度为最大,此时的回路谐振频率f0=10.7MHz为中心频率,然后 保持输入电压Vi不变,改变频率发由中心频率向两边逐点偏离,测得在不同 频率f时对应的输出电压V0,将测得的数据填入表1.3。频率偏离范围可根据 (各自)实测情况来确定。

模电实验指导书test2

实验一、常用仪器的使用及常用器件的认识、检测一、实验目的 1.学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的技术指标、性能及正确使用方法。 2.初步掌握双踪示波器观察正弦信号波形和读书波形参数的方法。 3.认识常见的电子元器件及其检测方法。 二、实验原理 在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等。它们和万用电表在一起,可以完成对模拟电子电路的静态与动态工作情况的测试。 实验中要对各中电子仪器进行综合使用,可按照信号流向,一连先简捷,调节顺手,观察与读数方便等原则进行合理布局,个仪器与被册实验装置之间的布局与连线如图1——1所示。接线是应注意,为了防止外界的干扰,各仪器的公共接地端应连接在一起,称共地。信号源和交流伏安表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。 1.示波器 在本书实验附录中已对常用的GOS-620型双踪示波器的原理和使用做了较详细的说明,先着重指出下列几点: 1)寻找扫描光迹点 在开机半分钟后,如还找不到光点,可调节亮度旋钮,并按下“寻迹”键,从中判断光点的位置,然后适当调节垂直(↑↓)和水平()移位旋钮,将光点移至荧光屏的中心位置。 2)为了显示稳定的波形,需注意示波器面板上的下列几个控制开关(或旋钮)的位置。 a、“扫描速率”开关(t/div)——它的位置应根据被观察信号的周期来确定。 b、“触发源的选择”开关(内、外)——通常选为内触发。 c、“内触发源的选择”开关(拉YB)——通常至于常态(推进位置)。此时对单一从 YA或YB输入的信号均能同步,仅在作双路同时显示时,为比较两个波形的相对位置,才将其置于拉出(拉YB )位置,此时触发信号仅取自YB,故仅对YB输入的信号同

高频电路(仿真)实验指导书..

高频电路(仿真)实验指导书 电子信息系 2016年3月

实验一、共射级单级交流放大器性能分析 一、实验目的 1、学习单级共射电压放大器静态工作点的设置与调试方法。 2、学习放大器的放大倍数(A u)、输入电阻(R i)、输出电阻(R o)的测试方法。 3、观察基本放大电路参数对放大器的静态工作点、电压放大倍数及输出波形的影响。 4、熟悉函数信号发生器、示波器、数字万用表和直流稳压电源等常用仪器的使用方法。 二、实验原理 如图所示的电路是一个分压式单级放大电路。该电路设计时需保证U B>5~10U BE, I1≈I2>5~10I B,则该电路能够稳定静态工作点,即当温度变化时或三级管的参数变化时,电路的静态工作点不会发生变化。 U B=V CC I C I E 由上式可知,静态工作时,U B是由R1和R2共同决定的,而U BE一般是恒定的,在0.6到0.7之间,所以I C、I E只和有关。 当温度变化时或管子的参数改变时(深究来看,三极管的特性并非是完全线性的,在很多的情况下,必须计入考虑),例如,管子的受到激发而I C欲要变大时,由于R E的反馈作用,使得U BE节压降减小,从而I B减小,I C减小,电路自动回到原来的静态工作点附近。所以该电路不仅有较好的温度稳定性,还可以适应一定非线性的三极管,只要电路设计得当。 调整电阻R1、R2,可以调节静态工作点高低。若工作点过高,使三极管进入饱和区,则会引起饱和失真;反之,三极管进入截止区,引起截止失真。 图1-1 分压式单级放大电路 如图1-1,C1、C2为耦合电容,将使电路只将交流信号传输到负载端,而略去不必要的直流信号。发射极旁路电容C E一般选用较大的电容,以保证对于交流信号完全是短路的,即相当于交流接地。也是防止交流反馈对电路的放大性能造成影响。电路的放大倍数 A U=,输入电阻R i=R1∥R2∥r be,输出电阻R O=R L’,空载时R O=R C。 当发射极电容断开时,在发射极电容上产生交流负反馈,电压的放大倍数为A U=,输入电阻R i=R1∥R2∥[]。输出电阻仍近似等于集电极负载电阻。

高频电子线路实验指导书

高频电子线路实验箱简介 THCGP-1型 仪器介绍 ●信号源: 本实验箱提供的信号源由高频信号源和音频信号源两部分组成,两种信号源的参数如下: 1)高频信号源输出频率范围:0.4MHz~45MHz(连续可调); 频率稳定度:10E–4;输出波形:正弦波; 输出幅度:1Vp-p 输出阻抗:75?。 2)低频信号源: 输出频率范围:0.2kHz~20 kHz(连续可调); 频率稳定度:10E–4;输出波形:正弦波、方波、三角波; 输出幅度:5Vp-p;输出阻抗:100Ω。 信号源面板如图所示 使用时,首先按下“POWER”按钮,电源指示灯亮。 高频信号源的输出为RF1、RF2,频率调节步进有四个档位:1kHz、20kHz、500kHz、1MHz档。 按频率调节选择按钮可在各档位间切换,为1kHz、20kHz、500kHz档时相对应的LED

亮,当三灯齐亮时,即为1MHz档。旋转高频频率调节旋钮可以改变输出高频信号的频率。另外可通过调节高频信号幅度旋钮来改变高频信号的输出幅度。 音频信号源可以同时输出正弦波、三角波、方波三种波形,各波形的频率调节共用一个频率调节旋钮,共有2个档位:2kHz、20kHz档。按频率档位选择可在两个档位间切换,并且相应的指示灯亮。调节音频信号频率调节旋钮可以改变信号的频率。分别改变三种波形的幅度调节旋钮可以调节输出的幅度。 本信号源有内调制功能,“FM”按钮按下时,对应上方的指示灯亮,在RF1和RF2输出调频波,RF2可以外接频率计显示输出频率。调频波的音频信号为正弦波,载波为信号源内的高频信号。改变“FM频偏”旋钮调节输出的调频信号的调制指数。按下“AM”按钮时,RF1、RF2输出为调幅波,同样可以在RF2端接频率计观测输出频率。调节“AM调幅度”可以改变调幅波的幅度。面板下方为5个射频线插座。“RF1”和“RF2”插孔为400kHz ——45MHz的正弦波输出信号,在做实验时将RF1作为信号输出,RF2接配套的频率计观测频率。另外3个射频线插座为音频信号3种波形的输出:正弦波、三角波、方波,频率范围为0.2k至20kHz。 ●等精度频率计 (1)等精度频率计面板示意图: (2)等精度频率计参数如下: 频率测量范围:20Hz——100MHz 输入电平范围:100mV——5V 测量误差:5×10-5±1个字 输入阻抗:1MΩ//40pF (3)使用说明: 频率显示窗口由五位数码管组成,在整个频率测量范围内都显示5位有效位数。按下‘电源’开关,电源指示灯亮,此时频率显示窗口的五位数码管全显示8.,且三档频率指示灯同时亮,约两秒后五位数码全显示0,再进入测量状态。

高频实验指导书

高频电路原理与分析 实验指导书 闽江学院物理学与电子信息工程系 2013年10月

实验一单调谐回路谐振放大器实验 一、实验目的 1.掌握单调谐回路谐振放大器的组成及电路中各元件的作用; 2.通过对谐振回路的调试,对放大器处于谐振时的技术指标进行测试,包括电压放大倍数,通频带,矩形系数等; 3.进一步掌握高频小信号调谐放大器的工作原理。 二、实验原理 实验电路如图1-1所示。电路采用共发射极接法,晶体管的集电极负载为LC并联谐振回路,该电路同时完成放大高频信号和选频作用。晶体管的静态工作点由电阻WA1、RA2,RA3及RA6决定,其计算方法与低频单管放大器相同。 图1-1 单调谐回路谐振放大器 三、调谐放大器的性能指标及测量方法 高频小信号调谐放大器的主要性能指标有谐振频率 f,谐振电压放大倍数

0v A ,放大器的通频带BW 和选择性。指标的测量方法如下: 1、谐振频率0f 放大器的调谐回路谐振时所对应的频率0f 称为放大器的谐振频率,其值为 LC f π21 0= 式中,L 为调谐回路电感线圈的电感量;C 为调谐回路的总电容,即 ie oe C P C P C C 22211++= 式中, Coe 为晶体管的输出电容;Cie 为晶体管的输入电容。 测量方法:采用函数信号发生器输出不同频率的等幅正弦波信号,测量输出端电压,找出输出幅值最大的频率点既为谐振频率点0f 。 2、电压放大倍数0v A 放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大器的电压放大倍数。A V0的测量方法是:在谐振回路已处于谐振状态时,用高频电压表测量电路输出电压0u 和输入电压u i 的大小,然后通过下面的公式计算得到A V0。 i v u u A 00=(或dB u u A i v )lg(2000=) 3、通频带 当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带B W ,其表达式为 BW = 2△f 0.7 = fo/Q L 其中,Q L 为谐振回路的有载品质因数。 通频带BW 的测量方法:是通过测量放大器的谐振曲线来求通频带,这里采用逐点法来测量:先调谐放大器的谐振回路使其谐振,记下此时的谐振频率f 0及电压放大倍数A V0然后改变高频信号发生器的频率(保持其输出电压u S 不变),并测出对应的电压放大倍数A V0。由于回路失谐后电压放大倍数下降,

高频电子线路实验指导书副本

高频电子线路实验箱简介 HD-GP-Ⅲ型 一、产品组成 该产品由3种实验仪器、10个实验模块(其中1、6、9号模块属于选配模块)及实验箱体(含电源)组成。 1.实验仪器及主要指标如下: 1)频率计: 频率测量范围:50Hz~99MHz 输入电平范围:100mVrms~2Vrms 测量误差:≤±20ppm(频率低端≤±1Hz) 输入阻抗:1MΩ/10pF 2) 信号源: 输出频率范围:400KHz~45MHz(连续可调) 频率稳定度:10E-4 输出波形:正弦波,谐波≤-30dBc 输出幅度:1mVp-p~1Vp-p(连续可调) 输出阻抗:75Ω 3) 低频信号源: 输出频率范围:200Hz~16KHz(连续可调) 频率稳定度:10E-4 输出波形:正弦波、方波、三角波 输出幅度:10mVp-p~5Vp-p(连续可调) 输出阻抗:100Ω 2.实验模块及电路组成如下: 1)模块1:单元选频电路模块 该模块属于选件,非基本模块 包含LC并联谐振回路、LC串联谐振回路、集总参数LC低通滤波器、陶瓷滤波器、石英晶体滤波器等五种选频回路。 2)模块2:小信号选频放大模块 包含单调谐放大电路、电容耦合双调谐放大电路、集成选频放大电路、自动增益控制电路(AGC)等四种电路。 3)模块3:正弦波振荡及VCO模块

包含LC振荡电路、石英晶体振荡电路、压控LC振荡电路等三种电路。 4)模块4:AM调制及检波模块 包含模拟乘法器调幅(AM、DSB、SSB)电路、二极管峰值包络检波电路、三极管小信号包络检波电路、模拟乘法器同步检波电路等四种电路。 5)模块5:FM鉴频模块一 包含正交鉴频(乘积型相位鉴频)电路、锁相鉴频电路、基本锁相环路等三种电路。 6)模块6:FM鉴频模块二 该模块属于选件,非基本模块 包含双失谐回路斜率鉴频电路、脉冲计数式鉴频电路等两种电路。 7)模块7:混频及变频模块 包含二极管双平衡混频电路、模拟乘法器混频电路、三极管变频电路等三种电路。 8)模块8:高频功放模块 包含非线性丙类功放电路、线性宽带功放电路、集成线性宽带功放电路、集电极调幅电路等四种电路。 9)模块9:波形变换模块 该模块属于选件,非基本模块 包含限幅电路、直流电平移动电路、任意波变方波电路、方波变脉冲波电路、方波变三角波电路、脉冲波变锯齿波电路、三角波变正弦波电路等七种电路。 10)模块10:综合实验模块 包含话筒及音乐片放大电路、音频功放电路、天线及半双工电路、分频器电路等四种电路。 二、产品主要特点 1.采用模块化设计,使用者可以根据需要选择模块,既可节约经费又方便今后升级。 2.产品集成了多种高频电路设计及调试所必备的仪器,既可使学生在做实验时观察实验现象、调整电路时更加全面、更加有效,同时又可为学生在进行高频电路设计及调试时提供工具。 3.实验箱各模块有良好的系统性,除单元选频电路模块及波形变换模块外,其余八个模块可组合成四种典型系统: ⑴中波调幅发射机(535KHz~1605KHz)。 ⑵超外差中波调幅接收机(535KHz~1605KHz,中频465KHz)。 ⑶半双工调频无线对讲机(10MHz~15MHz,中频4.5MHz,信道间隔200KHz)。 ⑷锁相频率合成器(频率步进40KHz~4MHz可变)。 4.实验内容非常丰富,单元实验包含了高频电子线路课程的大部分知识点,并有丰富的、有一定复杂性的综合实验。 5.电路板采用贴片工艺制造,高频特性良好,性能稳定可靠。 三、实验内容 1. 小信号调谐(单、双调谐)放大器实验(模块2)

收音机实验报告

《高频电子线路》课程设计报告 题目SD-105 七管半导体收音机 学院(部)信息学院 专业通信工程 班级2011240401 学生姓名张静 学号33 指导教师宋蓓蓓,利骏

目录 一、概括……………………………………页码 二、收音机工作原理……………………………………页码 三、各部分设计及原理分析……………………页码 四、实验仿真及结果……………………………页码 五、结论…………………………………………页码 六、心得体会……………………………………页码 七、参考文献……………………………………页码

调幅半导体收音机原理及其调试 一概述:收音机的发明人类自从发现能利用电波传递信息以来,就不断研究出不同的方法来增加通信的可靠性、通信的距离、设备的微形化、省电化、轻巧化等。接收信息所用的接收机,俗称为收音机。目前的无线电接收机不单只能收音,且还有可以接收影像的电视机、数字信息的电报机等。 随着广播技术的发展,收音机也在不断更新换代。自1920年开发了无线电广播的半个多世纪中,收音机经历了电子管收音机、晶体管收音机、集成电路收音机的三代变化,功能日趋增多,质量日益提高。20世纪80年代开始,收音机又朝着电路集成化、显示数字化、声音立体化、功能电脑化、结构小型化等方向发展。 1947年、美国贝尔实验室发明了世界上第一个晶体管,从此以后.开始了收音机的晶体管时代.并且逐步结束了以矿石收音机、电子管收音机为代表的收音机的初级阶段。 调幅收音机:由输入回路、本振回路、混频电路、检波电路、自动增益控制电路(AGC)及音频功率放大电路组成输入回路由天线线圈和可变电容构成,本振回路由本振线圈和可变电容构成,本振信号经内部混频器,与输入信号相混合。混频信号经中周和455kHz陶瓷滤波器构成的中频选择回路得到中频信号。至此,电台的信号就变成了以

相关文档
最新文档