原油流变学-第4章 原油流变性 §4.8 稠油及原油乳状液的流变性
原油流变曲线

原油流变曲线原油流变曲线是石油工程中一个非常重要的参数,它用来描述原油在不同剪切速率下的流变性质。
通过研究原油流变曲线,可以对原油的流变特性进行分析,进而指导石油生产过程的设计与调整。
本文将从原油流变曲线的定义、影响因素以及具体应用等方面进行论述。
一、原油流变曲线的定义原油流变曲线是指将原油剪切应力与剪切速率的关系表示出来的一条曲线。
剪切应力是指在原油中施加剪切力产生的应力,而剪切速率则是原油在受到剪切力作用下的变形速率。
原油流变曲线可以分为剪切应力-剪切速率曲线、粘度-剪切速率曲线以及剪切应力-粘度曲线等不同表示形式。
二、影响原油流变曲线的因素1. 原油成分及含量:原油的成分及含量将直接影响其流变性质。
不同组分的原油在剪切过程中会表现出不同的流变行为,例如某些原油在低剪切速率下呈现剪切稀化,而在高剪切速率下则呈现剪切稠化的特性。
2. 温度:温度对原油的流变性质有显著影响。
一般来说,温度升高会导致原油的粘度降低,使其在剪切过程中流动性增强,流变曲线也会相应发生改变。
3. 懸浮物含量:原油中的悬浮物会对流变特性产生重要影响。
悬浮物在流体中的分布和浓度将影响流体的流动性和黏稠度,进而改变原油的流变曲线。
4. 含水量:原油中的水含量也是影响流变曲线的一个重要因素。
水的存在会降低原油的粘度,使其在剪切过程中呈现更加稀释的特性。
三、原油流变曲线的应用1. 物性评价:通过研究原油的流变曲线,可以评估原油的黏稠度、流动性以及流变特性等物性参数。
这对于在石油生产中进行油井测试及井筒流体分析具有重要意义。
2. 油藏开发:原油流变曲线对于油藏的开发和开采有着重要的指导作用。
通过分析原油的流变特性,可以为油藏的合理开发提供重要依据,例如在注水、注聚等工艺中通过调整剪切速率来优化原油的流动性。
3. 流程设计:原油流变曲线也是流程设计中不可或缺的参考依据。
在炼油过程中,不同原油的流动性差异会影响到管道输送、减压装置以及储存等环节的设计。
原油流变学-第4章 原油流变性 §4.5 含蜡原油的触变性

(4)用从低到高,再 从高到低改变剪切速率的方 法,测定具有胶凝结构的原 油流变性,ห้องสมุดไป่ตู้得到如图所示 的滞回曲线。
6
(5)对具有触变性的含蜡原油,若在某一剪切速率下 剪切至动平衡状态,可得到相应的动平衡剪切应力和动平衡 表观粘度。
测定触变性含蜡原油的动平衡流变曲线,只可使用一
个油样,通过选择5个或更多的剪切速率档,从低到高逐级 增大,就可得到实验温度下的动平衡流变曲线。
➢ 剪切作用越强,这种破坏程度越大,蜡晶取向越强,表现为: 原油的表观粘度随剪切速率的增大而减小;在恒定的剪切速 率作用下,表观粘度随时间而降低等。
2
二、 含蜡原油的触变性特征 (1)一般在反常点附近的非牛顿流体温度下,由于原油的
内部结构较弱,其触变性在测量流变仪上显现不出来,因此可 以认为原油没有触变性。随温度的进一步降低,原油开始明显 显现出触变性,这一温度称之为原油的显触点。 ➢ 研究表明,原油的显触点取决于原油的组成、原油所经历的
1
➢ 对天然的非牛顿含蜡原油来说,胶质、沥青质与蜡晶能够相 互作用(共晶与吸附等)。一方面,使蜡晶之间的絮凝作用进 一步增强,蜡晶的空间网络结构具有更高的强度。另一方面, 使内部结构逐步恢复到内能最小的稳定状态,表现为随静置 时间的增加,原油的内部结构强度增强,表观粘度增大。
➢ 含蜡原油在常温或低温下的内部结构特点,决定了其具有剪 切稀释性和触变性:即由于剪切的作用,造成含蜡原油中蜡 晶的絮凝结构被破坏、蜡晶在流动方向上取向。
热历史、剪切历史,以及原油添加化学改性剂的条件等。
3
(2)对经历一定历史条件,
并在一定的低温静置条件下形成胶 凝结构的含蜡原油,在恒定的剪切 应力下,进行初次剪切,会得到一 条典型的剪切应力随时间的衰减曲 线,称之为初次裂降曲线。
原油流变学

油工业出版社.1990
5.其它一些参考书。
课程简单介绍及一些具体要求:
1.考试课,统一考试。 2.总学时36,理论讲授33学时,实验3学时。 3.考试成绩70%,平时成绩(出勤、作业、课堂表现)20%, 实验成绩10%
4.课程名称为“流变学”,实际为“非牛顿流体力学”,
更具体应为“原油流变性及其测量” 5.主要讲授的内容:流变学基础、流变性测量、结合专业
物质被看成是连续介质,就摆脱了复杂的分子运动,而着
眼于宏观运动,那么反映宏观物质的各种物理性质都是空 间坐标的连续函数,在解决流变学问题时,就可应用数学
分析中的连续函数概念进行数学解析。
当所研究的物体大小与物质分子的平均自由行程在同一个 数量级时,连续介质模型是不适用的。
二、连续介质中的力
在流变学中,作用在质点上的力用应力表示 1、应力矢量(stress vector) 假定作用于p点的力为F, 那么p点的应 力矢量定义为:
压缩与膨胀。
简单拉伸: 物体只在一个方向(受力方向)上产生拉伸
应变。长细比很大的杆件单向拉伸时,只能度量出拉伸方
向的应变。 拉伸应变(extensional strain): 应变速率(extensional strain rate):
xx dx / x
xx dx /xdt d xx / dt
流体(如润滑油、油漆、泥浆等)的流动规律,而且把20世 纪以前积累下来的有关流变学的零碎知识进行了系统的归 纳,并正式命名为流变学(Rheology)。1929年Bingham等 倡议成立了美国流变学会(society of rheology of USA),且
同年创刊流变学杂志(Journal of Rheology)。人们一般以此
原油流变性的研究

在渗流孔道内充分接触与混合, 加上原油内本身存
在着部分天然乳化剂, 逐渐将部分水与原油混合乳
化起来。随着油田水前缘不断推进, 油水乳化逐渐加
剧, 因此, 原油中乳化水含量就会不断增加。 随着原
油乳化水含量的变化, 原油的粘度相应也发生较大
的变化。而原油粘度差异又是导致开采过程中, 注水
前缘指进和前沿突破的重要因素。 因此探求乳化水
韦 5 原油主要属于稠油范畴, 而其它几个油田 的原油主要属于易凝含蜡原油, 当温度高于反常点 时, 崔庄、范庄、码头庄原油粘度相对较低, 流变性表 现较好, 而韦 5 原油粘度较高, 其流变性相对较差。 当原油的温度在反常点以上, 范、崔、码油田的原油 粘度随温度降低, 其粘度变化梯度较小, 而韦 5 原油 表观粘度的变化梯度远远小于其它几个油田的原油
Ξ 收稿日期: 2005 年 10 月 28 日 © 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
2006 年第 1 期 郑丽梅 原油流变性的研究
81
合物在原油中易形成空间网状结构, 这种结构在原 油流动时容易破坏, 破坏的程度与流动的速度有关。 当原油静止时, 结构得以恢复, 重新流动时粘度就很 大。所以原油具有异常的粘度, 在渗流时易发生滞后 现象。要提高原油的采收率, 就必须改善原油的流变 性, 及降低其粘度和极限动剪切应力。 2. 2 原油触变性实验开展
原油流变性的研究
郑丽梅Ξ
(江苏金湖县试采二厂)
摘 要 本文通过对崔庄、韦 5 等具有江苏油田原油代表性质的原油的流变性开展实验研究, 在对 原油的全分析、流型、触变性、粘温性等实验开展的基础上, 对实验结果进行归纳分析, 并对产生的实验 结果的原因进行了探讨, 初步确定了江苏油田原油的组分性质, 流变模型、粘温特性及其影响因素等结 论。
原油流变学 粘弹性流体

= 12
N1 = (2)第一法向应力系数 1 2
(3)第二法向应力系数
2 = N 2
2
均为0, 和 2 1 为常数。 对于牛顿流体,
4.回弹现象
5.无管虹吸现象
6.次级流现象
7.紊流减阻现象
二、粘弹性流体的流变特征
1.法向应力与法向应力差
当力F作用于物体时,物体内部体积元所受的总应力(或物体内
可用九个应力分量 ij 表示,或者说 部某一点所受到的总应力)
可分解为九个应力分量 ij ,其中i代表应力分量作用的平面
-时间曲线是介于理想固体与理想流体之间的独特的特性曲线。 在应力施加阶段的应变-时间曲线为蠕变曲线,在应力消除后
对应的应变-时间曲线为回复曲线。
蠕变与回复曲线
5.线性粘弹性与非线性粘弹性
流体的粘弹性可分为线性粘弹性和非线性粘弹性。线性粘弹 性即应力、应变和应变速率之间成线性关系。粘弹性流体往往 只能在较小的形变或形变速率下才出现线性特性。在较大的应 变或剪切速率下,应力、应变和应变速率之间一般不成线性关
τ13= τ31 , τ23= τ32 。对简单的剪切流动, τ13= τ31=0, τ23= τ32 =0, 故只有剪切应力τ12起作用。
11- 22=N1 为 第 一 法 向 应 力 差 , 产 生 轴 向 压 力 , 引 起
Weissenberg效应和挤出物胀大现象。
22- 33=N 2为第二法向应力差,产生径向压力,通常很小,
a b
弹性滞后曲线示意图
WO型原油乳状液流变性质

三、W/O 型原油乳状液的流变性1、原油乳状液的流型及转相稀乳状液通常表现出牛顿流体特性,但随着内相体积浓度φ的增加,乳状液由牛顿流体变成非牛顿流体,表观粘度几乎呈指数规律增大(φ小于临界转相浓度),图1-1给出了乳状液相对粘度随分散相体积浓度的变化关系。
可见,内相浓度对流变性的影响可分为三个区:Ⅰ区为低内相体积浓度范围,乳状液呈牛顿流体;Ⅱ区为中等浓度范围,乳状液呈非牛顿流体,随φ增大最初为假塑性流体,在浓度较高时表现出塑性流体性质,当φ接近临界转相浓度 ,且在低剪切应力作用下,乳状液表现出粘弹性;Ⅲ区乳状液转相,一般为牛顿流体。
另外,对W/O 型原油乳状液的研究发现,随含水率φ增大,乳状液凝点升高,屈服值增大。
图4-34给出了某含蜡原油的W/O 型乳状液在纯原油凝点温度33℃下的屈服值随体积含水率的变化曲线,在该例子中,乳状液的屈服值随含水率的增加几乎是呈线性规律增大。
图1-1 乳状液相对粘随分散相浓度的变化曲线图1-2 某含蜡原油的W/O 型乳状液的屈服值随含水率的变化曲线2、影响乳状液流变性的因素油井采出液大多为W/O 型乳状液,且不含有专用的人工乳化剂。
从工程实际应用讲,乳状液表观粘度是管输工艺计算的最重要指标之一。
因此,对乳状液流变性的研究往往把其表观粘度作为最重要的评价指标。
影响乳状液流变性的主要因素有:(1)内相浓度随内相体积浓度增大,分散相颗粒相互作用增强,导致乳状液表观粘度增大,非牛顿性增强。
很稀的乳状液(φ<0.02)常常呈牛顿流特性,常用Einstein 公式表示其粘度与内相浓度的关系:)+(=φμμk 10式中: μ ---乳状液的粘度,φ---内相体积分数,0μ —外相粘度,k---常数 2.5 尽管有关乳状液表观粘度的公式很多,但实际计算中用得较多的是Richardson 公式:)(=φμμk ex p 02)连续相粘度几乎所有有关乳状液表观粘度的理论或经验公式中,均把外相粘度当作决定乳状液粘度的最重要因素,多数公式表明乳状液粘度与外相粘度成正比。
原油流变学-第4章 原油流变性 §4.1 原油的基本组成

➢ 在石油化学中,正构烷烃总含量及其单体分布被看做是识 别原油的指纹,其对原油的流变性以及降凝剂的作用效果 等有重要影响。
7
含量(wt%) 含量(wt%)
8
#1
#2
6
4
4 2
2
0 C8 C12 C16 C20 C24 C28 C32 C36 C40
碳数
北疆油碳数分布
0 C8 C12 C16 C20 C24 C28 C32 C36 C40
➢ 原油中非碳氢元素的含量虽然较低,但以非烃类化合物形 式存在的含量却相当高,因为非烃类化合物包括了含氮、 氧、硫等元素的化合物及胶状、沥青状化合物,它们大部 分集中在重组分中
➢ 原油中溶解的天然气主要由甲烷和乙烷组成,有时含有一 定量的氮气和少量的二氧化碳气。原油中溶解的天然气可 降低石油的粘度和密度,并使原油的压缩系数增大。
➢ 温度越低,其结构变得越加稳定。当原油中溶解有天然气 时,原油中的网络结构变得松散。
12
➢ 形成蜡晶时,原来在液体中相互平衡的分子,其位置要
发生某种变动。分子的排列,即它们在晶体中的空间位
置要遵循如下原则:当一个分子的凸部填入另一个分子
的凹部时,整个分子的势能应具有最小值。
➢ 从热力学的观点看,由于温度降低,蜡分子在固体蜡晶
➢ 蜡在苯、氯仿和二硫化碳中有较好的溶解性。蜡属于非极 性或弱极性的物质,其化学性质很不活泼。
9
蜡在石油中的状态与温度、石油的成分、溶解气的含量、 压力等条件有关。
当原油温度低于饱和温度,即过冷度超过蜡结晶析出所要 求的临界过冷度时,原油中液态蜡分子的聚结稳定性就开始下 降,从而导致从溶液中析出固态烃,并形成蜡晶。这种结晶能 力在很大程度上取决于蜡分子的结构、大小、形状和迁移率。
《原油流变学》(复习资料)

第一章1.流变学(Rheology)是研究物质变形与流动的科学。
实际物质在外力作用下怎样变形与流动,这是物质本身固有的性质,可以称其为物质的流变性(即物质在外力作用下变形与流动的性质)。
流变学就是研究物质流变性的科学。
2.流变学研究的是纯弹性固体和牛顿流体状态之间所有物质的变形与流动问题。
3.流变学更注重不同物质的力学性质与其内部结构之间的关系4.流变学中物质所受到的力用应力或应力张量表示5.流变学中用应变或应变速率表示物质的运动状态即变形或流动。
6.流体质点就是流体中宏观尺寸非常小而微观尺寸又足够大的任意一个物理实体。
7.物质状态的变化称为变形,而物质连续无限地变形就是流动。
8.流变学中有三种基本变形:简单拉伸、简单剪切和体积压缩与膨胀9.反映材料宏观性质的数字模型称为本构方程,亦称为流变状态方程和流变方程10.对一些简单的流变性制的描述也可以用曲线形式表示,如剪切应力与剪切速率关系曲线,粘度随剪切速率变化曲线等,并称之为流变曲线。
第二章1.散体系是指将物质(固态、液态或气态)分裂成或大或小的粒子,并将其分布在某种介质(固态、液态或气态)之中所形成的体系。
2.分散体系可以是均匀的也可以是非均匀的系统。
均匀分散体系是由一相所组成的单相体系,而非均匀分散体系是指由两相或两相以上所组成的多相体系。
3.非均匀分散体系必须具备2个条件:①在体系内各单位空间所含物质的性质不同;②存在着分界的物理界面。
4. 对非均匀分散体系,被分散的一相称为分散相或内相,把分散相分散于其中的一相称为分散介质,亦称外相或连续相。
5.尽管非牛顿流体在微观上往往是非均匀的多相分散体系,或非均匀的多相混合流体,但在用连续介质理论或宏观方法研究其流变性问题时,一般可以忽略这种微观的非均匀性,而认为体系为一种均匀或假均匀分散体系。
6.对非牛顿流体,没有恒定的粘度概念,不同的剪切速率下有不同的表观粘度,这是非牛顿流体的一大特点。
7、一受力就有流动,但剪切应力与剪切速率的不成比例,随着剪切速率的增大,剪切应力的增加速率越来越大,即随着剪切速率的增大,流体的表观粘度增大,这种特性被称为剪切增稠性(shear thickening)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稠油(Heavy oil)亦称重质原油,是一种富含胶 质和沥青质的多烃类复杂混合物,通常指粘度大于 1102mPa.s(50℃)和相对密度大于0.92g/cm3 (20℃) 的原油。
§4.8 稠油及原油乳状液的流变性
➢ 对于含蜡原油,当油温高于析蜡温度时,粘度较低,原油 呈牛顿流体特性,只有当温度低于析蜡温度并接近凝点时, 粘度才急剧升高,转化为非牛顿流体。
第四章作业:Байду номын сангаас
1、蜡在原油中的状态受哪些条件的影响?胶质、沥 青质对原油流变性的影响有哪些特点?
2、为什么含蜡原油会随着温度的降低出现牛顿流体、 假塑性流体、屈服-假塑性流体三种流变类型?
3、当加热温度低于最优热处理温度时,含蜡原油的 低温流变性恶化的机理是什么?
4、简述原油乳状液的形成原因?原油乳状液的类型 有哪些?
➢ 而对于胶质、沥青质含量高的稠油,其轻馏分(尤其是直链 含蜡烃)含量少,且硫、氧、氮等元素化合物和镍、钒等金 属含量也较高,因而稠油比重大、粘度高、凝点较低,一 般在较宽的温度范围内呈牛顿流体特性。
➢ 稠油不仅在常温粘度大,即使在较高的温度下,仍具有很 高的粘度。在反常点温度以下,稠油往往呈现宾汉姆流体 特性,具有一定的屈服值。
➢ 影响乳状液流变性的因素
➢ 影响乳状液流变性的因素
➢ 影响乳状液流变性的因素
➢ 影响乳状液流变性的因素
➢ 影响乳状液流变性的因素
➢ 影响乳状液流变性的因素
➢ 电粘效应 ➢ 当液珠带电的乳状液受到剪切时,需要克服液珠表面电
荷与周围双电层内反离子的相互作用,这就导致额外的 能量损失,表现为 粘度增大,即电粘效应。 ➢ 老化 ➢ 新鲜乳状液在环境温度下静置储存,随时间延长,乳状 液的流变性会有所变化。
➢ 稠油的粘度很高,这种原油的输送对传统的加热输送工艺 提出了挑战。
➢ 据估计,对管径ф273,年输量100万吨的管线,如果采取加 热保温的方式输送草桥特稠油,那么为了保持原油的粘度 在泵输的允许范围之内,管线上10公里左右就要建一个加 热站,消耗和浪费了大量燃料。
➢ 有些稠油的运输甚至靠用罐车外运,效率极低。除草桥外, 我国其它油田也遇到了类似的问题,这就促使人们去寻找 其它技术和经济上可行的输送工艺。
二、原油乳状液的流变性
➢ 原油乳状液的流型及转向
➢ 图4-33给出了乳状液相对粘度随分散相体积浓度的变化关系。 ➢ 可见,内相浓度对流变性的影响可分为三个区: ➢ Ⅰ区为低内相体积浓度范围,乳状液呈牛顿流体; ➢ Ⅱ区为中等浓度范围,乳状液呈非牛顿流体,随φ增大最初为假
塑性流体,在浓度较高时表现出塑性流体性质,当φ接近 临界转 相浓度 max 且在低剪切应力作用下,乳状液表现出粘弹性; ➢ Ⅲ区乳状液转相,一般为牛顿流体。