原油流变学-第4章 原油流变性 §4.5 含蜡原油的触变性
原油流变学-第4章 原油流变性 §4.8 稠油及原油乳状液的流变性

稠油(Heavy oil)亦称重质原油,是一种富含胶 质和沥青质的多烃类复杂混合物,通常指粘度大于 1102mPa.s(50℃)和相对密度大于0.92g/cm3 (20℃) 的原油。
§4.8 稠油及原油乳状液的流变性
➢ 对于含蜡原油,当油温高于析蜡温度时,粘度较低,原油 呈牛顿流体特性,只有当温度低于析蜡温度并接近凝点时, 粘度才急剧升高,转化为非牛顿流体。
第四章作业:Байду номын сангаас
1、蜡在原油中的状态受哪些条件的影响?胶质、沥 青质对原油流变性的影响有哪些特点?
2、为什么含蜡原油会随着温度的降低出现牛顿流体、 假塑性流体、屈服-假塑性流体三种流变类型?
3、当加热温度低于最优热处理温度时,含蜡原油的 低温流变性恶化的机理是什么?
4、简述原油乳状液的形成原因?原油乳状液的类型 有哪些?
➢ 而对于胶质、沥青质含量高的稠油,其轻馏分(尤其是直链 含蜡烃)含量少,且硫、氧、氮等元素化合物和镍、钒等金 属含量也较高,因而稠油比重大、粘度高、凝点较低,一 般在较宽的温度范围内呈牛顿流体特性。
➢ 稠油不仅在常温粘度大,即使在较高的温度下,仍具有很 高的粘度。在反常点温度以下,稠油往往呈现宾汉姆流体 特性,具有一定的屈服值。
➢ 影响乳状液流变性的因素
➢ 影响乳状液流变性的因素
➢ 影响乳状液流变性的因素
➢ 影响乳状液流变性的因素
➢ 影响乳状液流变性的因素
➢ 影响乳状液流变性的因素
➢ 电粘效应 ➢ 当液珠带电的乳状液受到剪切时,需要克服液珠表面电
荷与周围双电层内反离子的相互作用,这就导致额外的 能量损失,表现为 粘度增大,即电粘效应。 ➢ 老化 ➢ 新鲜乳状液在环境温度下静置储存,随时间延长,乳状 液的流变性会有所变化。
(完整版)原油流变学

第一章1粘性;当相邻流层存在着速度差时,快速流层力图加快慢速流层,慢速流层力图减慢快速流层,这种相互作用随着速度差的增加而加剧,流体所具有的这种性质就是粘性2动力粘度:流体对变形的抵抗随形变速率的增加而增加的性质3运动粘度:动力粘度与同温度下流体密度的比值4流变学:是一门研究材料或物质在外力作用下变形与流动的科学5流变学研究的是纯粘性固体与牛顿流体状态间的所有物质的变形与流动的问题5物质的流变性:物体在外力的作用下变形与流动的性质6连续介质:就是把物质看做是由一个挨一个的,具有确定质量的,连续的充满空间的众多微小质点所组成的7一般施加到材料上的力有三种或三种的组合:拉力,压缩力,切向力8应变速率又分为拉伸应变速率和剪切应变速率9剪切应变速率描述的是流体的剪切运动,拉伸应变速率描述流体的拉伸运动10剪切速率:单位时间内剪切应变的变化11本构方程(流变状态方程,流变方程):料宏观性质的数学模型12物质的流变学分类:刚体,线性弹性体,弹粘性体(弹粘性固体,粘弹性流体),非线性粘性流体,牛顿流体,无粘性流体。
13德博拉准则:De很小,呈现粘性,很大,呈现弹性14分散体系:指将物质(固态,液态,气态)分散成或大或小的粒子,并将其分布在某种介质之中所形成的体系15非均匀分散体系具备的2个条件:在体系内个单位空间所含物质的性质不同,存在着分界的物理界面16流体的流变性分类:按照流体是否含牛顿内摩擦定律(牛顿流体,非牛顿流体),按流体是否具有弹性(纯粘性流体,粘弹性流体),按照流变性是否与时间有关(与时间有关的流体,与时间无关的流体)17与时间无关的流体:牛顿流体,胀流型流体,宾汉姆流体,屈服-假塑性流体,卡森流体18随着剪切速率的增加,表观粘度是减小的,因此假塑性流体具有剪切稀释性19剪切稀释性:对于假塑性流体,随着剪切速率的增加或剪切应力的增加,表观粘度降低,对其他类型的非牛顿流体,也表明这一特点,这一特点在流变学上称为剪切稀释性20具有剪切稀释性的原因:假塑性流体是最常见的非牛顿流体,在乳胶类,悬浮类,分散类物料中广泛遇到。
第四章 易凝高粘原油输送工艺

P16
第四章 易凝高粘原油输送工艺
三、影响降凝剂改性效果的主要因素
(一)原油的组成及降凝剂与原油的适配性 1.影响降凝剂改性效果的内因是原油的组成和降凝剂的化学组成。 1.影响降凝剂改性效果的内因是原油的组成和降凝剂的化学组成。 影响降凝剂改性效果的内因是原油的组成 组成
P25
第四章 易凝高粘原油输送工艺
(五)其他影响因素
1. 重复加热(温度回升) 2. 降温速率 3. 掺入未经改性处理的“生油”
P26
第四章 易凝高粘原油输送工艺
四、降凝剂改性原油输送管道的运行
(一)降凝剂改性处理工艺过程 商品降凝剂主要包括颗粒型和溶液型。国内使用的一般为3mm左右 的固体颗粒。使用时,一般在现场用原油稀释为5%-10%的溶液,且需将 原油和降凝剂加热至80-85℃,并加以适当搅拌。 降凝剂注入系统包括降凝溶解/稀释罐、降凝剂溶液储罐、齿轮泵、 过滤器等。
P5
第四章 易凝高粘原油输送工艺
蜡是石油中的一类化合物。广义上,石油蜡包括液蜡、石油脂、 石蜡和微晶蜡。对原油流变性影响较大的主要是后两类。 石蜡烃类分子的碳原子数为C17 - C35,平均分子量为300 – 450。 石蜡是多种烃类的混合物,结晶过程复杂,不仅会出现单一烃类组 分的单晶,还会生成不同烃类的共晶混合体。 因此,蜡是对原油流变性影响很大的组分。原油在不同温度下 原油在不同温度下 表现出不同的流变特性,及原油的流变特性与剪切历史和热历史的 表现出不同的流变特性, 相关性,其根本原因是蜡存在的形态及蜡晶的形态与结构的不同 相关性,其根本原因是蜡存在的形态及蜡晶的形态与结构的不同。 蜡存在的形态及蜡晶的形态与结构的不同
第四章 易凝高粘原油输送工艺
原油流变学-第4章 原油流变性 §4.1 原油的基本组成

➢ 在石油化学中,正构烷烃总含量及其单体分布被看做是识 别原油的指纹,其对原油的流变性以及降凝剂的作用效果 等有重要影响。
7
含量(wt%) 含量(wt%)
8
#1
#2
6
4
4 2
2
0 C8 C12 C16 C20 C24 C28 C32 C36 C40
碳数
北疆油碳数分布
0 C8 C12 C16 C20 C24 C28 C32 C36 C40
➢ 原油中非碳氢元素的含量虽然较低,但以非烃类化合物形 式存在的含量却相当高,因为非烃类化合物包括了含氮、 氧、硫等元素的化合物及胶状、沥青状化合物,它们大部 分集中在重组分中
➢ 原油中溶解的天然气主要由甲烷和乙烷组成,有时含有一 定量的氮气和少量的二氧化碳气。原油中溶解的天然气可 降低石油的粘度和密度,并使原油的压缩系数增大。
➢ 温度越低,其结构变得越加稳定。当原油中溶解有天然气 时,原油中的网络结构变得松散。
12
➢ 形成蜡晶时,原来在液体中相互平衡的分子,其位置要
发生某种变动。分子的排列,即它们在晶体中的空间位
置要遵循如下原则:当一个分子的凸部填入另一个分子
的凹部时,整个分子的势能应具有最小值。
➢ 从热力学的观点看,由于温度降低,蜡分子在固体蜡晶
➢ 蜡在苯、氯仿和二硫化碳中有较好的溶解性。蜡属于非极 性或弱极性的物质,其化学性质很不活泼。
9
蜡在石油中的状态与温度、石油的成分、溶解气的含量、 压力等条件有关。
当原油温度低于饱和温度,即过冷度超过蜡结晶析出所要 求的临界过冷度时,原油中液态蜡分子的聚结稳定性就开始下 降,从而导致从溶液中析出固态烃,并形成蜡晶。这种结晶能 力在很大程度上取决于蜡分子的结构、大小、形状和迁移率。
《原油流变学》(复习资料)

第一章1.流变学(Rheology)是研究物质变形与流动的科学。
实际物质在外力作用下怎样变形与流动,这是物质本身固有的性质,可以称其为物质的流变性(即物质在外力作用下变形与流动的性质)。
流变学就是研究物质流变性的科学。
2.流变学研究的是纯弹性固体和牛顿流体状态之间所有物质的变形与流动问题。
3.流变学更注重不同物质的力学性质与其内部结构之间的关系4.流变学中物质所受到的力用应力或应力张量表示5.流变学中用应变或应变速率表示物质的运动状态即变形或流动。
6.流体质点就是流体中宏观尺寸非常小而微观尺寸又足够大的任意一个物理实体。
7.物质状态的变化称为变形,而物质连续无限地变形就是流动。
8.流变学中有三种基本变形:简单拉伸、简单剪切和体积压缩与膨胀9.反映材料宏观性质的数字模型称为本构方程,亦称为流变状态方程和流变方程10.对一些简单的流变性制的描述也可以用曲线形式表示,如剪切应力与剪切速率关系曲线,粘度随剪切速率变化曲线等,并称之为流变曲线。
第二章1.散体系是指将物质(固态、液态或气态)分裂成或大或小的粒子,并将其分布在某种介质(固态、液态或气态)之中所形成的体系。
2.分散体系可以是均匀的也可以是非均匀的系统。
均匀分散体系是由一相所组成的单相体系,而非均匀分散体系是指由两相或两相以上所组成的多相体系。
3.非均匀分散体系必须具备2个条件:①在体系内各单位空间所含物质的性质不同;②存在着分界的物理界面。
4. 对非均匀分散体系,被分散的一相称为分散相或内相,把分散相分散于其中的一相称为分散介质,亦称外相或连续相。
5.尽管非牛顿流体在微观上往往是非均匀的多相分散体系,或非均匀的多相混合流体,但在用连续介质理论或宏观方法研究其流变性问题时,一般可以忽略这种微观的非均匀性,而认为体系为一种均匀或假均匀分散体系。
6.对非牛顿流体,没有恒定的粘度概念,不同的剪切速率下有不同的表观粘度,这是非牛顿流体的一大特点。
7、一受力就有流动,但剪切应力与剪切速率的不成比例,随着剪切速率的增大,剪切应力的增加速率越来越大,即随着剪切速率的增大,流体的表观粘度增大,这种特性被称为剪切增稠性(shear thickening)。
W-O含蜡原油乳状液的触变特性研究

W-O含蜡原油乳状液的触变特性研究
W/O含蜡原油乳状液的触变特性研究
触变是指物质在外力作用下,其流变特性发生变化的现象。
W/O含蜡原油乳状液作为一种特殊液体,具有一定的触变特性。
本文通过实验研究,探讨了W/O含蜡原油乳状液的触变特性。
首先,我们制备了一种含蜡原油乳状液样品,通过在原油中添加适量的乳化剂和稳定剂,使其形成乳状液。
然后,我们使用流变仪对样品进行了触变性能测试。
实验结果显示,W/O含蜡原油乳状液在剪切速率较低时呈现出较高的黏度,而在剪切速率较高时黏度明显降低。
这种触变特性可以使得原油在输送过程中具有较高的黏附性和流动性。
其次,我们研究了不同温度对W/O含蜡原油乳状液触变特性的影响。
实验结果表明,随着温度的升高,乳状液的黏度逐渐降低。
这是因为温度的升高可以使得蜡的熔点降低,从而减少蜡在乳状液中的含量,降低了乳状液的黏度。
因此,在高温环境下,W/O含蜡原油乳状液的流动性更好。
最后,我们研究了W/O含蜡原油乳状液的稳定性。
实验结果显示,乳状液在剪切力作用下具有较好的稳定性,乳状液的黏度随剪切力的增加而增加。
这种稳定性可以确保原油在输送过程中不易分离,减少了能源的损失。
综上所述,W/O含蜡原油乳状液具有较好的触变特性。
通过研究其触变性能,我们可以对原油的输送和储存过程进行优化,提高能源利用效率。
此外,我们还可以通过调控温度和添加适量的乳化剂和稳定剂来调整乳状液的黏度和稳定性,以适应不同的工况要求。
这对于提高原油乳状液的输送效果和降低能源消耗具有重要意义。
原油流变学-第4章 原油流变性 §4.6 含蜡原油胶凝结构的屈服特性

➢ 在较高的剪切应力17.5Pa和20Pa的条件下,剪切应变随时间而增加较 快,但剪切应变几乎均是增加至y=0.070时,突然急剧增大。这表明 原油的胶凝结构已屈服破坏,原油完全流动起来。
5
➢ 施加的作用应力越大,相应的剪切应变达到y时所需的时间越短。由 此可见,决定胶凝原油是否屈服流动的参数是y,而不是传统上认为 的屈服值。
➢ y是反映原油胶凝结构受力后由蠕变向流动转变的一个物性参数,称 之为屈服应变。
➢ 因此,在外加应力作用下,产生的应变小于屈服应变时,原油表现出 粘弹性固体特性,蠕变即是这种特性表现之一;当应变增大至屈服应 变时,胶凝原油将屈服而流动,原油由凝胶状态转变为溶胶状态。
§4.6含蜡原油胶凝结构的屈服特性
一、胶凝原油的屈服过程特性
本章第4节曾经指出,胶凝含蜡原油在较小的外力作用下,表现 出线性粘弹性,而在较高的外力作用下,会表现出非线性粘弹性, 具有典型的粘弹性蠕变特点。下面以我国克拉玛依胶凝含蜡原油的 屈服过程为例,作进一步分析。
1、线性粘弹性过程 实验基本条件:油样加热温度为50℃,然后以0.5℃/min的冷却 速率静态冷却至凝点附近的测量温度,再恒温30min,以使胶凝结构 充分形成,然后再进行有关屈服特性的测量。 图4-19为克拉玛依原油经冷却胶凝,在21℃测量温度下的蠕变/ 回复实验结果。在0t15min内,给胶凝原油施加恒定剪切应力 =1.5Pa;在15t20min内,撤消施加的应力,即=0Pa。
从上述胶凝原油的结构特性看,屈服值不仅决定于胶凝 原油的内部结构性质,而且也决定于应力施加的条件。
9
1、应力施加方式的影响 ➢ 从蠕变特性看,胶凝原油产生的应变是外加应力及其作用
试分析含蜡原油加热输送管道停输后管内原油流变学特性的变化过程

试分析含蜡原油加热输送管道停输后管内原油流变学特性的变化过程
含蜡原油加热输送管道停输后,管内原油开始冷却,导致温度下降,蜡类物质开始逐渐凝固,形成黏弹性物质。
在停输后的短时间内,管道内的蜡类物质会形成薄膜状物质,附着在管壁上,称为“蜡垢”。
同时原油的黏度、弹性模量等流变学特性也会发生变化。
由于温度下降,原油的黏度增加,弹性模量增大,流动性能变差。
如果停输时间较长,管内的蜡垢会不断堆积,管壁内径不断减小,进一步降低了原油的输送能力。
此时需要采取清除蜡垢的措施,以保证管道正常输送。
因此,对于含蜡原油加热输送管道的运行与维护,需要控制温度、加密原油输送、及时清除蜡垢等措施,以防止管道停输和管壁内径减小等问题的发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)用从低到高,再 从高到低改变剪切速率的方 法,测定具有胶凝结构的原 油流变性,ห้องสมุดไป่ตู้得到如图所示 的滞回曲线。
6
(5)对具有触变性的含蜡原油,若在某一剪切速率下 剪切至动平衡状态,可得到相应的动平衡剪切应力和动平衡 表观粘度。
测定触变性含蜡原油的动平衡流变曲线,只可使用一
个油样,通过选择5个或更多的剪切速率档,从低到高逐级 增大,就可得到实验温度下的动平衡流变曲线。
➢ 剪切作用越强,这种破坏程度越大,蜡晶取向越强,表现为: 原油的表观粘度随剪切速率的增大而减小;在恒定的剪切速 率作用下,表观粘度随时间而降低等。
2
二、 含蜡原油的触变性特征 (1)一般在反常点附近的非牛顿流体温度下,由于原油的
内部结构较弱,其触变性在测量流变仪上显现不出来,因此可 以认为原油没有触变性。随温度的进一步降低,原油开始明显 显现出触变性,这一温度称之为原油的显触点。 ➢ 研究表明,原油的显触点取决于原油的组成、原油所经历的
1
➢ 对天然的非牛顿含蜡原油来说,胶质、沥青质与蜡晶能够相 互作用(共晶与吸附等)。一方面,使蜡晶之间的絮凝作用进 一步增强,蜡晶的空间网络结构具有更高的强度。另一方面, 使内部结构逐步恢复到内能最小的稳定状态,表现为随静置 时间的增加,原油的内部结构强度增强,表观粘度增大。
➢ 含蜡原油在常温或低温下的内部结构特点,决定了其具有剪 切稀释性和触变性:即由于剪切的作用,造成含蜡原油中蜡 晶的絮凝结构被破坏、蜡晶在流动方向上取向。
热历史、剪切历史,以及原油添加化学改性剂的条件等。
3
(2)对经历一定历史条件,
并在一定的低温静置条件下形成胶 凝结构的含蜡原油,在恒定的剪切 应力下,进行初次剪切,会得到一 条典型的剪切应力随时间的衰减曲 线,称之为初次裂降曲线。
4
(3)对具有触变性的含 蜡原油,在某一恒定温度下, 不再是只有一条流变曲线,而 是可以得到对应于不同剪切作 用时间的一组流变曲线,或者 说,对应一个相同的剪切时刻, 就有一条流变曲线。
(7)在静态条件下,含蜡原油具有一定的恢复性,表 现为其粘稠程度等性质随静止时间的增加而增大。
8
➢ 结构强度会随静置时间的延长而增大。 ➢ 被破坏的结构刚静置时,结构恢复较快,随着静置时间
的延长会继续恢复,但恢复较慢。 ➢ 含蜡原油的内部结构被剪切破坏越厉害,静置后结构的
恢复越快。
9
§4.5 含蜡原油的触变性
一、 非牛顿含蜡原油的基本结构特性 ➢ 含蜡原油表现出复杂的非牛顿流体特性,其根本是由含蜡原
油的复杂胶体结构特性决定的。 ➢ 原油中蜡晶的形状和尺寸受原油粘度、温度和冷却速度的影
响,一般原油粘度越高、温度越低、冷却速度越大,所生成 的蜡晶尺寸越小、蜡晶数目越多。 ➢ 含蜡原油的蜡晶絮凝结构一般是一种强絮凝结构。在较大的 蜡晶浓度下,会发展成蜡晶的整个空间网络结构。温度越低, 蜡晶浓度越高,蜡晶絮凝作用越强。
7
(6)对在某一剪切速率下,剪切至动平衡状态的触变 性含蜡原油,改换更低的剪切速率档,在可观察的时间内, 往往观察不到粘度的上升,或者说表观粘度上升得很慢。这 时所测的剪切应力或表观粘度会偏低 。这也验证了具有强 絮凝蜡晶结构的含蜡原油具有不可逆触变性的理论。
因此,在测量触变性含蜡原油的动平衡流变曲线时,不 能采用从高剪切速率变换到低剪切速率的测试方法。