初中数学基本公式和基本定理性质大汇总
初二数学公式定理重要公式与定理的汇总

初二数学公式定理重要公式与定理的汇总初二数学是整个初中数学学习的重要阶段,其中涉及到众多的公式和定理,这些公式和定理是解决数学问题的关键工具。
下面我们就来详细汇总一下初二数学中的重要公式与定理。
一、代数部分1、整式的乘法公式(1)平方差公式:(a + b)(a b) = a² b²这个公式可以用来快速计算两个数的平方差。
例如,计算(103×97),就可以将其转化为(100 + 3)×(100 3),然后利用平方差公式得出 100²3²= 9991。
(2)完全平方公式:(a ± b)²= a² ± 2ab + b²完全平方公式在整式乘法和因式分解中经常用到。
比如,计算(102)²,可以将其变形为(100 + 2)²,然后利用完全平方公式得到 100²+ 2×100×2 + 2²= 10404。
2、因式分解(1)提公因式法:ma + mb + mc = m(a + b + c)提公因式是因式分解的基础方法,要善于发现多项式各项中的公因式。
(2)公式法:运用上述的平方差公式和完全平方公式进行因式分解。
3、分式(1)分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。
(2)分式的运算同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,化为同分母分式,再按同分母分式的加减法法则进行计算。
分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。
分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
二、几何部分1、三角形(1)三角形内角和定理:三角形的内角和等于 180°。
在解决与三角形内角有关的问题时,经常会用到这个定理。
(2)三角形的外角性质三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。
初中数学基本公式和基本定理性质大汇总

初中数学基本公式和基本定理性质大汇总初中数学基本公式和基本定理性质大汇总一、基本公式1、三角形面积公式:S△=12ah(a为三角形的底,h 为高)。
2、梯形的面积公式:S梯=12(a+b)h(a、b分别为梯形的上、下底,h为高)。
3、正方形的面积公式:S正=a2(a为正方形的边长);长方形的面积公式:S长=ab(a、b分别为长方形的长、宽)。
4、正方体的体积公式:V正=a3;表面积公式:S正=6a2(a为正方体的边长)。
5、长方体的体积公式:V长=abh;表面积公式:S长=2ab+2ah+2bh(a、b、h分别为长方体的长、宽、高)。
6、弧长公式:l=n兀R/180(n为圆心角的度数,R为弧的半径);7、扇形面积公式:S扇形=n兀R2/360=lR/2;(n 为圆心角的度数,R为扇形半径,l为弧长)。
8、圆的面积公式:S =兀R 2;周长公式:C=兀d=2兀R (d 为直径,R 为半径)。
9、圆柱的体积公式:V 圆柱=S 底h=兀R 2ℎ;表面积公式:S 表=S 侧+S 底=2兀Rh+2兀R 2(R 为底面圆的半径,h 为高)。
10、圆锥的体积公式:V 圆锥=13S 底h=13兀R 2ℎ;表面积公式:S 表=S 侧+S 底=兀Rl+兀R 2(l 为圆锥的母线长,R 为底面圆的半径)。
11、球的体积公式:V 球==43兀R 3(R 为球半径)。
12、三角函数公式:正弦sinA=∠A的对边斜边;余弦cosA=∠A的邻边斜边;正切tanA=∠A 的对边∠A 的邻边。
13、平方差公式:22()()a b a b ab +-=-。
14、完全平方公式:222()2a b a b ab +=++;222()2a b a b ab -=+-。
15、一元二次方程的求根公式:若x 是一元二次方程(a ≠0)20ax bx c ++=的根,则24b b ac x -±-=(240b ac -≥);根的判别式:240bac -><=>方程有两个不等的实数根;240b ac -=<=>方程有两个相等的实数根;240b ac -<<=>方程没有实数根;根与系数的关系:1x +2x =b a -;1x 2x =c a 16、算术平均数:如果n 个数据1x ,2x ,3x ,…,n x ,那么123nx x x x x n ++++=L ;加权平均数:如果n 个数据,1x 出现1f 次,2x 出现2f 次,…,n x 出现n f 次(123+=n f f f f n ++L ),那么这n 个数据的平均数为112233n n x f x f x f x f x n ++++=L 。
初中高中数学定理公式大全

初中高中数学定理公式大全1.代数运算定理:-加法交换律:a+b=b+a-减法交换律:a-b≠b-a-乘法交换律:a×b=b×a-除法交换律:a÷b≠b÷a-分配律:a×(b+c)=a×b+a×c2. 平方差公式:(a + b)² = a² + 2ab + b²3. 平方和公式:(a - b)² = a² - 2ab + b²4. 一元二次方程求根公式:x = (-b ± √(b² - 4ac)) / (2a)5. 正弦定理:a/sinA = b/sinB = c/sinC6. 余弦定理:c² = a² + b² - 2abcosC7. 对数公式:loga(ab) = loga(a) + loga(b)8.指数公式:a^m×a^n=a^(m+n)9.相反数的求法:-(-a)=a10. 完全平方公式:(a + b)² = a² + 2ab + b²11. 二项式定理:(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n12.绝对值公式:,a×b,=,a,×,b13.分式的乘法公式:(a/b)×(c/d)=(a×c)/(b×d)14.微积分的基本定理:积分与微分是互逆的15.等腰三角形的定理:等腰三角形的底角相等,等腰三角形的两底边相等16.等边三角形的定理:等边三角形的三边相等,等边三角形的三个内角都是60度17.三角函数的和差化积公式:- 正弦的和差化积公式:sin(A ± B) = sinAcosB ± cosAsinB- 余弦的和差化积公式:cos(A ± B) = cosAcosB ∓ sinAsinB18.直角三角形的勾股定理:a²+b²=c²19.等角三角函数的关系式:- 正弦和余弦的关系式:sin²θ + cos²θ = 1- 正切和余切的关系式:tanθ × cotθ = 120.对数函数的性质:-对数函数的底数必须大于0且不等于1- 对数函数的性质:loga(b × c) = loga(b) + loga(c)。
初中数学各种公式及性质

初中数学各种公式及性质初中数学中常用的各种公式及性质包括但不限于:1.代数运算性质:- 交换律:a + b = b + a,ab = ba- 结合律:(a + b) + c = a + (b + c),(ab)c = a(bc)- 分配律:a(b + c) = ab + ac-恒等律:a+0=a,a×1=a-互补律:a+(-a)=0-结合数和乘法的逆元:a+(-a)=0,a×(1/a)=1(a≠0)2.数列求和公式:-等差数列求和公式:Sn = (n/2)(a1 + an),其中Sn表示前n项和,a1为首项,an为末项-等比数列求和公式:Sn=a1(1-q^n)/(1-q),其中q为公比-等差数列通项公式:an = a1 + (n - 1)d-等比数列通项公式:an = a1 × q^(n-1)3.同底数幂运算性质:-a^m×a^n=a^(m+n)- (a^m)^n = a^(mn)-a^(-n)=1/a^n(a≠0)-a^0=1(a≠0)4.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC = 2R (其中a、b、c为三角形的边长,A、B、C为对应的角,R为外接圆半径)- 余弦定理:c^2 = a^2 + b^2 - 2abcosC- 正弦函数和余弦函数的关系:sin²A + cos²A = 15.平面几何定理:-锐角三角形内角和为180°,直角三角形内角和为90°-三角形内任意一边的长度小于另外两边的长度之和-平行四边形对角线互相等长-三角形内一个角的对边长度与角的正弦值成正比,对边长度与角的余弦值成反比6.椭圆、抛物线和双曲线的基本性质:-椭圆:离心率e<1,焦点到准线的距离之和等于常数2a-抛物线:离心率e=1,焦点到准线的距离等于焦距的一半-双曲线:离心率e>1,焦点到准线的距离之差等于常数2a7.数据分析相关公式:-平均数=总和/个数-中位数:将数据从小到大排列,若有奇数个数据,则中位数为排序后的中间值;若有偶数个数据,则中位数为排序后的中间两个值的平均数-众数:数据中出现次数最多的数值-极差:最大值减去最小值-方差:各数据与平均数之差的平方和的平均数-标准差:方差的平方根这些公式和性质在初中数学中是较为常见且基础的,通过掌握和应用这些公式和性质,可以帮助学生提高解题能力和数学思维。
初中数学基本性质和定理

初中数学基本性质和定理一、直线、射线和线段1.过两点有且只有一条直线.2.两点之间线段最短.二、垂线1.过一点有且只有一条直线和已知直线垂直.2.直线外一点与直线上各点连接的所有线段中,垂线段最短.三、平行线1.平行线的性质(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.2.平行线的判定(1)同位角相等,两直线平行.(2)内错角相等,两直线平行.(3)同旁内角互补,两直线平行.3.平行公理(1)经过直线外一点,有且只有一条直线与这条直线平行.(2)如果两条直线都和第三条直线平行,这两条直线也互相平行.四、角1.对顶角相等.2.同角的补角相等.3.同角的余角相等.五、三角形1.定理1:三角形两边的和大于第三边.推论:三角形两边的差小于第三边.定理2:三角形内角和定理:三角形三个内角的和等于180°.推论1:直角三角形的两个锐角互余.推论2:三角形的一个外角等于和它不相邻的两个内角的和.推论3:三角形的一个外角大于任何一个和它不相邻的内角.2.全等三角形(1)性质:全等三角形的对应边、对应角相等.(2)判定:①边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等.②角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等.③推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等.④边边边定理(SSS):有三边对应相等的两个三角形全等.⑤斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等.六、角平分线1.性质定理:在角的平分线上的点到这个角的两边的距离相等.2.性质定理的逆定理:到一个角的两边的距离相等的点,在这个角的平分线上.七、线段的垂直平分线1.定理:线段垂直平分线上的点和这条线段两个端点的距离相等.2.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.八、等腰三角形1.性质(1)等腰三角形的两个底角相等(即等边对等角).(2)等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(即三线合一).(3)等边三角形的各角都相等,并且每一个角都等于60°.2.判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).(2)三个角都相等的三角形是等边三角形.(3)有一个角等于60°的等腰三角形是等边三角形.九、直角三角形1.性质(1)直角三角形的两个锐角互余.(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.(3)直角三角形斜边的中线等于斜边的一半.(4)直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2(勾股定理).2.判定(1)如果三角形的三边长a,b,c有关系a2+b2=c2,那么这个三角形是直角三角形(勾股定理的逆定理).(2)如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形.十、多边形1.多边形内角和公式:n边形的内角和等于(n-2)·180°.2.定理:多边形的外角和等于360°.十一、平行四边形1.性质定理1:平行四边形的对角相等.性质定理2:平行四边形的对边相等.性质定理3:平行四边形的对角线互相平分.2.判定定理1:两组对角分别相等的四边形是平行四边形.判定定理2:两组对边分别相等的四边形是平行四边形.判定定理3:对角线互相平分的四边形是平行四边形.判定定理4:一组对边平行且相等的四边形是平行四边形.十二、矩形1.性质定理1:矩形的四个角都是直角.性质定理2:矩形的对角线相等.2.判定定理1:有三个角是直角的四边形是矩形.判定定理2:对角线相等的平行四边形是矩形.十三、菱形1.性质定理1:菱形的四条边都相等.性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角.菱形面积=对角线乘积的一半,即S=1ab(a,b为菱2形的两条对角线).2.判定定理1:四边都相等的四边形是菱形.判定定理2:对角线互相垂直的平行四边形是菱形.十四、正方形1.性质定理1:正方形的四个角都是直角,四条边都相等.性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.2.判定:既是矩形又是菱形的四边形是正方形.十五、等腰梯形1.性质定理:等腰梯形在同一底上的两个角相等.等腰梯形的两条对角线相等.2.判定定理:在同一底上的两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形.十六、相似三角形1.性质(1)相似三角形周长的比等于相似比.相似多边形周长的比等于相似比.(2)相似三角形面积的比等于相似比的平方.相似多边形面积的比等于相似比的平方.2.判定(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.(2)如果两个三角形三组对应边的比相等,那么这两个三角形相似.简单说成:三边对应成比例,两三角形相似.(3)如果两个三角形两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.简单说成:两边对应成比例且夹角相等,两三角形相似.(4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简单说成:两角对应相等的两个三角形相似.十七、位似图形1.位似图形上任意一对对应点到位似中心的距离之比等于相似比.2.对应线段的比等于相似比.3.周长比等于相似比.4.面积比等于相似比的平方.十八、中位线1.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.2.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半,即l=a+b(l为中位线,a,b为梯形2的上、下底).十九、圆1.垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径,垂直于弦,并且平分这条弦所对的两条弧.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.3.定理:不在同一直线上的三点确定一个圆.4.定理:同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:(1)同圆或等圆中,相等的圆周角所对的弧也相等.(2)半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.5.圆的切线(1)判定:经过半径的外端并且垂直于这条半径的直线是圆的切线.(2)性质:圆的切线垂直于经过切点的半径.6.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.三角形的内心为三角形内切圆的圆心,也是三角形三内角平分线的交点;三角形的外心为三角形外接圆的圆心,也是三边垂直平分线的交点.二十、轴对称与中心对称1.轴对称图形的基本性质(1)轴对称图形(或关于某条直线对称的两个图形),它们的对应线段相等,对应角相等.(2)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.2.中心对称的基本性质(1)中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)中心对称的两个图形是全等图形.二十一、平移与旋转1.平移的基本性质(1)平移前后,两图形的大小不变、形状不变;(2)平移前后,两图形对应点连成的线段平行且相等;对应线段平行且相等;对应角相等.2.旋转的基本性质(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.初中物理常用物理量及其单位一、物质与氧气的反应1.单质与氧气的反应(1)镁在空气中燃烧:2Mg%+%O 2%点燃%2MgO(2)铁在氧气中燃烧:3Fe%+%2O 2%点燃%Fe 3O 4(3)铜在空气中受热:2Cu%+%O 2%△%2CuO(4)铝在氧气中燃烧:4Al%+%3O 2%点燃%2Al 2O 3(5)氢气在空气中燃烧:2H 2%+%O 2%点燃%2H 2O(6)红磷在空气中燃烧:4P%+%5O 2%点燃%2P 2O 5(7)硫粉在空气中燃烧:S%+%O 2%点燃%SO 2(8)碳在氧气中充分燃烧:C%+%O 2%点燃%CO 2(9)碳在氧气中不充分燃烧:2C%+%O 2%点燃%2CO2.化合物与氧气的反应(1)一氧化碳在氧气中燃烧:2CO%+%O 2%点燃%2CO 2(2)甲烷在空气中燃烧:CH 4%+%2O 2%点燃%CO 2%+%2H 2O (3)酒精在空气中燃烧:C 2H 5OH%+%3O 2%点燃%2CO 2%+%3H 2O 二、几个分解反应1.水在直流电的作用下分解:2H 2O%通电%2H 2↑+%O 2↑2.双氧水分解:2H 2O 2%MnO 2%2H 2O%+%O 2↑初中化学方程式汇总3.加热氯酸钾(有少量的二氧化锰):2KClO3%MnO2△%2KCl%%+%3O2↑4.加热高锰酸钾:2KMnO4%△%K2MnO4%+%MnO2%+%O2↑5.碳酸不稳定而分解:H2CO3%%H2O%+%CO2↑6.高温煅烧石灰石:CaCO3%高温%CaO%+%CO2↑三、几个氧化还原反应1.氢气还原氧化铜:H2%+%CuO%△%Cu%+%H2O2.木炭还原氧化铜:C%+%2CuO%高温%2Cu%+%CO2↑3.焦炭还原氧化铁:3C%+%2Fe2O3%高温%4Fe%+%3CO2↑4.焦炭还原四氧化三铁:2C%+%Fe3O4%高温%3Fe%+%2CO2↑5.一氧化碳还原氧化铜:CO%+%CuO%△%Cu%+%CO26.一氧化碳还原氧化铁:3CO%+%Fe2O3%高温%2Fe%+%3CO27.一氧化碳还原四氧化三铁:4CO%+%Fe3O4%高温%3Fe%+%4CO2四、单质、氧化物、酸、碱、盐的相互关系1.金属单质+酸盐+氢气(1)锌和稀硫酸反应:Zn%+%H2SO4%%ZnSO4%+%H2↑(2)铁和稀硫酸反应:Fe%+%H2SO4%%FeSO4%+%H2↑(3)镁和稀硫酸反应:Mg%+%H2SO4%%MgSO4%+%H2↑(4)铝和稀硫酸反应:2Al%+%3H2SO4%%Al2(SO4)3%+%3H2↑(5)锌和稀盐酸反应:Zn%+%2HCl%%ZnCl2%+%H2↑(6)铁和稀盐酸反应:Fe%+%2HCl%%FeCl2%+%H2↑(7)镁和稀盐酸反应:Mg%+%2HCl%%MgCl2%+%H2↑(8)铝和稀盐酸反应:2Al%+%6HCl%%2AlCl3%+%3H2↑2.金属单质+盐(溶液)另一种金属+另一种盐(1)铁和硫酸铜溶液反应:Fe%+%CuSO4%%FeSO4%+%Cu (2)锌和硫酸铜溶液反应:Zn%+%CuSO4%%ZnSO4%+%Cu (3)铜和硝酸银溶液反应:Cu%+%2AgNO3%%Cu(NO3)2%+%2Ag3.金属氧化物+酸盐+水(1)氧化铁和稀盐酸反应:Fe2O3%+%6HCl%%2FeCl3%+%3H2O(2)氧化铁和稀硫酸反应:Fe2O3%+%3H2SO4%%Fe2(SO4)3%+%3H2O(3)氧化铜和稀盐酸反应:CuO%+%2HCl%%CuCl2%+%H2O(4)氧化铜和稀硫酸反应:CuO%+%H2SO4%%CuSO4%+%H2O(5)氧化镁和稀硫酸反应:MgO%+%H2SO4%%MgSO4%+%H2O(6)氧化钙和稀盐酸反应:CaO%+%2HCl%%CaCl2%+%H2O4.酸性氧化物+碱盐+水(1)苛性钠暴露在空气中变质:2NaOH%+%CO2%%Na2CO3%+%H2O(2)苛性钠吸收二氧化硫气体:2NaOH%+%SO2%%Na2SO3%+%H2O (3)苛性钠吸收三氧化硫:2NaOH%+%SO3%%Na2SO4%+%H2O (4)消石灰放在空气中变质:Ca(OH)2%+%CO2%%CaCO3↓+%H2O (5)消石灰吸收二氧化硫:Ca(OH)2%+%SO2%%CaSO3↓+%H2O 5.酸+碱盐+水(1)盐酸和烧碱起反应:HCl%+%NaOH%%NaCl%+%H2O (2)盐酸和氢氧化钾反应:HCl%+%KOH%%KCl%+%H2O(3)盐酸和氢氧化铜反应:2HCl%+%Cu(OH)2%%CuCl2%+%2H2O (4)盐酸和氢氧化钙反应:2HCl%+%Ca(OH)2%%CaCl2%+%2H2O (5)盐酸和氢氧化铁反应:3HCl%+%Fe(OH)3%%FeCl3%+%3H2O (6)氢氧化铝药物治疗胃酸过多:3HCl%+%Al(OH)3%%AlCl3%+%3H2O (7)硫酸和烧碱反应:H2SO4%+%2NaOH%%Na2SO4%+%2H2O (8)硫酸和氢氧化钾反应:H2SO4%+%2KOH%%K2SO4%+%2H2O(9)硫酸和氢氧化铜反应:H2SO4%+%Cu(OH)2%%CuSO4%+%2H2O(10)硫酸和氢氧化铁反应:3H2SO4%+%2Fe(OH)3%%Fe2(SO4)3%+%6H2O (11)硝酸和烧碱反应:HNO3%+%NaOH%%NaNO3%+%H2O6.酸+盐另一种酸+另一种盐(强酸制弱酸)(1)大理石和稀盐酸反应:CaCO3%+%2HCl%%CaCl2%+%H2O%+%CO2↑(2)碳酸钠和稀盐酸反应:Na2CO3%+%2HCl(过)2NaCl%+%H2O%+%CO2↑Na2CO3+HCl(少)NaHCO3+NaCl(3)碳酸镁和稀盐酸反应:MgCO3%+%2HCl%%MgCl2%+%H2O%+%CO2↑(4)盐酸和硝酸银溶液反应:HCl%+%AgNO3%%AgCl↓+%HNO3(5)硫酸和碳酸钠反应:Na2CO3%+%H2SO4(过)Na2SO4%+%H2O%+%CO2↑2Na2CO3+H2SO4(少)2NaHCO3+Na2SO4(6)硫酸和氯化钡溶液反应:H2SO4%+%BaCl2%%BaSO4↓+%2HCl(7)弱酸制强酸H2S溶液加入到CuSO4溶液中:H2S+CuSO4CuS↓+H2SO47.碱+盐另一种碱+另一种盐(1)氢氧化钠和硫酸铜反应:2NaOH%+%CuSO4%%Cu(OH)2↓+%Na2SO4(2)氢氧化钠和氯化铁反应:3NaOH%+%FeCl3%%Fe(OH)3↓+%3NaCl(3)氢氧化钠和氯化镁反应:2NaOH%+%MgCl2%%Mg(OH)2↓+%2NaCl(4)氢氧化钠和氯化铜反应:2NaOH%+%CuCl2%%Cu(OH)2↓+%2NaCl(5)氢氧化钙和碳酸钠反应:Ca(OH)2%+%Na2CO3%%CaCO3↓+%2NaOH(6)氢氧化钙和碳酸氢钠反应:Ca(OH)2+NaHCO3(少)NaOH+CaCO3↓+H2O Ca(OH)2+2NaHCO3(过)Na2CO3+CaCO3↓+2H2O (7)氢氧化钠和碳酸氢钙反应:NaOH+Ca(HCO3)2(过)CaCO3↓+NaHCO3+H2O 2NaOH+Ca(HCO3)2(少)CaCO3↓+Na2CO3+2H2O 8.盐+盐两种新盐(1)氯化钠溶液和硝酸银溶液:NaCl%+%AgNO3%%AgCl↓+%NaNO3(2)硫酸钠和氯化钡:Na2SO4%+%BaCl2%%BaSO4↓+%2NaCl(3)硫酸氢钠和硝酸钡反应:NaHSO4+Ba(NO3)2BaSO4↓+HNO3+NaNO3五、其他反应1.二氧化碳溶解于水:CO2%+%H2O%%H2CO32.生石灰溶于水:CaO%+%H2O%%Ca(OH)23.氧化钠溶于水:Na2O%+%H2O%%2NaOH4.三氧化硫溶于水:SO3%+%H2O%%H2SO4。
八年级上册数学公式,基本事实,定理

八年级上册数学公式、基本事实及定理近年来,数学作为一门重要的学科,在中小学的教学中占据了越来越重要的地位。
在八年级上册数学学习中,数学公式、基本事实以及定理更是成为了学生们必须掌握的重要知识点。
本文将系统地介绍八年级上册数学中的一些重要公式、基本事实以及定理,希望对广大学生们的学习有所帮助。
一、常见数学公式1.1 圆的面积公式圆的面积公式为:$S = \pi r^2$, 其中$r$为半径。
1.2 圆的周长公式圆的周长公式为:$C = 2\pi r$, 其中$r$为半径。
1.3 直角三角形斜边公式直角三角形斜边公式为:$c^2 = a^2 + b^2$, 其中$a$、$b$分别为直角三角形的两条直角边,$c$为斜边。
1.4 二次函数顶点坐标公式二次函数$y = ax^2 + bx + c$的顶点坐标公式为:$(\frac{-b}{2a},\frac{-\Delta}{4a})$,其中$\Delta = b^2 - 4ac$。
1.5 等差数列前n项和公式等差数列前n项和公式为:$S_n = \frac{n}{2}(a_1 + a_n)$,其中$S_n$为前n项和,$a_1$为首项,$a_n$为第n项。
二、基本事实2.1 直角三角形的性质直角三角形的性质包括:直角三角形的两个直角边的平方和等于斜边的平方。
2.2 圆的性质圆的性质包括:圆的直径是圆的最长直径,圆心到圆上任意一点的距离都相等。
2.3 二次函数的性质二次函数的性质包括:二次函数的抛物线开口方向由二次项系数$a$的正负决定,当$a>0$时抛物线开口向上,当$a<0$时抛物线开口向下。
2.4 函数的奇偶性函数的奇偶性包括:$f(-x) = f(x)$时为偶函数,$f(-x) = -f(x)$时为奇函数。
2.5 三角函数的基本关系三角函数的基本关系包括:$\sin^2x + \cos^2x = 1$,$1 +\tan^2x = \sec^2x$,$1 + \cot^2x = \csc^2x$等。
初中数学知识点及公式大全
初中数学知识点及公式大全1.数的基本性质:- 一元二次方程的解公式:对于方程ax^2+bx+c=0(a≠0),它的解可以通过公式x=(-b±√(b^2-4ac))/(2a)求得。
-绝对值的性质:对于任意实数a,有,a,≥0,且,a,=0的条件是a=0。
-有理数和无理数的性质:有理数是可以表示为两个整数的比,而无理数是不能表示为两个整数的比的实数。
-分数的运算性质:分数的两个分数相加减时,应先找到它们的最小公倍数后,再根据通分进行相加减,然后再对得到的分数进行约分。
2.平面几何:-直角三角形的勾股定理:对于直角三角形,设直角边的长度分别为a、b,斜边的长度为c,则有c^2=a^2+b^2-圆的周长和面积:设圆的半径为r,则圆的周长L=2πr,圆的面积S=πr^2-平行线的性质:平行线具有两个重要的性质,即平行线的任意两条线上的任意一对对应角相等,以及平行线被一条截线截断时,对于被截断线的任意一条线上的对应角,有与之对应的角相等。
-三角形的三边关系:设三角形的三条边的长度分别为a、b、c,则有a+b>c,b+c>a,c+a>b。
3.立体几何:- 空间直角坐标系:设空间直角坐标系中的一条直线的方程为ax+by+cz+d=0,则该直线的方向向量为(±a, ±b, ±c)。
- 二次曲面的方程:常见的二次曲面包括球体、圆锥面、抛物面、椭球面等,它们的方程分别为x^2+y^2+z^2=r^2,x^2+y^2-z^2=0,z=ax^2+by^2,(x/a)^2+(y/b)^2+(z/c)^2=1等。
- 立体图形的体积和表面积:立方体的体积V=a^3,表面积S=6a^2;圆柱的体积V=πr^2h,表面积S=2πrh+2πr^2;球体的体积V=(4/3)πr^3,表面积S=4πr^2;锥体的体积V=(1/3)πr^2h,表面积S=πrl+πr^24.代数运算:-同底数幂运算:对于同底数的幂相乘,可以直接将指数相加,即a^m*a^n=a^(m+n)。
冀教版初中数学基本公式定理大全
冀教版初中数学基本公式定理大全一、代数基本公式:1.二项式定理(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+...+C(n,n-1)a^1b^(n-1)+C(n,n)a^0b^n2.平方差公式(a+b)(a-b)=a^2-b^23.三角函数和平方公式sin^2x + cos^2x = 14.三角函数和倒数公式tan^2x + 1 = sec^2x5.三角函数和倒数公式1 + cot^2x = csc^2x6.求根公式(二次方程)x = (-b ± √(b^2 - 4ac)) / (2a)7.等分差公式an = a1 + (n-1)d8.等分积公式an = a1 * r^(n-1)二、几何基本公式:1.三角形内角和定理三角形三个内角和等于180°,即∠A+∠B+∠C=180°2.平行线对应内错角定理两条平行线被一条横截线切割,所得的对应内角相等3.锐角三角函数关系式sinθ = a/h,cosθ = b/h,tanθ = a/b4.直角三角形边长关系a^2+b^2=c^2,其中a和b分别是直角三角形的两条直角边的长度,c 是斜边的长度5.合外角公式两个合外角的和等于180°,即∠A+∠B=180°6.圆的周长和面积公式圆的周长C=2πr,圆的面积S=πr^2,其中r是圆的半径7.圆周角与圆心角关系圆周角等于它所对应的圆心角的一半8.三角形海伦公式S=√(s(s-a)(s-b)(s-c)),其中a、b、c为三角形三边的长度,s为半周长三、概率统计基本公式:1.频数公式频数=组距*组频数2.中位数公式如果数据集的数量为奇数n,则中位数是第(n+1)/2个数;如果数据集的数量为偶数n,则中位数是第n/2个数和第(n/2+1)个数的平均值。
3.众数公式众数是数据集中出现最频繁的数字。
4.期望公式期望值=(事件A1的概率*事件A1的数值)+(事件A2的概率*事件A2的数值)+...+(事件An的概率*事件An的数值)5.标准差公式标准差=√((每个数据值减去平均数的差的平方的和)/(数据集的数量))6.四分位数公式第一四分位数是所有数据中处于25%位置处的数;第二四分位数是中位数;第三四分位数是处于75%位置处的数。
初中数学公式大全(整理打印版)
初中数学公式大全初中数学定理、公式汇编一、数与代数1. 数与式(1) 实数实数的性质:①实数a 的相反数是—a ,实数a 的倒数是a1(a ≠0); ②实数a 的绝对值: ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a③正数大于0,负数小于0,两个负实数,绝对值大的反而小.二次根式:①积与商的方根的运算性质:b a ab ⋅=(a ≥0,b ≥0);b a b a =(a ≥0,b >0);②二次根式的性质:⎩⎨⎧<-≥==)0()0(2a a a a a a (2)整式与分式①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即nm n m a a a -=÷(a ≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a ≠0);⑤负整数指数:n n aa 1=-(a ≠0,n 为正整数); ⑥平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+;⑦完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±;分式①分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变,即m b m a b a ⨯⨯=;mb m a b a ÷÷=,其中m 是不等于零的代数式; ②分式的乘法法则:bdac d c b a =⋅; ③分式的除法法则:)0(≠=⋅=÷c bcad c d b a d c b a ; ④分式的乘方法则:n nn ba b a =)((n 为正整数); ⑤同分母分式加减法则:cb ac b c a ±=±; ⑥异分母分式加减法则:bccd ab b d c a ±=±; 2. 方程与不等式 ①一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--+-=ac b aac b b x ②一元二次方程根的判别式:ac b 42-=∆叫做一元二次方程02=++c bx ax (a ≠0)的根的判别式:⇔>∆0方程有两个不相等的实数根;⇔=∆0方程有两个相等的实数根;⇔<∆0方程没有实数根;③一元二次方程根与系数的关系:设1x 、2x 是方程02=++c bx ax (a ≠0)的两个根,那么1x +2x =ab -,1x 2x =ac ; 不等式的基本性质:①不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变; ②不等式两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式两边都乘以(或除以)同一个负数,不等号的方向改变;3. 函数一次函数的图象:函数y=kx+b (k 、b 是常数,k ≠0)的图象是过点(0,b)且与直线y=kx 平行的一条直线;一次函数的性质:设y=kx+b (k ≠0),则当k>0时,y 随x 的增大而增大;当k<0, y 随x 的增大而减小;正比例函数的图象:函数kx y =的图象是过原点及点(1,k )的一条直线。
27条初中数学公式定理集锦
一、有理数1、相反数与绝对值(1)数a的相反数是-a。
若a、b互为相反数,则a+b=0;反之,若a+b=0,则a、b互为相反数.a(a>0),(2)绝对值计算∣a∣= 0(a=0),-a(a<0),a(a≧0),a(a>0),或∣a∣=或∣a∣=-a(a<0),-a(a≦0)2、两个有理数大小的比较(1)在数轴上,右边的数总比左边的数大.(2)正数大于0,负数小于0,正数大于一切负数.(3)两个负数比较,绝对值大的负数反而小.3、有理数的运算4、有理数运算律5、科学记数法把一个大于10的数记作a ×10n的形式,其中a 大于或等于1且小于10,即1 ≤| a| <10,n 是正整数.二、整式的加减1、合并同类项的法则合并同类项时,将同类项的系数相加,所得的和作为系数,字母与字母的指数不变.2、去括号法则括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不改变;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号. 3、整式的加减法则整式的加减实质就是去括号、合并同类项,若有括号,就要先去掉括号,然后再合并同类项,直到结果中没有同类项为止.三、一元一次方程1、等式的基本性质(1)如果a=b ,那么a+c=b+c ,a-c=b-c(2)如果a=b ,那么ac=bc ;如果a=b ,那么a c =bc (c ≠0)2、解一元一次方程的步骤四、几何图形初步1、直线、线段公理(1)直线公理:两点确定一条直线. (2)线段公理:两点之间,线段最短. 2、角五、相交线与平行线1.相交线与垂线2.平行线3.命题、定理、证明六、实数1、平方根和立方根2、实数的性质(1)数a的相反数是-a,这里a表示任意一个实数.(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.七、平面直角坐标系各象限内点的坐标特点P(a,b)①点在第一象限,则a>0,b>0; ②点在第二象限,则a<0,b>0;○3点在第三象限,则a<0,b<0; ④点在第四象限,则a>0,b<0 角平分线上点的特点 P(a,b)①在一、三象限的角平分线上,a=b ; ②在二、四象限的角平分线上,a=-b平面直角坐标系中对称点的坐标特点 P(a,b) ①关于x 轴对称,横坐标相同,纵坐标互为相反数,即(a,-b );○2关于y 轴对称,横坐标互为相反数, 纵坐标相同,即(-a ,b ); ○3关于坐标原点对称,横纵坐标都互为相反数,即(-a,-b ) 与坐标轴平行的直线上的点的坐标特点○1与x 轴平行的直线上的所有点的纵坐标相同; ○2与y 轴平行的直线上的所有点的横坐标相同 八、二元一次方程组a 1x+b 1y=c 1, 对于二元一次方程组a 2x+b 2y=c 2.(1) 当a 1a 2 ≠b 1b 2(a 2,b 2≠0)时,方程组有唯一解.(2) 当a 1a 2 =b 1b 2 =c 1c 2 (a 2,b 2,c 2≠0)时,方程组有无数组解.(3) 当a 1a 2 =b 1b 2 ≠c 1c 2(a2,b2,c2≠0)时,方程组无解.九、不等式与不等式组1.不等式性质性质1:不等式的两边同时加(或减)同一个数或同一个含有字母的式子,不等号的方向不变,即如果a>b ,那么a ±m>b ±m.性质2:不等式的两边同时乘(或除)同一个正数,不等号的方向不变,即如果a>b 且m>0,那么am>bm 或a m >bm.性质3:不等式的两边同时乘(或除)同一个负数,不等号的方向改变,即如果a>b 且m<0,那么am<bm 或a m <bm.2.一元一次不等式组的解集不等式组(a<b )数轴表示解集口诀x>a ,x>bx>b同大取大x<a ,x<bx<a同小取小ababa ba b十、三角形1、三角形的分类2、三角形三边关系三角形中任意两边的和大于第三边,三角形中任意两边的差小于第三边.3、三角形内角和定理三角形三个内角的和等于180°.4、直角三角形的性质与判定性质;直角三角形的两个锐角互余.判定:有两个角互余的三角形是直角三角形.5、三角形的外角性质(1)三角形的外角和为360°.(2)三角形的一个外角等于和它不相邻的两个内角的和.(3)三角形的一个外角大于和它不相邻的任何一个内角.6、多边形的内角和与外角和(1)n边形的内角和是(n-2)×180°.(2)n边形的外角和为360°.十一、全等三角形1.全等三角形角形的判定2.角平分线的性质及判定(1)性质:角的平分线上的点到角的两边的距离相等.(2)判定:角的内部到角的两边距离相等的点在角的平分线上.十二、轴对称1.轴对称和线段垂直平分线的性质及判定2.三角形的性质及判定十三、整式的乘法与因式分解1.幂的有关法则2.乘法公式3.因式分解十四、分式1.分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即 A B =A ·M B ·M ,A B = A ÷M B ÷M (其中M 是不等于0的整式) 2.分式的运算法则(1) 乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.即b a ·d c =bdac .(2) 除法法则:分式除以分式,把除式的分子、分母 颠倒位置后,与被除式相乘.即b a ÷d c =b a ·c d =bcad.(3) 乘方法则:把分子、分母分别乘方.为正整数).(4) 加减法法则:①同分母的分式相加减,分母不变,把分子相加减.即a c ±b c =a ±bc:②异分母分式相加减,先通分,变为同分母分式,再加减.即a b ±d c =ac bc ±bd bc =ac ±bdbc.十五、二次根式十六、勾股定理1.勾股定理如果直角三角形的两条直角边长分别是a ,b,斜边长为c,那么a 2+b 2=c 2.2.勾股定理的逆定理如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么 这个三角形就是直角三角形.十七、平行四边形1.几种特殊四边形常用的判定方法2.中位线三角形的中位线平行于第三边,并且等于第三边的―半.十八、一次函数1.正比例函数的图象和性质2.—次函数的图象和性质Oxy OxyOxyOxy Oxy Oxy十九、数据的分析1. 平均数(1) 平均数: 对于n 个数n 个数的平均数. (2) 加权平均数:若n 则x 1w 1+x 2w 2+…+x n w nw 1+w 2+…+w n叫做这n 个数的加权平均数 2. 数据的波动程度(1) 极差:一组数据的最大值与最小值的差(2) 方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,通常用s 2来表示,计算公式x 1-⎺x )2+(x 2-⎺x )2+…+(x n -⎺x )2]. (3) 标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.公式:. 二十、一元二次方程1. 一元二次方程的解法2. —元二次方程根的判别式ax 2+bx+c=0(a ≠0) 的判别式△= b 2-4ac .(1) △>0,一元二次方程ax 2+bx+c=0(a ≠0)有两个不相等的实数根.(2) △=0,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等的实数根.(3) △<0,一元二次方程ax 2+bx+c=0(a ≠0) 没有实数根.3. 一元二次方程根与系数的关系已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)的两根为x 1,x 2, 则有二十—、二次函数2. 二次函斂y=a(x-h)+k(a ≠0)的性质3. 二次函数y=ax +bx+c 的性质(1) a 的符号:由抛物线的开口方向确定 ○1开口向上○2开口向下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学基本公式和基本定理性质大汇总 一、基本公式1、三角形面积公式:S △=12ah(a 为三角形的底,h 为高)。
2、梯形的面积公式:S 梯=12(a+b )h(a 、b 分别为梯形的上、下底,h 为高)。
3、正方形的面积公式:S 正=a 2(a 为正方形的边长);长方形的面积公式:S 长=ab (a 、b 分别为长方形的长、宽)。
4、正方体的体积公式:V 正=a 3;表面积公式:S 正=6a 2(a 为正方体的边长)。
5、长方体的体积公式:V 长=abh ;表面积公式:S 长=2ab+2ah+2bh (a 、b 、h 分别为长方体的长、宽、高)。
6、弧长公式:l=n 兀R /180(n 为圆心角的度数,R 为弧的半径);7、扇形面积公式:S 扇形=n 兀R 2/360=lR /2;(n 为圆心角的度数,R 为扇形半径,l 为弧长)。
8、圆的面积公式:S =兀R 2;周长公式:C=兀d=2兀R (d 为直径,R 为半径)。
9、圆柱的体积公式:V 圆柱=S 底h=兀R 2ℎ;表面积公式:S 表=S 侧+S 底=2兀Rh+2兀R 2(R 为底面圆的半径,h 为高)。
10、圆锥的体积公式:V 圆锥=13S 底h=13兀R 2ℎ;表面积公式:S 表=S 侧+S 底=兀Rl+兀R 2(l 为圆锥的母线长,R 为底面圆的半径)。
11、球的体积公式:V 球==43兀R 3(R 为球半径)。
12、三角函数公式:正弦sinA=∠A 的对边斜边;余弦cosA=∠A 的邻边斜边;正切tanA=∠A 的对边∠A 的邻边。
13、平方差公式:22()()a b a b a b +-=-。
14、完全平方公式:222()2a b a b ab +=++;222()2a b a b ab -=+-。
15、一元二次方程的求根公式:若x 是一元二次方程(a ≠0)20ax bx c ++=的根,则2b x a-±=(240b ac -≥);根的判别式:240b ac -><=>方程有两个不等的实数根;240b ac -=<=>方程有两个相等的实数根;240b ac -<<=>方程没有实数根;根与系数的关系:1x +2x =b a -;1x 2x =c a16、算术平均数:如果n 个数据1x ,2x ,3x ,…,n x ,那么123nx x x x x n++++=;加权平均数:如果n 个数据,1x 出现1f 次,2x 出现2f 次,…,n x 出现n f 次(123+=n f f f f n ++),那么这n 个数据的平均数为112233n nx f x f x f x f x n++++=。
17、方差:22222123()()()()n x x x x x x x x s n-+-+-++-=;标准差:(n x x s ++-=二、基本定理(一)直线与角1、两点之间,线段最短。
2、经过两点有一条直线,并且只有一条直线。
3、同角或等角的补角相等,同角或等角的余角相等。
4、对顶角相等。
(二)平行与垂直5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
6、经过已知直线外一点,有且只有一条直线与已知直线平行。
7、连接直线外一点与直线上各点的所有线段中,垂线段最短。
8、夹在两平行线间的平行线段相等。
9、平行线的判定:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
(4)垂直于同一条直线的两条的直线互相平行。
(5)如果两条直线都和第三条直线平行,那么这两条直线也平行。
10、平行线的性质:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
(三)角平分线、垂直平分线、图形的变化(轴对称、平称、旋转) 11、角平分线的性质:角平分线上的点到这个角的两边的距离相等.12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等. 14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.15、轴对称的性质:(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分。
(2)对应线段相等、对应角相等。
16、平移:经过平移,图形上的每个点都沿着相同方向移动了相同的距离,平移后,新图形和原图形的形状和大小都没有发现改变,即它们是全等图形。
即对应线段平行且相等,对应角相等,对应点所连的线段平行且相等。
17、旋转对称:(1)图形中每一点都绕着旋转中心旋转了同样大小的角度;(2)对应点到旋转中心的距离相等;(3)对应线段相等、对应角相等。
18、中心对称:(1)具有旋转对称的所有性质;(2)中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
(四)三角形:一般性质:19、三角形内角和定理:三角形的内角和等于180。
20、三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角;③三角形的外角和等于360°。
21、三边关系:(1)两边之和大于第三边;(2)两边之差小于第三边。
22、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。
23、三角形的三边的垂直平分线交于一点(外心),这点到三个顶点的距离(外接圆半径)相等。
24、三角形的三条角平分线交于一点(内心),这点到三边的距离(内切圆半径)相等。
特殊性质:25、等腰三角形、等边三角形(1)等腰三角形的两个底角相等.(简写成“等边对等角”)。
(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)。
(3)“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合。
(4)等边三角形的三个内角都相等,并且每一个内角都等于60°。
(5)三个角都相等的三角形是等边三角形。
(6)有一个角是60°的等腰三角形是等边三角形。
26、直角三角形:(1)直角三角形的两个锐角互余。
(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.(4)直角三角形斜边上的中线等于斜边的一半。
(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(6)三角形一边的中线等于这边的一半,这个三角形是直角三角形。
(五)四边形27、多边形中的有关公理、定理:(1)四边形的内角和为360°。
(2)n边形的内角和:(n-2)×180°。
(3)任意多边形的外角和都为360°。
28、平行四边形的性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分。
29、平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形;(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形。
30、矩形的性质:(1)具有平行四边形的所有性质;(2)矩形的四个角都是直角;(3)矩形的对角线相等且互相平分。
31、矩形的判定:(1)有一个角是直角的平行四边形是矩形。
(2)有三个角是直角的四边形是矩形。
(3)对角线相等的平行四边形是矩形。
32、菱形的性质:(1)具有平行四边形的所有性质;(2)菱形的四条边都相等;(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。
33、菱形的判定:(1)四条边相等的四边形是菱形。
(2)一组邻边相等的平行四边形是菱形。
(3)对角线互相垂直的平行四边形是菱形。
34、正方形的性质:(1)具有矩形、菱形的所有性质;(2)正方形的四个角都是直角;(3)正方形的四条边都相等;(4)正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角。
35、正方形的判定:(证明既是矩形又是菱形)(1)有一个角是直角的菱形是正方形。
(2)有一组邻边相等的矩形是正方形。
(3)对角线相等的菱形是正方形。
(4)对角线互相垂直的矩形是正方形。
36、等腰梯形的判定:(1)同一条底边上的两个内角相等的梯形是等腰梯形;(2)两条对角线相等的梯形是等腰梯形。
37、等腰梯形的性质:(1)等腰梯形的同一条底边上的两个内角相等;(2)等腰梯形的两条对角线相等.。
38、梯形的中位线平行于梯形的两底边,并且等于两底和的一半。
(六)相似形与全等形39、全等多边形的对应边、对应角分别相等。
40、全等三角形的判定:(1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等(SSS.)。
.(2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等(SAS)。
(3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等(ASA)。
(4)有两个角及其中一个角的对边分别对应相等的两个三角形全等(AAS)。
(5)如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等(HL)。
41、相似三角形的性质:对应边、周长、对应线段的比均等于相似比,面积比等于相似比的平方。
42、比例的性质:(1)比例的基本性质:如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d 。
(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d。
(3)等比性质:如果a/b=c/d=…=m/n=k(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=k。
43、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
44、推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
45、相似三角形的判定:(类似于全等判定)(1)平行于三角形的一边的直线和其他两边相交所构成的三角形与原三角形相似。
(2)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似。
(3)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
(4)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似。
46、相似多边形的性质:同相似三角形。
47、相似多边形的判定:对应边成比例且对应角相等。
(七)圆48、(1)圆是轴对称图形,任何一条直径所在直线都是它的对称轴。
(2)圆是中心对称图形,对称中心是圆心。
49、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。