第十二章 第4节 用公式法进行因式分解

合集下载

公式法因式分解教案

公式法因式分解教案

公式法因式分解教案公式法因式分解教案篇一学习重点:同底数幂乘法运算性质的推导和应用.学习过程:一、创设情境引入新课复习乘方an的意义:an表示个相乘,即an=.乘方的结果叫a叫做,n是问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?列式为,你能利用乘方的意义进行计算吗?二、探究新知:探一探:1根据乘方的意义填空(1)23×24=(2×2×2)×(2×2×2×2)=2();(2)55×54=_________=5();(3)(-3)3×(-3)2=_________________=(-3)();(4)a6a7=________________=a().(5)5m5n猜一猜:aman=(m、n都是正整数)你能证明你的猜想吗?说一说:你能用语言叙述同底数幂的乘法法则吗?同理可得:amanap=(m、n、p都是正整数)三、范例学习:【例1】计算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.2.计算:(1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.【例2】:把下列各式化成(x+y)n或(x-y)n的形式. (1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)(3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1四、学以致用:1.计算:⑴10n10m+1=⑵x7x5=⑶mm7m9=⑷-4444=⑸22n22n+1=⑹y5y2y4y=2.判断题:判断下列计算是否正确?并说明理由⑴a2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();⑷aa7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。

分解因式及在实数范围内分解因式

分解因式及在实数范围内分解因式

分解因式及在实数范围内分解因式因式分解的常用方法一、提公因式法。

二、运用公式法。

三、分组分解法.(一)分组后能直接提公因式 (二)分组后能直接运用公式四、十字相乘法。

(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。

(二)二次项系数不为1的二次三项式——c bx ax ++2(三)二次项系数为1的齐次多项式(四)二次项系数不为1的齐次多项式五、换元法。

六、添项、拆项、配方法。

七、待定系数法。

八、在实数范围内分解因式因式分解巩固提高一.填空题1.如果二次三项式x 2﹣ax+15在整数范围内可以分解因式,那么整数a 的值为(只填写一个你认为正确的答案即可) _________ .2.把x 2+kx+16分解成两个一次二项式的积的形式,k 可以取的整数是 _________ .(写出符合要求的三个整数).3.分解因式:(x+2)(x+4)+x 2﹣4= _________ .4.因式分解(x+1)4+(x+3)4﹣272= _________ .5.分解因式:(1﹣7t ﹣7t 2﹣3t 3)(1﹣2t ﹣2t 2﹣t 3)﹣(t+1)6= _________ .6.分解因式:18ax 2﹣21axy+5ay 2= _________ .7.若对于一切实数x ,等式x 2﹣px+q=(x+1)(x ﹣2)均成立,则p 2﹣4q 的值是 _________ .8.在实数范围内分解因式:2x 2﹣8x+5=2(x ﹣)(x ﹣).此结论是: __ 的. 二.解答题9.分解因式(1)8a 3b 2﹣12ab 3c (2)﹣3ma 3+6ma 2﹣12ma(3)2(x ﹣y )2﹣x (x ﹣y ) (4)3ax 2﹣6axy+3ay 2 (5)p 2﹣5p ﹣36(6)x 5﹣x 3 (7)(x ﹣1)(x ﹣2)﹣6 (8)a 2﹣2ab+b 2﹣c 210.已知x 2﹣7xy+12y 2=0(y≠0),求x :y 的值.11.(1)因式分解 (2x+y )2﹣(x+2y)2 (2)在实数范围内分解因式x 4﹣9.12.把a 4﹣6a 2+9在实数范围内分解因式.13.把多项式9mx 4﹣6mx 2+m 在实数范围内因式分解.14.已知x 2﹣x ﹣1=0,求﹣x 3+2x 2+2007的值.15.已知四个实数a,b ,c ,d ,且a≠b,c≠d .若四个关系式:a 2+ac=4,b 2+bc=4,c 2+ac=8,d 2+ad=8同时成立,试求a ,c 的值.16.已知整数a,b满足6ab=9a﹣10b+16,求a+b的值.17.试说明两个连续正偶数的平方差一定能被4整除,但不能被8整除.18.计算:.19.计算:.20.已知:a为有理数,a3+a2+a+1=0,求1+a+a2+a3+…+a2012的值.21.证明:58﹣1能被20至30之间的两个整数整除.22.用因式分解进行计算(1)(2)2.5×19.7+3。

因式分解常用方法及练习

因式分解常用方法及练习

1、用提公因式法把多项式进行因式分解【知识精读】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。

提公因式法是因式分解的最基本也是最常用的方法。

它的理论依据就是乘法分配律。

多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。

(2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。

下面我们通过例题进一步学习用提公因式法因式分解【分类解析】1. 把下列各式因式分解(1)a xabxacxaxm m mm 2213(2)a ab a b a ab b a ()()()32222分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。

解:a xabxacxaxax axbx c x m m mm m 221323()(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,()()()()a b b a a b b a nn n n 222121;,是在因式分解过程中常用的因式变换。

解:a ab a b a ab ba ()()()32222)243)((]2)(2))[(()(2)(2)(222223b babab aa b b a a b a b a a b a ab b a a b a a 2. 利用提公因式法简化计算过程例:计算1368987521136898745613689872681368987123分析:算式中每一项都含有9871368,可以把它看成公因式提取出来,再算出结果。

解:原式)521456268123(1368987987136813689875、中考点拨:例1。

因式分解322x x x ()()解:322x xx ()()322231x x xxx ()()()()说明:因式分解时,应先观察有没有公因式,若没有,看是否能通过变形转换得到。

【教案】青岛版数学七年级下册12.4《用公式法进行因式分解(1)》教案1

【教案】青岛版数学七年级下册12.4《用公式法进行因式分解(1)》教案1

【教案】青岛版数学七年级下册12.4《用公式法进行因式分解(1)》教案1一. 教材分析本节课的主题是“用公式法进行因式分解(1)”,这是青岛版数学七年级下册的教学内容。

因式分解是初中学段数学的重要内容,是解决各种数学问题的基本技能。

通过本节课的学习,学生将掌握因式分解的基本方法,提高解决数学问题的能力。

二. 学情分析学生在学习本节课之前,已经学习了有理数的运算、方程的解法等知识,具备了一定的数学基础。

但因式分解较为抽象,需要学生具有一定的逻辑思维能力和转化能力。

因此,在教学过程中,需要关注学生的学习情况,针对性地进行引导和讲解。

三. 教学目标1.知识与技能目标:学生能够理解并掌握因式分解的基本概念和方法,能够运用公式法进行因式分解。

2.过程与方法目标:通过自主学习、合作交流,学生能够培养数学思维能力和问题解决能力。

3.情感态度与价值观目标:学生能够体验到数学学习的乐趣,增强对数学学科的兴趣。

四. 教学重难点1.重点:学生能够掌握因式分解的基本方法,能够运用公式法进行因式分解。

2.难点:学生能够理解因式分解的原理,能够灵活运用公式法进行因式分解。

五. 教学方法1.情境教学法:通过生活实例引入因式分解的概念,激发学生的学习兴趣。

2.引导发现法:教师引导学生发现因式分解的规律,培养学生的自主学习能力。

3.合作学习法:学生分组讨论,共同解决问题,提高学生的合作能力和交流能力。

六. 教学准备1.教师准备:教师需要熟悉教材内容,了解学生的学习情况,准备相关的教学资源和教学工具。

2.学生准备:学生需要预习教材内容,了解因式分解的基本概念和方法。

七. 教学过程1.导入(5分钟)教师通过生活实例引入因式分解的概念,引导学生思考如何将一个多项式分解成几个整式的乘积。

2.呈现(10分钟)教师展示因式分解的定义和基本方法,引导学生发现因式分解的规律。

3.操练(10分钟)教师提出一些因式分解的问题,学生分组讨论,共同解决问题。

初中数学用公式法进行因式分解(含答案)

初中数学用公式法进行因式分解(含答案)

初中数学用公式法进行因式分解(含答案)用公式法进行因式分解一、填空题(本大题共20小题,共分)1.分解因式:xy2+8xy+16x= ______ .2.因式分解:4m2-36= ______ .3.因式分解:2a3-8ab2= ______ .4.将多项式mn2+2mn+m因式分解的结果是 ______ .5.把多项式4ax2-9ay2分解因式的结果是 ______ .6.因式分解:2x2-32x4= ______ .7.因式分解:a2b-4ab+4b= ______ .8.分解因式:mx2-4m= ______ .9.分解因式a2b-a的结果为 ______ .10.分解因式:2ax2-8a= ______ .11.分解因式:2m2-8= ______ .12.分解因式:ma2+2mab+mb2= ______ .13.分解因式:a2b-b3= ______ .14.分解因式:x(x-1)-y(y-1)= ______ .15.分解因式:ax3y-axy= ______ .16.因式分解:3y2-12= ______ .17.因式分解:m2n-6mn+9n= ______ .18.因式分解:a2b-ab+b= ______ .19.分解因式-a3+2a2b-ab2= ______ .20.分解因式:a2b+4ab+4b= ______ .二、计算题(本大题共30小题,共分)21.分解因式(1)a2(a-b)+4b2(b-a)(2)m4-1(3)-3a+12a2-12a3.22.把下列多项式分解因式:(1)6x2y-9xy;(2)4a2-1;(3)n2(n-6)+9n.23.把下列各式因式分解(1)ap-aq+am(2)a2-4(3)a2-2a+1(4)ax2+2axy+ay2.初中数学用公式法进行因式分解(含答案) 24.分解因式:(1)x+xy+xy2(2)(m+n)3-4(m+n)25.因式分解:(1)x(x-2)-3(2-x)(2)x2-10x+25.26.把下列各式进行因式分解:(1)a3-6a2+5a;(2)(x2+x)2-(x+1)2;(3)4x2-16xy+16y2.27.因式分解:(1)x2-y2(2)-4a2b+4ab2-b3.28.分解因式(1)x3-16x(2)8a2-8a+2.29.分解因式:(1)3m4-48;(2)b4-4ab3+4ab2.30.分解因式:(1)2x2-4x(2)a2(x-y)-9b2(x-y)(3)4ab2-4a2b-b3(4)(y2-1)2+6(1-y2)+9.31.分解因式:(1)3a2+6ab+3b2(2)9(m+n)2-(m-n)2.32.因式分解:(1)a(x-y)-b(y-x)(2)3ax2-12ay2(3)(x+y)2+4(x+y+1)33.分解因式:(1)a(x-y)-b(y-x);(2)16x2-64;(3)(x2+y2)2-4x2y2.34.分解因式(1)4x3y-xy3(2)-x2+4xy-4y2.35.分解下列因式:(1)9a2-1(2)p3-16p2+64p.36.因式分解:(1)x2-10xy+25y2(2)3a2-12ab+12b2(3)(x2+y2)2-4x2y2(4)9x4-81y4.37.将下列各式分解因式(1)16a2b2-1(2)12ab-6(a2+b2)38.把下列各式因式分解(1)4a2-16(2)(x2+4)2-16x2.39.把下列多项式因式分解:(1)x3y-2x2y+xy;(2)9a2(x-y)+4b2(y-x).40.分解因式(1)x3-xy2(2)(x+2)(x+4)+1.41.因式分解:-3a3b+6a2b2-3ab3.42.把下列各式分解因式:①4m(x-y)-n(x-y);②2t2-50;③(x2+y2)2-4x2y2.43.因式分解(1)x2-5x-6(2)2ma2-8mb2(3)a3-6a2b+9ab2.44.分解因式:2x2-12x+18.45.分解因式:(1)x3+2x2+x(2)x3y3-xy.46.因式分解:(1)ax2-2ax+a(2)24(a-b)2-8(b-a)47.因式分解:(1)4x2-16y2(2)x2-10x+25.48.分解因式(1)m(a-3)+2(3-a)(2)x2-6x+9.49.因式分解:6xy2-9x2y-y2.50.分解因式(1)x2(a+b)-a-b(2)a3b-2a2b2+ab3(3)y4-3y3-4y2(4)-(a2+2)2+6(a2+2)-9.用公式法进行因式分解答案和解析【答案】(y+4)2(m+3)(m-3)(a+2b)(a-2b)(n+1)2(2x+3y)(2x-3y)(1+4x)(1-4x)(a-2)2(x+2)(x-2)(ab-1)(x+2)(x-2)(m+2)(m-2)(a+b)2(a+b)(a-b)14.(x-y)(x+y-1)(x+)(x-)(y+2)(y-2)(m-3)2(a-)2(a-b)2(a+2)221.解:(1)原式=a2(a-b)-4b2(a-b)=(a-b)(a2-4b2)=(a-b)(a+2b)(a-2b);(2)原式=(m2+1)(m2-1)=(m2+1)(m+1)(m-1);(3)原式=-3a(4a2-4a+1)=-3a(2a-1)2.22.解:(1)原式=3xy(2x-3);(2)原式=(2a+1)(2a-1);(3)原式=n(n2-6n+9)=n(n-3)2.23.解:(1)原式=a(p-q+m);(2)原式=(a+2)(a-2);(3)原式=(a-1)2;(4)原式=a(x2+2xy+y2)=a(x+y)2.24.解:(1)原式=x(1+4y+4y2)=x(1+2y)2;(2)原式=(m+n)[(m+n)2-4]=(m+n)(m+n+2)(m+n-2).25.解:(1)原式=x(x-2)+3(x-2)=(x-2)(x+3);(2)原式=(x-5)2.26.解:(1)原式=a(a2-6a+5)=a(a-1)(a-5);(2)原式=(x2+x+x+1)(x2+x-x-1)=(x+1)2(x+1)(x-1);(3)原式=4(x2-4xy+4y2)=4(x-2y)2.27.解:(1)原式=(x+y)(x-y);(2)原式=-b(4a2-4ab+b2)=-b(2a-b)2.28.解:(1)原式=x(x2-16)=x(x+4)(x-4);(2)原式=2(4a2-4a+1)=2(2a-1)2.29.解:(1)原式=3(m4-16)=3(m2+4)(m+2)(m-2);(2)原式=b2(b2-4ab+4a).30.解:(1)原式=2x(x-2);(2)原式=(x-y)(a2-9b2)=(x-y)(a+3b)(a-3b);(3)原式=-b(b2-4ab+4a2)=-b(2a-b)2;(4)原式=(y2-1)2-6(y2-1)+9=(y2-4)2=(y+2)2(y-2)2.31.解:(1)原式=3(a2+2ab+b2)=3(a+b)2;(2)原式=[3(m+n)+m-n][3(m+n)-(m-n)]=(4m+2n)(2m+4n)=4(2m+n)(m+2n).32.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=3a(x2-4y2)=3a(x+2y)(x-2y);(3)原式=(x+y)2+4(x+y)+4=(x+y+2)2.33.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=16(x2-4)=16(x+2)(x-2);(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.34.解:(1)原式=4xy(x2-y2)=4xy(x+y)(x-y);(2)原式=-(x2-4xy+4y2)=-(x-2y)2.35.解:(1)原式=(3a+1)(3a-1);(2)原式=p(p2-16p+64)=p(p-8)2.36.解:(1)原式=(x-5y)2;(2)原式=3(a2-4ab+4b2)=3(a-2b)2;(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2;(4)原式=9(a2+3y2)(x2-3y2).37.解:(1)原式=(4ab+1)(4ab-1);(2)原式=-6(a2-2ab+b2)=-6(a-b)2.38.解:(1)原式=4(a2-4)=4(a+2)(a-2);(2)原式=(x2+4+4x)(x2+4-4x)=(x-2)2(x+2)2.39.解:(1)原式=xy(x2-2x+1)=xy(x-1)2;(2)原式=9a2(x-y)-4b2(x-y)=(x-y)(3a+2b)(3a-2b).40.解:(1)原式=x(x2-y2)=x(x+y)(x-y);(2)原式=(x+3)2.41.解:原式=-3ab(a2-2ab+b2)=-3ab(a-b)2.42.解:①4m(x-y)-n(x-y)=(x-y)(4m-n);②2t2-50=2(t2-25)=2(t+5)(t-5);③(x2+y2)2-4x2y2=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.43.解:(1)原式=(x-6)(x+1);(2)原式=2m(a2-4b2)=2m(a+2b)(a-2b);(3)原式=a(a2-6ab+9b2)=a(a-3b)2.44.解:原式=2(x2-6x+9)=2(x-3)2.45.解:(1)原式=x(x2+2x+1)=x(x+1)2;(2)原式=xy(x2y2-1)=xy(xy+1)(xy-1).46.解:(1)原式=a(x2-2x+1)=a(x-1)2;(2)原式=24(a-b)2+8(a-b)=8(a-b)[3(a-b)+1]=8(a-b)(3a-3b+1).47.解:(1)原式=(2x+4y)(2x-4y);(2)原式=(x-5)2.48.解:(1)原式=m(a-3)-2(a-3)=(a-3)(m-2);(2)原式=(x-3)2.49.解:原式=-y(9x2-6xy+y).50.解:(1)原式=x2(a+b)-(a+b)=(a+b)(x2-1)=(a+b)(x+1)(x-1);(2)原式=ab(a2-2ab+b2)=ab(a-b)2;(3)原式=y2(y2-3y-4)=y2(y-4)(y+1);(4)原式=-[(a2+2)-3]2=-(a-1)2(a+1)2.。

(完整版)因式分解知识点归纳

(完整版)因式分解知识点归纳

n m n a a +=同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

35())a b b += 、幂的乘方法则:mnm aa ((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

如:幂的乘方法则可以逆用:即考点四、十字相乘法(1)二次项系数为1的二次三项式2x px q ++中,如果能把常数项q 分解成两个因式a b 、的积,并且a b +等于一次项系数p 的值,那么它就可以把二次三项式2x px q ++分解成()()()b x a x ab x b a x q px x ++=+++=++22例题讲解1、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=51 2 解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5 用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。

例题讲解2、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习分解因式(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x2、二次项系数不为1的二次三项式——c bx ax ++2 条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题讲解1、分解因式:101132+-x x分析: 1 -2 3 -5 (-6)+(-5)= -11解:101132+-x x =)53)(2(--x x分解因式:(1)6752-+x x (2)2732+-x x。

《公式法》因式分解PPT课件(第2课时)

《公式法》因式分解PPT课件(第2课时)

B. + −
C. − +
D. − + +
D

课堂检测
基础巩固题
3.如果x2-6x+N是一个完全平方式,那么N是(
A . 11
B. 9
C. -11
)
B
D. -9
4.如果x2-mx+16是一个完全平方式,那么m的值为________.
±8
课堂检测
∴++=(+) =112=121.
连接中考


(2020•眉山)已知 + = − − ,则 −
. 4

的值为


解析:由 +

+






= − − ,
− + + = ,


即 − + + + + = ,
∵ − = , = ,
∴原式=2.
巩固练习
变式训练
已知-+-+=,求++的值.
解:∵x2-4x+y2-10y+29=0,
∴(-)+(-)=.
∵(-) ≥ ,(-) ≥ ,
∴-=,-=,∴=,=,
是.
巩固练习
变式训练
将前面例题的(2)(3)(4)变为完全平方式?
(2) + ²;
+ ² + ;
(3) + − ;
+ + ;
(4) + + .
+ + .
探究新知
知识点 2
用完全平方公式因式分解

运用公式法例题课

运用公式法例题课

运用公式法因式分解一、学习指导1、代数中常用的乘法公式有:平方差公式:(a+b)(a -b)=a 2-b 2完全平方公式:(a±b)2=a 2±2ab+b 22、因式分解的公式:将上述乘法公式反过来得到的关于因式公解的公式来分解因式的方法,主要有以下三个公式:平方差公式:a 2-b 2=(a+b)(a -b)完全平方公式:a 2±2ab+b 2=(a±b)23、应用公式来分解因式的关键是要弄清各个公式的形式和特点,也就是要从它们的项数系数,符号等方面掌握它们的特征。

明确公式中字母可以表示任何数,单项式或多项式。

③同时对相似的公式要避免发生混淆,只有牢记公式,才能灵活运用公式。

④运用公式法进行因式分解有一定的局限性,只有符合其公式特点的多项式才能用公式法来分解。

二、例题分析:例1:分解因式:(1)4a 2-9b 2 (2)-25a 2y 4+16b 16解:(1)4a 2-9b 2=(2a)2-(3b)2=(2a+3b)(2a -3b)解:(2)-25a 2y 4+16b 16=16b 16-25a 2y 4=(4b 8)2-(5ay 2)2=(4b 8+5ay 2)(4b 8-5ay 2)注:要先将原式写成公式左边的形式,写成(4b 8)2-(5ay 2)2例2:分解因式:(1)36b 4x 8-9c 6y 10 (2)(x+2y)2-(x -2y)2(3)81x 8-y 8 (4)(3a+2b)2-(2a+3b)2分析:(1)题二项式有公因式9应该先提取公因式,再对剩余因式进行分解,符合平方差公式。

(2)题的两项式符合平方差公式,x+2y 和x -2y 分别为公式中的a 和b 。

(3)题也是两项式,9x 4和y 4是公式中的a 和b 。

(4)题也是两项式,3a+2b 和2a+3b 是平方差公式中的a 和b 。

解:(1)36b 4x 8-9c 6y 10=9(4b 4x 8-c 6y 10)=9[(2b 2x 4)2-(c 3y 5)2]=9(2b 2x 4+c 3y 5)(2b 2x 4-c 3y 5)注:解题的第二步写成公式的左边形式一定不要丢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章第4节用公式法进行因式分解
郝戈庄初中七年级王春美
一、课前预习:
课本121页---122页。

二、课内探究
(一)、学习目标
1.会用公式法进行因式分解.
2.了解因式分解的一般步骤.
(二)、学习重难点:
学习重难点:用公式法进行因式分解.
(三)、学习准备:
学生复习平方差公式和完全平方公式
(四)、学习过程:
1.自主探究
1、乘法公式:(a+b)(a-b)=______________;
(a+b)2 =___________________
2、将以上公式反过来,就得到:
a2-b2 =_____________________;
a2+2ab+b2 =________________________
a2-2ab+b2 =________________________
把2作为公式,就可以把某些多项式进行因式分解,这种因式分解的方法叫做公式法。

(注意:公式中的字母a和b可以表示任意的数、单项式或多项式)
例1 把下列各式进行因式分解:
1b2
(1)4x2–25 (2)16a2 -
9
在(1)式中公式中的a相当于_______________;
b相当于_______________
在(2)式中公式中的a相当于_______________;
b相当于_______________
1b2
解:(1)4x2–25 (2)16a2 -
9
= =
练习1:把下列各式进行因式分解:
1、课本122页练习1
2、(1) a4 -81b4 (2) (m+n)2-(m-n)2
例2 把下列各式进行因式分解:
1n2
(1) 25x2+20x+4 (2) 9m2-3mn+
4
在(1)式中公式中的a相当于_______________;
b相当于_______________
在(2)式中公式中的a相当于_______________;
b相当于_______________
(小组讨论交流)
练习2:把下列各式进行因式分解:
1、课本122页练习2
2、(1) x2-ax+9是完全平方公式,则a的值为()
A.6
B.-6
C. 6
D.无法确定
(2) 4x2 +__________xy+25y2 =(2x-5y)2;
(______)+8a+1=(_______+1)2
(小组讨论交流)
( 小组交流解决在预习中没有解决的问题)
精讲点拨:
(学生到黑板前展示重点问题)
__________________________________________________________
__________五、小结
通过本节课,你学到了什么?说说你的收获。

六、课后检测
1、分解因式:
(1)x2-y2
(2)16m2-9n2
(3) m2-2mn+n2
(4) 9m2 - 6mn + n2
2、若多项式4a2 +M 能用平方差公式分解因式,则单项式
M=_____________
(写出一个即可)
3、下列代数式:(1)x2 – 4xy + y2;(2)6x2 + 3x + 1;
(3)4x2 - 4x + 1 ;(4)x2 + 4xy + 2y2;
(5)9x2 +16y2 -20xy
能用完全平方公式分解因式的有______________(写序号) 4、分解因式:
(1)- x2 – 2xy - y2;(2)9(a-b)2 - 16(a+b)2。

相关文档
最新文档