半导体制造工艺之离子注入原理课程

合集下载

半导体工艺离子注入专题培训课件

半导体工艺离子注入专题培训课件

8、注入损伤:
离子注入衬底单晶与衬底原子作级联碰撞,产 生大量的位移原子,注入时产生的空位、填隙原子 等缺陷称为一次缺陷。在剂量达到一定数值后,衬 底单晶非晶化,形成无定型结构。使衬底完全非晶 化的注入剂量称为阈值剂量。
不同衬底和不同的注入离子,在不同的能量、 剂量率和不同温度下有不同的非晶剂量。轻原子的 大、重原子的小;能量低大,能量高小;衬底温度 低大,衬底温度高小。当衬底温度高于固相外延温 度时,可以一直保持单晶。
2、离子束的性质:
离子束是一种带电原子或带电分子的束状流, 能被电场或磁场偏转,能在高压下加速而获得很高 的动能。
离子束的用途: 掺杂、曝光、刻蚀、镀膜、退火、净化、改性、 打孔、切割等。不同的用途需要不同的离子能量 E :
E < 10 KeV ,刻蚀、镀膜 E = 10 ~ 50 KeV,曝光 E > 50 KeV,注入掺杂
中性束偏移器:利用偏移电极和偏移角度分离中 性原子。
聚焦系统:用来将加速后的离子聚集成直径为数 毫米的离子束。
偏转扫描系统:用来实现离子束 x、y 方向的一
定面积内进行扫描。 工作室:放置样品的地方,其位置可调。
离子注入系统
5、离子注入的特点:
特点: ·可以独立控制杂质分布(离子能量)和杂质浓度
10、离子注入的 优缺点:
优点:
1、可控性好,离子注入能精确控制掺杂的浓度分布 和掺杂深度,因而适于制作极低的浓度和很浅的结深;
2、注入温度低,一般不超过 400℃,退火温度也在 650℃ 左右,避免了高温过程带来的不利影响,如结 的推移、热缺陷、硅片的变形等;
3、工艺灵活,可以穿透表面薄膜注入到下面的衬底 中,也可以采用多种材料作掩蔽膜,如 SiO2 、金属 膜或光刻胶等;

半导体制造技术导论chapter8离子注入工艺

半导体制造技术导论chapter8离子注入工艺
• 从高温获得的热能,帮助非晶态原子复 原成单晶体结构
PPT文档演模板
半导体制造技术导论chapter8离子注 入工艺
热退火
•晶格原子
PPT文档演模板
•掺杂物原子
半导体制造技术导论chapter8离子注 入工艺
热退火
•晶格原子
PPT文档演模板
•掺杂物原子
半导体制造技术导论chapter8离子注 入工艺
• 离子束并非完美的平行,许多离子在穿入 基片之后立刻会和晶格原子发生许多的原 子核碰撞。一部分的离子可以沿着通道深 入基片,而很多其他离子则被阻滞成常态 的高斯分佈.
PPT文档演模板
半导体制造技术导论chapter8离子注 入工艺
损害制程
• 注入的离子转移能量给晶格原子
– 原子从晶格的束缚能释放出来
半导体制造技术导论chapter8离子注 入工艺
离子注入:气体系统
• 特殊的气体递送系统控制有害的气体 • 更换气体钢瓶需要特殊的训练 • 氩气用来吹除净化和离子束校正
PPT文档演模板
半导体制造技术导论chapter8离子注 入工艺
ቤተ መጻሕፍቲ ባይዱ 离子注入:电机系统
• 高压系统
– 决定控制接面深度的离子能量
快速加热步骤和高温炉退火
•多晶 硅 •硅
•RTP退火
•匣
极 •二
氧化
硅匣
极 •源极 / 漏极
•硅
•多晶 硅
•高温炉退 火
PPT文档演模板
半导体制造技术导论chapter8离子注 入工艺
问与答
• 为什么高温炉的温度无法像RTP系统一样 急速上升及冷却?
• 高温炉有非常高的热容量,需要非常高的 加热功率以快速升高温度。由于温度会过 高(overshoot)或是过低(undershoot),所以很 难做到快速升温而没有大的温度震盪.

离子注入技术培训

离子注入技术培训
金属表面改性
02
离子注入技术可以改变金属表面的结构和性质,从而提高金属的耐磨性、耐腐蚀性和抗疲劳性能等。在汽车、航空航天、石油化工等领域有广泛应用。
生物医学
03
离子注入技术在生物医学领域也有广泛应用,如放射性离子注入治疗肿瘤、离子束照射用于基因治疗等。
20世纪50年代:离子注入技术的雏形出现,当时主要用于研究气体放电和带电粒子在气体中的行为。
结果讨论
对实验结果进行深入讨论,探讨可能的原因和机制,提出改进措施。
文献对比
查阅相关文献,将本次实验结果与前人研究结果进行对比分析。
总结与展望
总结实验经验与成果,指出不足之处,并提出进一步的研究方向和展望。
05
离子注入技术的应用案例
总结词
离子注入技术在半导体制造中应用广泛,主要用于提高芯片性能和可靠性。
离子注入的工艺参数主要包括离子的种类、能量、剂量、注入角度和温度等。
注入角度决定了离子束与材料表面的夹角,温度则影响材料表面的热稳定性和晶格结构。
离子的种类和能量决定了注入过程中与材料原子的相互作用机制和作用程度,剂量则决定了注入层中的离子浓度和分布。
这些工艺参数的选择和控制对于实现良好的离子注入效果至关重要。
离子注入技术的基本原理是将需要注入的元素或化合物进行离子化,然后在电场的作用下将离子束注入到固体材料的表面。在注入过程中,离子会与材料表面的原子或分子发生能量交换和动量交换,从而改变材料表面的结构和性质。
半导体制造
01
离子注入技术在半导体制造中应用广泛,主要用于制造集成电路、晶体管、太阳能电池等。通过离子注入技术可以实现对半导体材料的掺杂和改性,提高器件的性能和可靠性。
02
离子注入技术的基本原理

半导体制造工艺_10离子注入(下)

半导体制造工艺_10离子注入(下)

半导体制造工艺基础
第七章 离子注入 (下)
什么是注入损伤 晶格损伤:高能离子注入硅片后与靶原子发生一系列碰
撞,可能使靶原子发生位移,被位移原子还可能把能量依 次传给其它原子,结果产生一系列的空位-间隙原子对及 其它类型晶格无序的分布。这种因为离子注入所引起的简 单或复杂的缺陷统称为晶格损伤。
5
(Si)SiSiI + SiV
精确控制掺杂,浅结、 浅掺杂,纯度高,低温, 多种掩模,… 非晶靶。能量损失为两个彼 此独立的过程(1) 核阻止与(2) 电子阻止之和。能量为E的入 射粒子在密度为N的靶内走 过x距离后损失的能量。
C * xm CB
半导体制造工艺基础
第七章 离子注入 (下)
2
总阻止本领(Total stopping power)
第七章 离子注入 (下) 损伤退火 (Damage Annealing)
被注入离子往往处于半导体晶格的间隙位置,对 载流子的输运没有贡献;而且也造成大量损伤。 注入后的半导体材料: 杂质处于间隙 n<<ND;p<<NA 晶格损伤,迁移率下降;少子寿命下降 热退火后:n n=ND (p=NA)
半导体制造工艺基础
第七章 离子注入 (下)
6
损伤的产生
• 移位原子:因碰撞而离开晶格位置的原子。 • 移位阈能Ed:使一个处于平衡位置的原子发生 移位,所需的最小能量. (对于硅原子, Ed15eV) • 注入离子通过碰撞把能量传给靶原子核及其电 子的过程,称为能量传递过程
半导体制造工艺基础
第七章 离子注入 (下)
半导体制造工艺基础
第七章 离子注入 (下) 离子注入损伤估计
8
100KeV B离子注入损伤 初始核能量损失:30eV/nm, 硅晶面间距: 0.25nm, 每穿过一个晶面 能量损失: 30eV/nm X 0.25nm=7.5eV <Ed (15eV). 当能量降到50KeV, 穿过一个晶面能量损失为15eV, 该能量所对应的射程为: 150nm. 位 移原子数为: 150/0.25=600, 如果移位距离为: 2.5nm, 那么损伤体积: (2.5)2 X150=3X10-18cm3. 损伤密度: 2X1020 cm-3, 大约是原子密度 0.4%. 100KeV As离子注入损伤 平均核能量损失:1320eV/nm,损伤密度: 5X1021 cm-3, 大约是原子密 度10%, 该数值为达到晶格无序所需的临界剂量, 即非晶阈值.

半导体制造工艺之离子注入原理课件

半导体制造工艺之离子注入原理课件

Z12
3
Z
2 2
3
m1 m2
摘自J.F. Gibbons, Proc. IEEE, Vol. 56 (3), March, 1968, p. 295
例如:磷离子Z1 = 15, m1 = 31 注入硅 Z2 = 14, m2 = 28, 计算可得:
Sn ~ 550 keV-mm2
电子阻止本领
局部电子阻止 非局部电子阻止
减少沟道效应的措施
❖ 对大的离子,沿沟道轴向(110)偏离7-10o
❖用Si,Ge,F,Ar等离子注入使表面预非晶 化,形成非晶层(Pre-amorphization)
❖增加注入剂量(晶格损失增加,非晶层形成, 沟道离子减少)
❖表面用SiO2层掩膜
典型离子注入参数
离子:P,As,Sb,B,In,O 剂量:1011~1018 cm-2 能量:1– 400 keV 可重复性和均匀性: ±1% 温度:室温 流量:1012-1014 cm-2s-1
1) 试估算注入离子的投影射程,投影射程标准偏差、 峰 值浓度、结深
2) 如注入时间为1分钟,估算所需束流。
【解】1) 从查图或查表 得
Rp=4289 Å=0.43 mm Rp855 Å0.086 mm 峰值浓度
Cp=0.4Q/Rp=0.4×5×1014/(0.086×10-4)=2.34×1019 cm-3
110
111
100
倾斜旋转硅片后的无序方向
沿<100>的沟道效应
产生非晶化的剂量
浓度分布 由于沟道效应的存在,在晶体中注入将偏
离LSS理论在非晶体中的高斯分布,浓度分布中出现 一个相当长的“尾巴”
表面非晶层对于沟道效应的作用

半导体制造工艺09离子注入

半导体制造工艺09离子注入

表面非晶层对于沟道效应的作用
Boron implant into SiO2
Boron implant into Si
减少沟道效应的措施
❖ 对大的离子,沿沟道轴向(110)偏离7-10o
❖ 用Si,Ge,F,Ar等离子注入使表面预非晶 化,形成非晶层(Pre-amorphization)
❖ 增加注入剂量(晶格损失增加,非晶层形成 ,沟道离子减少)
LSS理论
-dE/dx:能量随距离损失的平均速率
能量为E的 入射粒子在 密度为N的 靶内走过x 距离后损失 的能量
E:注入离子在其运动路程上任一点x处的能量
Sn(E):核阻止本领/截面 (eVcm2) Se(E):电子阻止本领/截面(eVcm2) N: 靶原子密度 ~51022 cm-3 for Si
大角度的散射(背散射),会引起在峰值位置与表面一 侧有较多的离子堆积;重离子散射得更深。
R (μm)
横向效应
横向效应指的是注入 离子在垂直于入射方 向平面内的分布情况
横向效应影响MOS晶体 管的有效沟道长度。
35 keV As注入
120 keV As注入Βιβλιοθήκη 注入掩蔽层——掩蔽层应该多厚?
如果要求掩膜层能完全阻挡离子
对比一下:如果采用预淀积扩散(1000 C),表面浓度 为固溶度1020 cm-3时,
D~10-14 cm2/s
每秒剂量达1013/cm2
常用注入离子在不同注入能量下的特性
标准偏差Rp 平均投影射程Rp
已知注入离子的能量和剂量, 估算注入离子在靶中的 浓度和结深
问题:140 keV的B+离子注入到直径为150 mm的硅靶中。 注入 剂量Q=5×10 14/cm2(衬底浓度2×1016 /cm3)

半导体制造工艺之离子注入原理

半导体制造工艺之离子注入原理

半导体制造工艺之离子注入原理引言离子注入是半导体制造工艺中的一种重要方法,广泛应用于半导体器件的加工和制造过程中。

离子注入工艺通过将高能离子注入到半导体晶体中,改变材料的物理和化学性质,实现半导体器件的特定功能和性能。

本文将详细介绍离子注入的原理以及其在半导体制造中的应用。

离子注入原理离子注入是利用离子束对半导体材料进行信息改变的过程,其原理基于以下几个关键步骤:1.离子源生成:离子注入过程首先需要一个稳定的离子源。

常见的离子源包括离子源装置和离子源材料。

离子源装置通过电离气体产生离子束,而离子源材料通常是一种固体材料,通过加热或溶解的方式释放离子。

2.离子加速:生成的离子束经过电场加速,增加其能量和速度。

加速电场的大小决定了离子注入的能量和深度。

3.汇聚和对准:离子束通过极板或磁场对准系统,确保离子束准确地注入到半导体材料的目标区域。

4.离子注入:离子束与半导体材料进行相互作用,离子穿过材料表面,在材料内部形成注入层。

离子注入的能量和剂量可以控制和调节,影响着半导体的特性和性能。

5.后续处理:注入完成后,需要进行一系列的后续处理步骤,如退火、清洗等,以恢复和优化器件的电学性能。

离子注入的应用离子注入在半导体制造中有着广泛的应用,主要体现在以下几个方面:1.掺杂:离子注入可在半导体材料中引入杂质原子,从而改变材料的电学性质。

通过控制离子注入的能量和剂量,可以实现器件中的PN结、N型、P型等区域。

2.改变表面特性:离子注入还可用于改变半导体材料表面的化学和物理特性。

例如,在CMOS制造中,通过离子注入改变材料表面的电导率,形成NMOS、PMOS等区域。

3.改善电子迁移率:离子注入还可用于改善半导体器件中电子的迁移率,提高器件的性能。

通过注入低能量离子,形成浅表层,可以减少晶格缺陷,提高电子的迁移率。

4.修复损伤:半导体材料在制造过程中往往会受到损伤,如晶格位错、空位等。

离子注入可用于修复这些损伤,提高材料的完整性和性能。

第4章IC工艺之离子注入ppt课件

第4章IC工艺之离子注入ppt课件

Beam scan
Mask xj
Mask
Silicon substrate
a) Low dopant concentration (n–, p–) and shallow junction (xj)
Mask xj
Mask
Silicon substrate
b) High dopant concentration (n+, p+) and deep junction (xj)
Scanning disk with wafers
Suppressor aperture
Faraday cup
Ion beam
Current integrator
Scanning direction
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
( dE dx
) nuel
( dE dx
) e
R p ( E )
E 0
dE ( dE tot

E 0
dE S (E
)
dx
E
dE
0 Sn(E) Se(E)
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
– 4.3. 注入离子的激活与辐照损伤的消除
P.103~112 1)注入离子未处于替位位置 2)晶格原子被撞离格点
ET(M 4M i iM M tt) E0f()Ea
Ea为原子的位移阈能 大剂量——非晶化 临界剂量(P。111) 与什么因素有关? 如何则量?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子阻止本领













不改变入射离子运动方向
电荷/动量交换导致入射离子运 动方向的改变(<核间作用)
把固体中的电子看成自由电子气,电子的阻止就类似于粘滞气 体的阻力(一阶近似)。电子阻止本领和注入离子的能量的平
方根成正比。 S e E C io k n v 1 / 2 ,E k 0 . 2 1 1 e 0 5 1 / 2 c V 2m
Sn(E):核阻止本领/截面 (eVcm2) Se(E):电子阻止本领/截面(eVcm2) N: 靶原子密度 ~51022 cm-3 for Si
能量E的函数
核阻止本领
注入离子与靶内原子核之间两体碰撞 两粒子之间的相互作用力是电荷作用
对心碰撞,最大能量转移:
ET ran s (m 4 1m 1m m 2 2)2 E



B10
B11
r
BF3:B++,B+,BF2+, F+, BF+,BF++
扫描系统 靶
Q

1 A

I q
dt
a) 源(Source):在半导体应用中,为了操作方便, 一般采用气体源,如 BF3,BCl3,PH3,AsH3等。 如用固体或液体做源材料,一般先加热,得到它
b) 离子源(Ion Source):灯丝(filament)发出的 自由电子在电磁场作用下,获得足够的能量后撞 击源分子或原子,使它们电离成离子,再经吸极 吸出,由初聚焦系统聚成离子束,射向磁分析器
以改变这种材料表层的 物理或化学性质
离子注入特点
可通过精确控制掺杂剂量(1011-1018 cm-2)和能量(1-400 keV)来 达到各种杂质浓度分布与注入浓度
平面上杂质掺杂分布非常均匀(1% variation across an 8’’ wafer) 表面浓度不受固溶度限制,可做到浅结低浓度 或深结高浓度 注入元素可以非常纯,杂质单一性 可用多种材料作掩膜,如金属、光刻胶、介质;可防止玷污,自由
气体源:BF3,AsH3,PH3,Ar,GeH4,O2,N2,... 离子源:B , As,Ga,Ge,Sb,P,...
离子注入过程是一个非平衡过程,高能离子进入 靶后不断与原子核及其核外电子碰撞,逐步损失 能量,最后停下来。停下来的位置是随机的,大 部分不在晶格上,因而没有电活性。
注入离子如何在体内静止?
LSS理论
d dE xNSnESeE
SnEN 1 d d E xn,SeEN 1 d d E xe
-dE/dx:能量随距离损失的平均速率
能量为E的 入射粒子在 密度为N的 靶内走过x 距离后损失 的能量
E:注入离子在其运动路程上任一点x处的能量
• 总能量损失为两者的和
核阻止本领与电子阻止本领-LSS理论
阻止本领(stopping power):材料中注入离子的能量损失大小 单位路程上注入离子由于核阻止和电子阻止所损失的能量 (Sn(E),
Se(E) )。
核阻止本领:来自靶原子核的阻止,经典两体碰撞理论。
电子阻止本领:来自靶内自由电子和束缚电子的阻止。
核阻止能力的一阶近似为:
m——质量, Z——原子序数 下标1——离子,下标2——靶
S nE 2 .8 1 1 05Z 1 2 Z 3 1 Z 2 Z 2 23m 1m 1 m 2ec V 2 m 例1Z52,如=m1:14=,磷m3离12 =注子2入Z81,硅=
计算可得: 摘自J.F. Gibbons, Proc. IEEE, Vol. 56 (3), March, 1968, p. 295 Sn ~ 550 keV-mm2

(称为主扩散或再分布)

控制扩散深度和表面浓度

C2
Q
D2t2
2C1
D1t1 D2t2
什么是离子注入
离化后的原子在强电场的加速作用下,注射进入靶材料的 表层,以改变这种材料表层的物理或化学性质
离子注入的基本过程
将某种元素的原子或携 带该元素的分子经离化 变成带电的离子
在强电场中加速,获得 较高的动能后,射入材 料表层(靶)
度大 离子注入属于低温过程(因此可以用光刻胶作为掩膜),避免了高
温过程引起的热扩散 横向效应比气固相扩散小得多,有利于器件尺寸的缩小 • 会产生缺陷,甚至非晶化,必须经高温退火加以改进 • 设备相对复杂、相对昂贵(尤其是超低能量离子注入机) • 有不安全因素,如高压、有毒气体
磁分析器
聚焦
加速管
R:射程(range) 离子 在靶内的总路线长度
Distribution according to Gaussian function
Cx,t Q D T et xp4xD 2 t

第一步 为恒定表面浓度的扩散(Pre-deposition) (称为预沉积或预扩散)

控制掺入的杂质总量

艺 中
Q 2C1
D1t1

二 第二步 为有限源的扩散(Drive-in),往往同时氧化
LSS理论——对在非晶靶中注入离子的射程分布的研究
• 1963年,Lindhard, Scharff and Schiott首先确立了注入离 子在靶内分布理论,简称 LSS理论。
• 该理论认为,注入离子在靶内的能量损失分为两个彼此独 立的过程 (1) 核阻止(nuclear stopping) (2) 电子阻止 (electronic stopping)
总阻止本领(Total stopping power)
核阻止和电 子阻止相等 的能量
核阻止本领在低能量下起主要作用(注入分布的尾端) 电子阻止本领在高能量下起主要作用
n
离子 E2
B
17 keV
e
n
P 150 keV
As, Sb >500 keV
n
射程终点(EOR) 处晶格损伤大容
费克第二定律的运用和特殊解 特征扩散长度的物理含义 非本征扩散 常用杂质的扩散特性及与点缺陷的相互作用 常用扩散掺杂方法 常用扩散掺杂层的质量测量
Distribution according to error function
Cx,tCserfc2
x Dt
相关文档
最新文档